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The extreme environmental conditions and lack of water on the soil surface in hyperarid
deserts hamper microbial life, allowing only highly specialized microbial communities to
the establish colonies and survive. Until now, the microbial communities that inhabit
or have inhabited soils of hyperarid environments at greater depths have been poorly
studied. We analyzed for the first time the variation in microbial communities down
to a depth of 3.4 m in one of the driest places of the world, the hyperarid Yungay
region in the Atacama Desert, and we related it to changes in soil physico-chemical
characteristics. We found that the moisture content changed from 2 to 11% with depth
and enabled the differentiation of three depth intervals: (i) surface zone A (0–60 cm),
(ii) intermediate zone B (60–220 cm), and (iii) deep zone C (220–340 cm). Each zone
showed further specific physicochemical and mineralogical features. Likewise, some
bacterial phyla were unique in each zone, i.e., members of the taxa Deinococcota,
Halobacterota, and Latescibacterota in zone A; Crenarchaeota, Fusobacteriota, and
Deltaproteobacterium Sva0485 in zone B; and Fervidibacteria and Campilobacterota in
zone C, which indicates taxon-specific preferences in deep soil habitats. Differences in
the microbiota between the zones were rather abrupt, which is concomitant with abrupt
changes in the physical-chemical parameters. Overall, moisture content, total carbon
(TC), pH, and electric conductivity (EC) were most predictive of microbial richness and
diversity, while total sulfur (TS) and total phosphorous (TP) contents were additionally
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predictive of community composition. We also found statistically significant associations
between taxa and soil properties, most of which involved moisture and TC contents.
Our findings show that under-explored habitats for microbial survival and existence
may prevail at greater soil depths near water or within water-bearing layers, a valuable
substantiation also for the ongoing search for biosignatures on other planets, such as
Mars.

Keywords: deep soil, physicochemical properties, microbiota, hyperarid soil, Atacama Desert

INTRODUCTION

The hyperarid region of the Atacama Desert is in the south of
this desert as part of the Aguas Blancas (AB) basin. This region
is surrounded by mountain ranges that limit its extension to the
Coastal Cordillera to the west and the Cordillera de Domeyko
to the east (Bonilla, 1972). The mean annual precipitation is less
than 1 mm yr−1 (Houston and Hartley, 2003; Houston, 2006),
with precipitation (Pp) to potential evapotranspiration (PET)
ratios of Pp/PET < 0.05 (UNEP, 1997). While the crest line of the
coastal range blocks any incoming marine fog by approximately
100 km, this promotes a “fog shadow” in the area where some
“Mars-like soils” mostly dominate (Navarro-González et al., 2003;
Gómez-Silva et al., 2008). At present, this hyperarid core of the
desert is also devoid of plant growth. However, several studies
have shown that the Atacama Desert had humid periods in the
past that varied from the current arid or hyperarid conditions
(Sáez et al., 2016; Pfeiffer et al., 2018; Ritter et al., 2018).

Despite the hyperarid conditions of the soils, the existence of
past and recent signals of life has been shown. A study by Wang
et al. (2021) identified fingerprints of past biological activity
in the Atacama Desert using phosphate oxygen (18O) isotopes.
Others works have reported the existence of unexpectedly large
microbial populations in the hyperarid soils, especially in very
particular and extreme habitats, such as the underside of quartz
rocks (Warren-Rhodes et al., 2006), inside of halite evaporates
(Wierzchos et al., 2006), fumaroles at the Andes Mountains, and
in caves of the Coastal range (Azua-Bustos et al., 2012; Bull
and Asenjo, 2013). Liquid water availability and solar radiation
are the main life-controlling factors in the Atacama Desert
(Bull and Asenjo, 2013). Despite the significantly challenging
environmental conditions, microorganisms and organic matter
have also been detected in the surface and subsurface layers
of the hyperarid soils of the Atacama Desert (Mörchen et al.,
2019; Warren-Rhodes et al., 2019; Knief et al., 2020). In
particular, the surface soils of the Yungay area have been
widely studied regarding their microbial diversity. It has been
shown that microbial life can even be detected under low
water availability (Connon et al., 2007; Azua-Bustos et al.,
2012, 2015, 2018, 2020; Fletcher et al., 2012; Crits-Christoph
et al., 2013; Neilson et al., 2017; Warren-Rhodes et al., 2019;
Schulze-Makuch et al., 2021). Furthermore, DNA-based sequence
analyses revealed that bacterial communities in this hyperarid
core display varied but relatively low levels of diversity and that
water availability and salt contents are key factors shaping the
hyperarid Atacama soil microbiome (Crits-Christoph et al., 2013;

Warren-Rhodes et al., 2019; Knief et al., 2020). While Neilson
et al. (2017) found that community richness and diversity
were positively correlated with soil humidity, other studies
highlighted that sudden ‘large’ inputs of water into regions that
had remained hyperarid for millions of years can be harmful
to surface soil microbial species, especially those specifically
adapted to extremely low water availability (Azua-Bustos et al.,
2018). Although biosignatures and microbial life have been
poorly studied in the depth of this hyperarid environment, the
first evidence for metabolically active microbial communities
and patterns specifically adapted to this harsh climate exists
(Schulze-Makuch et al., 2018). In this matter, Warren-Rhodes
et al. (2019) analyzed the spatial distribution of microbial
communities between 0 and 80 cm; surprisingly, they found
significant subsurface microbial communities that existed related
to residual sediment moisture. This study also highlighted the
influence of soluble salts and mineralogy on water availability
and likely microbial life in the deeper parts of the soil. More
recently, Azua-Bustos et al. (2020) found a diverse microbial
community and biosignatures in humid smectite-rich subsurface
layers in the hyperarid core of the Atacama Desert (at 30-
40 cm depth), and Schulze-Makuch et al. (2021) showed that
hypolithically colonized rocks are microbial hotspots in this
desert environment.

Considering the varying minerals detected in various soil
layers of the hyperarid core, such as halite, calcite, smectite,
montmorillonite, dolomite, and others (Ewing et al., 2006;
Fuentes et al., 2014; Azua-Bustos et al., 2020), it can be expected
that the overall physicochemical properties and the microbial
communities would also differ along these various layers within
a soil profile. Nevertheless, microbial life in the subsurface soil
of hyperarid Yungay and its relationship to physicochemical
variations in soil properties have been poorly studied thus far.
Therefore, we aimed to dig deeper into hyperarid soil, unraveling
the deeper soil microbiota and relating it to variations in
soil properties.

MATERIALS AND METHODS

Study Site in the Hyperarid Core of the
Atacama Desert
The study site is in the Yungay area of the Aguas Blancas
(AB) basin (between 24◦01′ and 24◦16′ S; elevation range of
1,000–1,300 m.a.s.l.). It is situated southeast of Antofagasta
within the hyperarid core of the Atacama Desert. The positional
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FIGURE 1 | Location of the study site in Yungay, in the hyperarid core, Atacama Desert. (A) Chile, (B) Antofagasta Region, (C) Yungay in the hyperarid core.

coordinates are 24◦03′49.6′′S, 69◦52′49.8′′W (Figure 1). Note
that the surrounding area has also been studied by Pfeiffer et al.
(2018) and Azua-Bustos et al. (2020). Some of our findings are in
accordance with Pfeiffer et al. (2018), e.g., anhydrite polygons at
the surface and needle fiber calcite in the soil profile. A soil scarp
generated previously by a trench excavator was used in this study.
Within the escarpment, we dug into the surface to freshly expose
the upper part (2.2 m) of profile. Subsequently, we then continue
digging below the surface till a depth of 1.2 m. Thus obtaining an
overall profile of 3.4 m (Figure 2).

Physical-Chemical and Mineralogical
Characterization of the Soil Profile
Soil samples were taken in March 2017. The soil profile was
sampled at 10 cm depth intervals until a final depth of 340 cm.
Before the sampling procedure, the surface area was cleaned and
cut back into its exposure. We took soil samples immediately
after excavating a specific depth layer to avoid effects of the
exposure of the soil to ambient air and temperature. Soil samples
were manually taken and stored in plastic bags. Additionally,
soil samples for microbiological analyses were collected in sterile
tubes by using plastic gloves and shovels properly cleaned
with ethanol to avoid contamination. All samples were taken
to the laboratory in Antofagasta and Germany to conducted
physicochemical, mineralogical, and microbiological analyses.
The moisture content (MC) of the soil samples was measured
immediately in the laboratory in Antofagasta by drying soil
at 105◦C in an oven and calculating the loss of weight after
drying. Electric conductivity (EC) and pH were measured in
a soil-distilled water suspension with a solution ratio of 1:2.5.
The total contents of C, N, S, and TOC were determined by
elemental analysis employing approx. 20 mg of sample material
(Vario Micro Cube, Elementar, Hanau, Germany; ISO 10694,
1995). For the determination of TOC contents, inorganic carbon
was removed with 20% HCl for 2 h. Total P, reactive P that
corresponds to inorganic P, and unreactive P (URP) (which
includes organic P and polyphosphates in soils) were determined
by the extraction method proposed by Saunders and Williams
(1955). The P concentration was measured by the method of

Murphy and Riley (1962). P in the soil samples was also analyzed
to determine the contribution of different P forms to total P by
K-edge XANES spectroscopy at beamline 8 of the Synchrotron
Light Research Institute (SLRI) in Nakhon Ratchasima, Thailand
(Klysubun et al., 2019). XANES spectra acquisitions and the
evaluation of the standard compounds were performed according
to Werner and Prietzel (2015). The reference compounds were
published by Prietzel et al. (2016). Sequential P fractionation was
conducted according to Hedley et al. (1982) with modifications.
Briefly, 0.3 g of soil samples was shaken in 30 ml of extractant
solution. The order of extractants used was deionized water,
0.5 M NaHCO3 (pH 8.5), 0.1 M NaOH, and 1 M HCl. P not
extracted by these solutions was classified as residual P. The
amount of inorganic P (Pi) in each extract was determined by
Murphy and Riley (1962). Selected soil samples of the soil profile
were subjected to X-ray diffraction (XRD) to analyze its mineral
compounds. XRD analysis was conducted with a Siemens Model
D5000 diffractometer (Cu Kα 1).

Statistical Analysis of Soil
Physicochemical Data
Based on the MC distribution along the soil profile, it was possible
to distinguish and propose three distinct zones in the soil profile:
surface zone A (0–60 cm), intermediate zone B (60–220 cm), and
deep zone C (220–340 cm). For each zone, a linear regression
was calculated for moisture content depending on depth. All
data obtained were tested for normality of distribution by using
a Shapiro–Wilk test (n < 50 for each defined zone). As the
distribution was not normal, a non-parametric Friedman test
for related samples was used to determine significant variations
(p < 0.05) in the distribution of MC, TC, TOC, TN, TS and TP
between the proposal zonification. All statistical analyses were
performed with IBM SPSS Statistical software version 21.

DNA Extraction, Sequencing and
Taxonomic Analysis
Twenty grams of soil was suspended in 40 ml nuclease-
free water in sterile Falcon tubes as described previously
(Finstad et al., 2017) and then filtered through a 0.22 µm
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FIGURE 2 | Images of soil sampling site in Yungay hyperarid core, Atacama Desert.

sterilized filter (Millipore). DNA was extracted from the material
on filter paper using the QIAGEN DNeasy PowerSoil Kit
according to the manufacturer’s instructions. The quantity of
DNA extracted was measured using a Qubit fluorimeter with
high sensitivity reagent kit. The 16S rRNA gene was amplified
using primers 515F and 806R, targeting the V4 region of the
16S rRNA gene with approx. 235 bp amplicon length (Caporaso
et al., 2012). Sequencing was performed on an Illumina MiSeq
platform in a 150 bp paired-end cycle run. Sequencing was
performed at the Environmental Sample Preparation and
Sequencing Facility, Argonne National Laboratory. Samples were
demultiplexed using the split_libraries_fastq.py module from
QIIME 1.9 [16S: –barcode_type 12; ITS1: –rev_comp_barcode]
(Caporaso et al., 2010), and amplicon sequence variants (ASVs)

were inferred with DADA2 v1.10.1 (Callahan et al., 2016)
using [truncLen = c(140,135), maxN = 0, maxEE = c(2,2),
truncQ = 2, rm.phix = TRUE]. Error rate learning, dereplication,
and merging were performed using default settings. After
building an ASV table and removing chimeras, taxonomic
assignment was obtained by analyzing reads against the Silva
v138 database (Quast et al., 2013) using DADA2 Ribosomal
Database Project’s (RDP) naive Bayesian classifier (Wang et al.,
2007). ASVs identified as Eukarya, Chloroplast, Mitochondria
and Escherichia/Shigella, Staphylococcus, Corynebacterium,
Lactobacillus and Streptococcus were removed (Eisenhofer
et al., 2019). Moreover, the R package decontam was used to
identify and remove contaminants using the “frequency” and
“prevalence” methods (Davis et al., 2018). Finally, samples
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with fewer than 1000 reads were discarded to avoid relying
on taxonomic classification with low support. Water blanks
and mock communities (Zymo microbiomics standard) were
included to assess contamination and accuracy. ASV sequences
were aligned with DECIPHER v3.8 (Wright, 2016).

Statistical Analysis of Amplicon Data
All statistical analyses were conducted in R v3.5.2 and RStudio
v1.1.463 (RStudio Team, 2016) using ampvis2 v2.4.5 (Andersen
et al., 2018), microbiomeSeq v0.1,1 phyloseq v1.26.1 (McMurdie
and Holmes, 2013), stats v3.5.2 (R Core Team, 2018), effects
v4.1-4 (Fox, 2003) and bipartite v2.14 (Dormann et al., 2008).
Plots were generated using ggplot2 v3.1.1 (Wickham, 2016)
and basic R functions. The alpha diversity indices Chao1,
Shannon and Fisher were calculated using phyloseq and subjected
to normality tests (Shapiro–Wilk). Generalized linear models
(GLMs) were built to test the effects of soil variables on alpha
diversity indices. This was done using the “glm” function for
the stats package, with the argument family = “Gaussian” and
a p value threshold of <0.05 for significant predictors. All
models were plotted using the R package effects, and residuals
were analyzed for normality and homoscedasticity. Ampvis2 was
used to perform a redundancy analysis (RDA) on Hellinger-
transformed ASV abundances constrained by the soil zone.
The argument envfit_numeric was added to display numerical
soil variables as vectors. The MicrobiomeSeq package was used
to evaluate the relationship between the taxa agglomerated to
their best taxonomy and numerical soil variables based on
Pearson’s correlation, adjusting for multiple testing using the
Benjamini-Hochberg correction (0.05 p value threshold) and for
taxa + groups. Finally, for a two-dimensional matrix between
taxa and sample origin (Zone), a bipartite network analysis
was performed to visualize the distribution of phyla among soil
zones based on their relative abundances using the plot web
function from the bipartite R package (Dormann et al., 2008)
with the default method cca, which leads to as few crossings of
interactions as possible.

RESULTS

Characterization of the Soil Profile
According to the World Reference Base for Soil Resources, the
soil profile can be classified as a Gypsisol. The profile and the
complete description are given in Supplementary Figure 1. At
the surface of the profile, fine sediments with desiccation cracks
were recognized to develop over a massive chloride and sulfate
salt layer with a thickness of 0.5 m. The sediments were finer
below 2 m depth, and the soil particles had higher moisture
contents than in the upper layers. The soil MC increased along
with the soil profile (Figure 3). Considering that liquid water
availability is one of the main life-controlling factors in the
Atacama Desert (Bull and Asenjo, 2013), we propose three major
zones in the profile based on linear regression analysis of the MC
indicating changes with depth (Figure 3). These three proposed

1https://github.com/umerijaz/microbiomeSeq

zones were surface zone A (0–60 cm, n: 6) with a slope of 0.066%
moisture cm−1 R2: 0.71; intermediate zone B (60–220 cm, n: 16)
with a slope of 0.073% moisture cm−1 R2: 0.80; and deep zone
C (220–340 cm, n: 12) with a slope of 0.143% moisture cm−1

R2: 0.77. Moreover, soil MC increased significantly (p < 0.05,
Friedman test) in the three proposal zones. In surface zone A,
the MC increased from 0.66 to 5%. Additionally, we identified an
evaporation layer between 0 and 20 cm within zone A, reflected
by the lowest moisture content values registered in the soil profile
(0.66%). In intermediate zone B, the moisture content increased
to 15% at the 220 cm soil depth. In deep zone C, the moisture
content reached a maximum of 21% at 330 cm soil depth. A local
minimum of 3% moisture content between 220 and 240 cm
depth was noted.

Within the three zones, we found different minerals
(Supplementary Table 1). In surface zone A, the predominant
minerals were halite, bassanite, anhydrite, albite, and calcite
albite. Intermediate zone B was dominated by anorthite, calcite,
albite, montmorillonite, and orthoclase. Deep zone C was
composed of a wet clay-rich soil layer with high amounts of
muscovite (approximately 20%) and lower abundances of chlorite
(approximately 4%) (Supplementary Table 1). The values of pH
along the soil profile were alkaline. However, it was also possible
to detect significant differences in the three-zone intervals
(p < 0.05, Friedman test). The average pH values were 8.3 in
surface zone A, 9.0 in intermediate zone B, and 8.9 in deep
zone C (Figure 3). High EC values were detected in zone A,
and then a constant decrease was observed along with the soil
profile. Significant differences in EC were found in the three-
zone intervals (p < 0.05, Friedman test). The average EC value in
surface zone A was 107 mS cm−1, 22.1 mS cm−1 in intermediate
zone B and 14.3 mS cm−1 in deep zone C (Figure 3).

Distribution of C, N, P, and S in the Soil
Profile
The contents of TC in surface zone A varied between 190 and
1125 µg C g−1, while in intermediate zone B, the values ranged
from 135 to 280 µg C g−1. In deep zone C, the values ranged
from 140 to 540 µg C g−1, reaching the maximum value in
this zone at an interval of 310–330 cm (Figure 4). There were
significant differences between the means of TC in the three
proposal zones (p < 0.05, Friedman test). Concerning the TOC,
the values were low along the soil profile (Figure 4). In zone
A, TOC ranged between 160 and 310 µg TOC g−1 with a high
value at 10 cm depth. In zone B, the TOC values were relatively
constant, at approximately 140–170 µg TOC g−1. Instead, we
detected elevated TOC concentrations in deep zone C at 240
and 300 cm depths (190 µg TOC g−1). However, there were
no significant differences between the means of TOC in the
three proposal zones (p > 0.05, Friedman test). On the other
hand, the TN concentrations generally decreased with increasing
soil depth (Figure 4). Thus, TN concentrations were highest in
surface zone A (with a maximum value of 1, 594 µg N g−1 at
50 cm depth), while in zones B and C, TN decreased from 628 to
39 µg N g−1 and 628 to 134 µg N g−1, respectively. There were
no significant differences between TN means in the three-zone
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FIGURE 3 | Distribution of the soil profile parameters at the Yungay site in the Atacama Desert. Moisture content (%), pH value and electric conductivity (EC).

intervals (p > 0.05, Friedman test). Similarly, high TS contents
were measured in the first 50 cm of soil depth (surface zone
A), ranging from 23.9 to 35.3 mg S g−1 soil (Figure 4). These
values rapidly declined in zones B and C. In intermediate zone
B, TS decreased from 4595 to 234 µg Sg−1. In deep zone C, TS
tended to decrease except for a spike between 230 and 250 cm
depth (deep zone C). There were significant differences between
TS means in the three-zone intervals (p < 0.05, Friedman test).

In contrast to TC, TN, and TS, TP increased in the soil
profile. TP showed minimal values in surface zone A (122–
216 µg Pg−1 at 30–50 cm depth) (Figure 4). Overall, TP
concentrations increased into intermediate zone B (from 509 to
840 µg Pg−1). In deep zone C, PT decreased at 230-240 cm
depth to increase to 783 µg Pg−1 at 340 cm depth. There
were significant differences between TP means in the three-zone
intervals (p < 0.05, Friedman test).

Reactive P (or inorganic P) dominated the soil profile
(Figure 4), representing over 88% of TP in all samples.
The difference between TP and reactive P is explained by
the presence of unreactive P (URP) compounds, including
condensed phosphates and organic P. Considering the generally
low TOC contents, low amounts of organic P could be expected.
However, it was possible to detect three small peaks of the
URP: 42.7, 87.7 and 87.7 µg URP kg−1 at 140, 210, and
320 cm soil depths along with the soil profile. The latter two
signals coincided with increasing TOC concentrations in depth.

The easily extractable P (the sum of Pi-H2O and Pi-NaHCO3)
only accounted for 1.0–5.6% of the total P (Supplementary
Table 2). The highest P was present in the Pi-HCl fraction
(> 94%), highlighting that a high P was bound to calcium.
Additionally, XANES P speciation confirmed that most P (90-
100% of total P) was present as apatite-P (Supplementary
Table 3). Some P (< 10% of total P) was Ca-bound organic P;
higher concentrations of Pi-H2O were observed in intermediate
zone B and deep zone C (8.1–20.6 µg Pg−1) than in surface
zone A (1.9–2.2 µg Pg−1). A similar trend was observed for
the Pi-NaOH fraction, with high values found in zones B and
C (0.8–3.7 µg Pg−1) compared with surface zone A (0.3–1.1 µg
Pg−1).

Microbial Community Analysis
The Yungay depth profile showed low DNA concentrations in the
range of 1.15–11.8 ng g−1 soil. Amplicon sequencing revealed
that the phyla Proteobacteria, Actinobacteria, Bacteroidota
and Firmicutes had the highest prevalence in the soil profile
(Figure 5 and Supplementary Figure 2). While Proteobacteria
and Bacteroidota were abundant in all three zones, microbial
composition at the family level (Figure 5) and a bipartite
network analysis (Supplementary Figure 3) showed that several
families and phyla were predominantly detected within one of
the three zones, suggesting that communities are structured
throughout the soil profile. Soil surface microbial communities
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were dominated by Actinobacteria, Proteobacteria and Firmicutes
(10–20 cm). In general, Firmicutes exhibited a slightly greater
detection frequency in surface zone A than in zone C, while it
was not detected in zone B. Within Firmicutes, the occurrence
of the families Lachnospiraceae and Bacillaceae was limited
to zone A, while Oscillospiraceae and Salisediminibacter
incerta sedis occurred only in zone C (wetter conditions).
Similarly, the actinobacterial families had different niches, with
Sporichthyaceae being only detected in layers of zones B and C,
while Illumatobacteraceae were only present in different layers
within zone A. Verrucomicrobiota and Planctomycetota were
exclusively present in deep zone C (Figure 5 and Supplementary
Figure 3). Moreover, the deepest part of the profile was
dominated by Proteobacteria, especially by the families
Comamonadaceae (330–340 cm) and Marinobacteraceae
(320–330 cm). The family Sphingomonadaceae of Proteobacteria
showed a high abundance in several layers of zone B but
a lower abundance in zone C (Figure 5). Some further
lower-abundant phyla that were unique for a specific zone
were Deinococcota, Halobacterota, and Latescibacterota
in surface zone A; Crenarchaeota, Fusobacteriota, and
Sva0485 (deltaproteobacteria) in intermediate zone B;
and Campilobacterota and Fervidibacteria in deep zone C
(Supplementary Figure 3). Remarkably, Cyanobacteria of the
class Oxyphotobacteria were detected with low prevalence in
various samples across the soil profile (Supplementary Figure 2).

We also tested to what extent the properties of the soil
explained the microbial community structure. We found that
microbial communities were to some extent structured by depth,
as samples from either zone A, B, or C were more similar within
each zone than between zones (Figure 6; polygons). Higher
levels of TC, TS, and EC were preferentially associated with
microbial communities from zone A, while higher moisture
contents, depth, and total and inorganic P were associated
with microbial communities from zone C (Figure 6). Finally,
we explored associations between the relative abundance of
microbial community members and soil variables as a soil zone
function (Figure 7). We found statistically significant positive
correlations between taxa and soil properties, most of which
involved moisture and TC contents (Figure 7). Some taxa
were weakly negatively associated with pH value or positively
associated with EC as well as TN and TS and PT contents. We
also correlated alpha diversity measures to soil properties and
observed that the moisture content, TC, pH, and EC correlated
positively with microbial richness and diversity (Supplementary
Figure 4 and Supplementary Table 4; positive slope; Chao1),
while TS and TP contents correlated negatively with diversity
(Supplementary Figure 4; negative slope).

DISCUSSION

Properties of the Soil Profile and
Zonification Proposal
Climatic factors (mainly low precipitation and high temperature)
limit biological productivity and activity, chemical reactions,
and weathering (Plaza et al., 2018). Consequently, in hyperarid

soils, a relatively poor carbon content, low microbial activity,
and low soil weathering would be expected (Ewing et al., 2006;
Mörchen et al., 2019; Knief et al., 2020). However, in this study,
we show that it is possible to find an abundance of MC in
deep hyperarid soils, affecting soil and microbial parameters.
Then, we proposed three zones (surface zone A, intermediate
zone B and deep zone C) considering the significant difference
in the MC (p < 0.05 Friedman test). These zones also showed
significant variations in pH, EC, TC, TS and TP (p < 0.05
Friedman test). Instead, at least two zones were similar in terms
of TOC and TN (P > 0.05 Friedman test). The increase in MC
in the depth soil was observed in the soil profile (Figure 3).
Recently, wet layers below the surface of the hyperarid core
of the Atacama have been reported (Azua-Bustos et al., 2020).
Although the origin of water is outside the scope of this study,
plausible water deep sources could be related to the unusual
rain events that took place during March 2015, as have been
indicated by Azua-Bustos et al. (2020). Precipitation events
could lead to a reload of deep groundwater system present in
the Aguas Blancas basin (Dirección General de Aguas, 2017).
It has a low recharge rate, limited to very sporadic rare wet
events (Herrera and Custodio, 2014). Whether, larger rainfall
events have a longer lasting impact on the moisture content
in the deepest part of soils or sediments in the region is
still unresolved.

The entire soil profile showed alkaline pH values and high
EC, which is frequent in other soils of the Atacama Desert
(Connon et al., 2007; Fuentes et al., 2014; Knief et al., 2020).
However, slightly lower pH values were observed in surface
zone A, while the highest EC was detected in this zone. As
expected in these environments, the soil is rich in salt minerals,
which result in elevated EC in the entire profile (>5 mS cm−1);
however, in surface zone A, the soil is exceptionally saline,
reaching values over 100 mS cm−1. The highest EC value of
185 mS cm−1 was recorded at 40 cm depth and was related
to salt minerals such as halite, albite, calcite, anorthite, and
darapskite (Supplementary Table 1). Decreasing precipitation
and increasing evapotranspiration reduce the loss of salts by
leaching, leading to the accumulation of calcium carbonate
and gypsum and relatively high pH typical of dryland soils
(Plaza et al., 2018). The minerals found in the soil profile
(Supplementary Table 1) resemble those that have previously
been detected in surface and subsurface soils of the Yungay area
(Ewing et al., 2006; Fuentes et al., 2014; Azua-Bustos et al., 2020).
Complementarily, a soil profile study in the Yungay region by
Ewing et al. (2006) revealed a similar stratification of soil with
quartz, gypsum, anhydrite, chlorite (0–12 cm), anorthite (39–
71 cm) and halite (102–122 cm). However, deeper soil horizons
have not been analyzed in a hyperarid desert to date. On the
other hand, Crits-Christoph et al. (2013) also found a significant
and direct inverse relationship between pH and EC values in
surface soils of the hyperarid core in the Atacama Desert. The
increased solubility of Ca2+ ions would give a possible reason for
the negative relationship between pH and EC in saline conditions
under ambient atmospheric CO2 concentrations that lead to a
release of hydrogen ions. Other soil parameters, such as CaCO3,
gypsum and clay contents, did not appear to have a prominent
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FIGURE 4 | Distribution of the soil profile parameters at the Yungay site in the hyperarid core of the Atacama Desert. Total Carbon (TC), Total Organic Carbon (TOC),
Total Nitrogen (TN), Total Sulfur (TS), Total Phosphorus (TP), Reactive Phosphorus (RP), Unreactive Phosphorus (UNP).

effect on soil pH as the concentration of soluble Ca2+ ions
increased (Al-Busaidi and Cookson, 2003).

Interestingly, Azua-Bustos et al. (2020) confirmed the
existence of a widespread and sustained phenomenon of
subsurface water at Yungay due to the interstratified wet
clay-bearing layer. XRD showed that montmorillonite was
detected in separate soil intervals in zone B (Supplementary
Table 1). Meanwhile, muscovite and chlorite were predominant
in deep zone C. These clays retain moisture at greater soil
depths and reinforce the findings of Azua-Bustos et al.
(2020), who investigated an interstratified wet clay-bearing
layer in the upper 30 cm of a soil profile. It contained 42.8
wt% clay, mainly illite–smectite, a group of expandible clays
2:1, such as montmorillonite. Azua-Bustos et al. (2020)
stated that these wet clay-rich layers play a significant
role in life while preserving biosignatures in the hyperarid
core of the Atacama Desert. Furthermore, in these moist
smectite-rich layers were even able to detect metabolically
active microorganisms protected from extremely harsh
conditions at the surface.

In our study, TC was higher than TOC, which was low in the
soil profile. Dryland soils store vast amounts of inorganic C. In
particular, the soil inorganic C content at any depth up to 2 m is
positively related to aridity (Plaza et al., 2018). Valdivia-Silva et al.
(2012) indicated that the top 1 m soil layer of hyperarid lands
contains ∼11.6 Tg of organic carbon and 344.6 Tg of carbonate
carbon. Previous studies in the same place have indicated that the
total stored carbon was 30.8-fold that of organic carbon alone

(Valdivia-Silva et al., 2012). In zones B and C, it was possible
to detect some peaks of TOC. In this sense, Mörchen et al.
(2019) demonstrated that C accrual shifted from preferential C
enrichment in topsoil to subsoil, thereby providing the potential
for deep(er) biosphere food webs and revealing the future need
to dig into the soil to discover traces of life in comparable
environments. On the other hand, clay minerals in soil have an
active role in the OC stock or C sequestration in soils (Zhong
et al., 2018; Churchman et al., 2020). Organomineral interactions
depend on cation bridges involving Ca ions in neutral to alkaline
soils. Various organomineral interactions lead to aggregations
of clay particles and organic materials, stabilizing both the soil
structure and the carbon compounds within the aggregates
(Oades, 1988).

The highest TN concentrations in surface zone A originated
from N minerals such as darapskite (37.6%) and nitratine
(2.8%) (Figure 4 and Supplementary Table 1). It has been
shown that the nitrate deposits present in the Atacama
Desert are of atmospheric origin and formed through
photochemical reactions (Ericksen, 1981; Melchiorre et al.,
2018). Additionally, high contents of TS were measured in
the first 50 cm depth (surface zone A); these values rapidly
declined to below 500 µg Sg−1 in zone B and then stayed
below that value throughout the profile, except for a slight
spike in TS contents between 230–250 cm depth (zone
C). Anhydrous sulfate phases were typical in the surface
layers, and the uppermost units had the least water-soluble
phases. In the 0–10 cm surface layer, sulfur minerals such as
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FIGURE 5 | Most abundant bacterial families in samples of the soil profile in the hyperarid core of the Atacama Desert. The heatmap shows the top 10 most
abundant families per zone (total 23 families). Taxa are sorted according to overall abundance (%). R01: (0–10 cm); R02: (10–20 cm); R03: (20–30 cm); R04:
(30–40 cm); R05: (40–50 cm); R06: (50–60 cm); R07: (60–70 cm); R09: (80–90 cm); R10: (90–100 cm); R11: (100–110 cm); R13: (120–130 cm); R14:
(130–140 cm); R15: (140–150 cm); R17: (210–220 cm); R18: (240–250 cm); R19: (250–260 cm); R20: (260–270 cm); R21: (270–280 cm); R22: (290–300 cm); R23:
(320–330 cm); R24: (330–340 cm).

Bassanita (11.6%), anhydrite (4.4%) and gypsum (1.3%) were
predominant. Similar results for TOC and S contents were
reported for the 0-80 cm soil depth by Warren-Rhodes et al.
(2019).

Studies of P dynamics in hyperarid soils have received much
less attention, even though P is an essential nutrient for life.
Inorganic P (mainly in the Pi-HCl fraction) was dominant
around the soil profile, which is in agreement with Wang
et al. (2021). However, bioavailable P and colloidal P have
been found in the surface sediments of the Atacama Desert,
partly even correlating with soil microbial biomass (Warren-
Rhodes et al., 2019; Knief et al., 2020; Moradi et al., 2020).
Ca-P bonding forms identified by XANES were dominant, as
reported earlier by Moradi et al. (2020) using colloid analyses.
Higher concentrations of Pi-H2O (representing inorganic labile
P) were observed in intermediate zone B and deep zone C
(8.1–20.6 µg Pg−1) (Supplementary Table 2), reflecting that an
increase in soil MC increases simultaneously with the availability
of P. In this regard, mineralogy, associated subsoil moisture and
resulting improvements in available P concentrations founded
conditions that enabled the existence of a microbial biosphere
within the hyperarid core of the Atacama Desert. Dryland soils
also exhibit larger labile inorganic and apatite P contents but are
more deficient in organic, occluded, and secondary mineral P
(Plaza et al., 2018).

Increased aridity and temperature may also decouple the
spatial variability of soil nutrient stocks and cycling in global
drylands (Plaza et al., 2018). In the hyperarid core, the surface is
devoid of vegetation; it is expected that the cycles of the nutrients
carbon (C), nitrogen (N) and phosphorus (P) in the soil are
mainly controlled by geochemical factors. This is in contrast
with the soil-plant systems in less arid parts of the world. These
cycles are coupled with biological (photosynthesis, respiration,
and decomposition) and geochemical (physical and chemical
weathering) processes. Aridity tends to decrease soil organic C
and total N contents to different extents while increasing total and
labile inorganic P, which could be related to increased P release
by rock physical weathering and minimal P uptake by plants
(Plaza et al., 2018).

Microbial Community Composition
The microbial composition in the soil core was dominated
by Proteobacteria, Actinobacteria, Bacteroidetes and Firmicutes
in all studied depth zones (Figure 5 and Supplementary
Figures 2, 3). However, community composition varied with
soil depth, which is consistent with other studies focusing on
bacterial community variations in the surface and subsurface
of this harsh environment (Crits-Christoph et al., 2013;
Warren-Rhodes et al., 2019). The distribution of phyla in
zone A of our study is partially in agreement with previous

Frontiers in Microbiology | www.frontiersin.org 9 February 2022 | Volume 12 | Article 794743

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-794743 February 1, 2022 Time: 14:44 # 10

Fuentes et al. Geomicrobiology of Deep Hyperarid Soil

FIGURE 6 | Redundancy analysis (RDA) of Hellinger transformed amplicon sequence variant (ASV) relative abundances. Each point corresponds to a soil sample
from a specific depth layer, and its relative distance indicates the level of similarity to all other samples. Polygons and colors label each of the three soil zones. The
arrows indicate the explanatory power of the soil parameters concerning the observed variation in community composition. Insignificant soil parameters are not
shown. For both axes, the percentages indicate the variance explained in the unconstrained and constrained analysis. Total sulfur (TS), total carbon (TC), total
phosphorus (P_Total), unreactive phosphorus or inorganic phosphorus (P_inorganic).

surface sediment-based studies (Crits-Christoph et al., 2013;
Schulze-Makuch et al., 2018; Warren-Rhodes et al., 2019;
Knief et al., 2020). Other studies by Neilson et al. (2012)
demonstrated that Actinobacteria and Chloroflexi dominate soil
microbial communities in the hyperarid margin of the Atacama
Desert, with extremely low levels of Acidobacteria, Alpha-
and Betaproteobacteria. Neilson et al. (2017) also found that
bacterial communities in soils of the Atacama Desert are mostly
dominated by Actinobacteria, Chloroflexi, Proteobacteria and
Gemmatimonadetes. Recently, Knief et al. (2020) showed the
dominance of different groups of Actinobacteria, Proteobacteria
and Chloroflexi in soils of the Atacama Desert. Connon et al.
(2007) detected Actinobacteria, Proteobacteria and Firmicutes in
Yungay surface soils (0–2 cm and 2–20 cm). Thus, this microbial
description is in accordance with the results of our study.
Recently, bacterial, and archaeal communities from hypolithic
microhabitats were analyzed in the Atacama Desert to specifically
identify the potentially viable microbiota (intracellular DNA
versus extracellular DNA), showing habitat-specific communities
dominated by bacteria. Proteobacteria were almost exclusively
identified in the extracellular DNA pool in Yungay Salar
halite nodules and gypsum crusts (representing an indicator
for a previously existing community in this location), and

Cyanobacteria showed the most abundant intracellular DNA in
these hypolithic environments (Schulze-Makuch et al., 2021).
In our case, the presence of active microbiota in deep soil
remains to be addressed in future studies because we must
determine if the extraction method used affected the intra-
and extracellular DNA amount. The microbiological findings
mentioned above show that although endolithic and hypolithic
communities have been extensively studied in hyperarid surface
soils of the Atacama Desert near the Yungay area (e.g., Warren-
Rhodes et al., 2006; Schulze-Makuch et al., 2021), our results
indicate that Cyanobacteria of the class Oxyphotobacteria were
detected with low prevalence in some of the samples of the soil
profile (Supplementary Figure 2). Despite ecological range of
Cyanobacteria appeared to be restricted to environments with at
least occasional expose to sunlight, their presence also extends
down to the deep terrestrial biosphere (Puente-Sánchez et al.,
2018). A few studies have reported the presence of Cyanobacteria
in deep subsurface environments (e.g., Kormas et al., 2003;
Rastogi et al., 2010; Hubalek et al., 2016; Puente-Sánchez et al.,
2018). The discussion of its origin is limited, in which it has
been proposed that bloom of aquatic Cyanobacteria had been
trapped thousands of years ago into a groundwater aquifer with
no further connection with the surface (Hubalek et al., 2016), and
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FIGURE 7 | Relationship between the 50 most correlated taxa and soil variables grouped by soil zone. Asterisks show the level of significance (*p value < 0.05, **p
value < 0.01, ***p value < 0.001; Pearson correlation). Comparisons were adjusted for multiple testing using the Benjamini-Hochberg correction. Red, blue, and
white indicate positive, negative, and no correlation, respectively. Taxa represent the best-hit taxonomic classification.

that the presence of Cyanobacteria in the continental subsurface
were related to surface rock-dwelling lineages known for their
high tolerance to environmental and nutritional stress (Puente-
Sánchez et al., 2018). In our case, it is difficult to indicate the
presence of living Cyanobacteria in the soil samples but this type
of microorganisms in the depth soil could be related to microbial
transport due surface run off rainfall events indicated by Azua-
Bustos et al. (2020), and we also suggest the discovery of ancient
extracellular DNA.

Moreover, our results suggest that higher moisture content,
TC, pH, and EC contents favored microbial communities with
more taxa that were more evenly represented (Supplementary
Figure 4 and Supplementary Table 4). Soil moisture is
essential for bacterial diversity in desert ecosystems (Bottos
et al., 2020). Additionally, moisture could be ancillary to other
factors in shaping bacterial diversity. Moreover, the clay-rich
layers can act as a possible “water reservoir” and help shape
microbial life conditions and associated “hotspot” biosignals at
greater soil depths.

The salinity of the soil, reflected by the electrical conductivity,
was high along the entire soil profile (Figure 3). It seems to

shape bacterial communities due to intense selective pressure,
as few bacteria are capable of growing over large gradients
of salt concentrations. We measured exceptionally high EC
values (over 25 to 187 mS cm−1) in surface zone A, while
in intermediary zone B and depth zone C, the EC values
fluctuated between 5 and 24 mS cm−1. However, we did not
observe a particular accumulation of halophilic taxa in zone
A; rather, they were present in all zones. Nevertheless, EC
had a significant effect on the bacterial community structure
(Figure 6 and Supplementary Figure 4). Interestingly, some of
the families present in the soil profile are known to include
halophilic taxa or have been shown to be present in other
saline environments, such as Proteobacteria (Comamonadaceae,
Marinobacteraceae, Nitrosomonadaceae and Pseudomonadaceae),
Actinobacteria (Bifidobactericeae and Sporichthyaceae), and
Firmicutes (Bacilliaceae and Salisediminibacteriaceae), which
have been detected in different saline environments (e.g., Jiang
et al., 2012; Crognale et al., 2013; Mirete et al., 2015; Newton et al.,
2018; Remonsellez et al., 2018; Zhang et al., 2020). Moreover,
members of the families Chitinophagaceae, Ilumatobacteraceae,
Rubritaleaceae, Pedosphaeraceae, and Pirellulaceae have been
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detected in various soils and sediments, such as desert surfaces
(China), arid biological crusts (United States), and hypersaline
lagoons (Chile) (Moquin et al., 2012; An et al., 2013; Fernandez
et al., 2016; Asem et al., 2018; Li et al., 2021). Interestingly,
the cultivation of clay-rich soil from subsurface samples
of Yungay highlighted novel halotolerant bacteria related to
Oceanobacillus, Lysinibacillus, Virgibacillus, Halobacillus and
Bacillus (Azua-Bustos et al., 2020).

On the other hand, microbial communities were related to TP
and IP (Figure 6). In this case, the alkaline pH values, P bonds
to Ca as apatite-P (by XANES analyses), and the predominance
of the Pi-HCl fraction indicates low P availability in the soil
profile. However, in intermediate zone B and deep zone C, slight
major P availability was revelated by high values of soluble Pi,
as shown in fraction Pi-H2O (Supplementary Table 2). Studies
by Oliverio et al. (2020) suggest that the scarce availability of soil
P likely constrains microbial growth, favoring slower growing
oligotrophic microorganisms that can survive under nutrient
limitations, suggesting that bacteria in low P soils may have
strategies to permit efficient phosphate uptake, including the
utilization of organic P compounds.

As in our study, several authors have found an association
between microbial richness and diversity in the Atacama
Desert’s hyperarid surface soil with water availability and relative
humidity (Crits-Christoph et al., 2013; Neilson et al., 2017;
Schulze-Makuch et al., 2018; Knief et al., 2020). Moreover,
Warren-Rhodes et al. (2019) highlighted the effect of water
availability and geochemical parameters down to 80 cm depth.
This study shows for the first time that this phenomenon
also occurs at soil depths up to 340 cm. To date, the
work of Schulze-Makuch et al. (2018) and Warren-Rhodes
et al. (2019) have proposed a correlation between microbial
community patterns and soil parameters and depths. In this
context, our results suggest that soil properties such as moisture
content and TC content strongly influence species richness,
diversity, community composition, and specific members of
microbial communities but that these relationships do not
end in the very surface soil but extend several meters deep.
Therefore, the search for life in extreme environments should
consider soil as a three-dimensional ecosystem. This would
increase the prospects of finding moisture hotspots at such
extended soil depths, even if hyperarid conditions dominate
the land surface.

CONCLUSION

The differential but ‘segmented’ physico-chemical and
mineralogical features observed in our Yungay profile evidenced
that it was possible at greater soil depths to find favorable and
under-explored hotspots for microbial life in hyperarid Atacama

soils. We found that the combined effects of depth, moisture,
EC, pH, TC and P availability played a critical role in driving
the composition and/or diversity of microbial communities
in our hyperarid desert profile. Clearly, extensive and diverse
microbial life remains to be discovered at greater soil depths
within the hyperarid Atacama Desert, and by inference other
extreme environments (including extraterrestrial planets).
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