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Next-generation sequencing is one of the most popular and cost-effective ways
of characterizing microbiome in multiple samples. However, most of the currently
available amplicon sequencing approaches are limited, as they result in relative
abundance profiles of microbial taxa, which does not represent actual abundance in the
environment. Here, we combined amplicon sequencing (16S rRNA gene for bacteria
and ITS region for fungi) with real-time quantitative PCR (qPCR) to characterize the
rhizosphere microbiome of wheat. We show that changes in the relative abundance
of major microbial phyla do not necessarily follow the same pattern as the estimated
quantitative abundance. Most of the bacterial phyla linked with the rhizosphere of
plants grown in soil with no history of water stress showed enrichment patterns in their
estimated absolute abundance, which was in contradiction with the trends observed in
the relative abundance data. However, in the case of the fungal groups (except for
Basidiomycota), such an enrichment pattern was not observed and the abundance
of fungi remained relatively unchanged under different soil water stress history when
estimated absolute abundance was considered. Comparing relative and estimated
absolute abundances of dominant bacterial and fungal phyla, as well as their correlation
with the functional processes in the rhizosphere, our results suggest that the estimated
absolute abundance approach gives a different and more realistic perspective than the
relative abundance approach. Such a quantification approach provides complementary
information that helps to better understand the rhizosphere microbiomes and their
associated ecological functional processes.

Keywords: qPCR, quantitative, microbiome, amplicon sequencing, stress history

INTRODUCTION

It is becoming increasingly evident that microorganisms, whether transmitted maternally (from
parent to offspring) or environmentally (through the uptake of microbes from the environment),
can strongly influence the biology of their host plants (Quiza et al., 2015; Agoussar and Yergeau,
2021). Over the past decades, due to the rapid advances in DNA sequencing technologies,
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our knowledge of the diversity and evolution of plant-associated
microbiome has been greatly improved (Busby et al., 2017;
Compant et al., 2019). However, the accurate characterization
of microorganisms has been a challenging problem. Amplicon
sequencing of marker genes such as the 16S rRNA gene
and internal transcribed spacer (ITS) is appreciated as one
of the most popular and cost-effective ways of surveying
microbiomes in many samples of various types. Despite the clear
advantages and potential for using marker gene sequencing, it
has important biases and limitations, which should be considered
more carefully when characterizing microbial communities based
on amplicon data.

Most of the currently available amplicon sequencing
approaches are inherently limited and produce compositional
data, often presented as the relative abundance of microbial
taxa (fraction of total reads), and do not consider inter-
sample variations in microbial loads (Props et al., 2017).
Thus, compositional data are constrained, and the biological
interpretation of such datasets can be misleading (Vandeputte
et al., 2017). This is particularly important when substantial
differences in total microbial biomass between samples are
expected, such as in climate change experiments where stressed
samples (e.g., drought, heat, and salinity stresses) are compared
to control samples. We know from previous studies that both
bacterial and fungal species may show different response patterns
in water-limited environments such as sensitive, tolerant and
opportunistic (Evans and Wallenstein, 2012; Meisner et al.,
2018), that ultimately shape community structure and many
ecosystem functions. If, for instance, a single opportunistic
bacterial species increase in absolute abundance (counts) under
water stress, this will result (i) in an increase in its relative
abundance (ratios) within the community and (ii) in a decrease
in the abundance of all other species due to compositionality
effects (Morton et al., 2017; Vandeputte et al., 2017), which
is independent of ecological processes governing community
profiles (Stämmler et al., 2016).

In their recent study, Alteio et al. (2021) discussed the possible
technical challenges and limitations of amplicon sequencing and
how compositionality may influence the integration of relative
abundance data in soil microbiome research (Alteio et al., 2021).
Different approaches have been proposed to link with amplicon
sequencing to quantitively evaluate microbiomes such as qPCR
(Zhang et al., 2017; Jian et al., 2020), flow cytometry that
would allow counting microbial cells (Vandeputte et al., 2017),
and the application of an internal standard (Tourlousse et al.,
2016; Palmer et al., 2018; Tkacz et al., 2018). The advantage of
incorporating qPCR with amplicon sequencing data has been
successfully assessed using fecal samples (Jian et al., 2020),
grassland soil from the Tibet Plateau (Zhang et al., 2017), and
soil from a contaminated area (steel mill) in Fujian Province,
China (Lou et al., 2018). However, empirical evidence is still
limited, particularly in soil microbiomes from agricultural lands
with contrasting soil water stress histories where substantial
differences in microbial biomass are expected. In addition, in the
context of absolute quantification of microbiome abundances,
previous studies have mainly focused on the bacteria, without
considering fungal communities.

The purpose of this study was to test the usefulness of
relative and estimated absolute abundances of bacterial and
fungal communities associated with the rhizosphere of wheat
under historical and contemporary soil water stress. To address
this, we grew four wheat genotypes (two with recognized drought
resistance and two without) in soils with more than 40 years of
exposure to different irrigation management histories (irrigated
and non-irrigated) and exposed to various contemporary soil
water limitations. Previous work from our team showed that soil
stress history had a strong effect on the abundance of bacteria
and fungi (assessed using qPCR) in the rhizosphere under the
contemporary water stress (Azarbad et al., 2018). In another
study, based on the same set-up, we showed that historical
soil microbial water stress restructured bacterial and fungal
communities in the rhizosphere of wheat plants (Azarbad et al.,
2020). Here, we took advantage of prior information to integrate
amplicon sequencing and qPCR data in order to consider inter
samples differences in microbial biomass and quantitatively
characterize the rhizosphere microbiomes. More specifically,
we wanted to determine whether relative and quantitative
abundances approaches would result in a similar pattern and
which approach is more closely linked to the functional processes
in the rhizosphere. One of the first priorities in managing the
agroecosystem is to optimize important ecosystem functions
such as carbon and nitrogen cycling (Oliver et al., 2015; Piton
et al., 2021). Therefore, in this study soil respiration rate (CO2
production) was assessed as a measure of the rhizosphere
functional response.

MATERIALS AND METHODS

Soil Sample Collection and Experimental
Design
Twenty soil samples were collected in April 2016 from the
top layer (0–30 cm) of two experimental agricultural wheat
fields located at the Swift Current Research and Development
Centre (Agriculture and Agri-Food Canada) in Swift Current,
SK, Canada. Although adjacent, these fields were managed
differently since 1981 in such a way that one was irrigated (IR)
during the wheat growing season and the other was not (NI),
resulting in contrasting soil water stress histories. Soil samples
were transported to the laboratory, mixed, homogenized (to
obtain a representative soil for each wheat field), and sieved
(2 mm). Three sub-samples of each soil stress history were
kept at –20◦C as “T0” for DNA extraction and downstream
analysis. Soil samples were placed in a plant grow room to
acclimatize the microbes to the new environment. After one
month of incubation, on Jun 19th, 2016, eight seeds of two wheat
genotypes with recognized resistance to water stress (Triticum
aestivum cv. AC Barrie and Triticum turgidum subsp. Durum
cv. Strongfield) and two without (Triticum aestivum cv. AC
Nass and Triticum aestivum cv. AC Walton) were sown in pots
(14.5 cm high × 19 cm diameter) containing 700 g of each type
of soil (dry weight equivalent). Pots were placed in a growth
room in a complete randomized block design. The 16 h light
and 8 h dark photoperiods with an 800 µmol m−2 s−1 photon
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flux density and a steady temperature of 23 ± 1◦C were applied
throughout the experiment.

During the first 4 weeks of the growth, plants were kept
under well-watered conditions (50% soil water holding capacity,
SWHC), then they were subjected to 5–8% SWHC, 20% SWHC,
and 30% SWHC, while controls were kept at 50% SWHC. To
keep the target soil water content (SWC), the pot weights were
measured every day. If needed, water was added by taking into
account different biomass accumulation for each wheat genotype
using pots without plants as a control. Rhizosphere samples
were collected (4 wheat genotypes × 2 soil history types × 4
SWHC× 5 replicates = 160 samples) at the end of the experiment
(after 4 weeks of exposure to the different SWHC). The
following parameters were measured in all collected rhizosphere
samples: CO2 production, microbial community structure, and
the total abundance of bacteria and fungi. The experimental
design, CO2 production measurements, real-time quantitative
PCR assays (qPCR), and amplicon sequencing assays have been
previously published (Azarbad et al., 2018, 2020). Some of these
methods are described below. Detailed information regarding
amplicon library construction and sequencing is provided as
Supplementary Material. For the purpose of discussion, qPCR
data are presented in Figure 1.

CO2 Production Measurements
Detailed information on how CO2 production was determined
has been previously published (Azarbad et al., 2018). Briefly,
microcosms including rhizosphere samples (5 g dry weight
soil), were tightly closed with rubber septum caps. To assess
CO2 production, headspace samples (10 cm3) were collected
with a syringe and injected into a gas chromatograph injection
port (Agilent 7890 A, Agilent Technologies, Santa Clara, CA,
United States). CO2 production was measured every 24 h
for 3 days at 24◦C. Using linear regression, rhizosphere CO2
production was calculated from the slope of the change in
CO2 concentration following several measurement points (10,
1,440, and 2,880 min). Empty microcosms (without rhizosphere
samples) were used as the black samples, and no CO2
production was detected.

DNA Extraction and qPCR Assays
Genomic DNA was extracted from 0.5 mg of rhizosphere soil
using a phenol-chloroform extraction method (Dellaporta et al.,
1983). Further details on DNA extraction can be found in
Azarbad et al. (2018). The total abundance of bacterial (16S
rRNA genes) and fungal (ITS1 region) communities associated
with the rhizosphere were quantified using SyBrGreen real-
time quantitative PCR assays (qPCR) with the primers listed
below (same as those used for amplicon sequencing). Briefly,
the qPCR reactions were carried out using a RotorGene 6000
machine (Corbett Research, Mortlake, NSW, Australia) with
SsoAdvancedTM Universal SYBR Green kits (Biorad, Hercules,
CA, United States). We have performed several test runs
including a wide range of dilution of extracted DNA to (1)
find out the range of linear amplification of extracted DNA
to ensure that all samples are in the expected scale based on
the standard curve and (2) to reduce qPCR inhibition. The

standard curve ranging from 0 to 10 exp 7, copies of the standard
plasmid DNA were prepared using Escherichia coli 25922 for
bacteria (Bruce et al., 1992) and Pichia scolyti for fungi (Martin
and Rygiewicz, 2005). We have chosen 10 random samples and
then prepared 10, 50, 100, 200, and 400-fold diluted and non-
diluted DNA extracts. We also included two blank samples
(nuclease-free water) as controls. Based on these results, the
optimum dilutions were selected if the amplification products
were between expected ranges (above the minimum detection
limit to the middle point of the linear range of standards).
As a result, DNA fragments corresponding to the rhizosphere
were diluted 10 times. Each qPCR mix consisted of 4.2 µl
sterilized water, 10 µl SYBR green master mix, 0.4 µl of each
primer (0.4 pmoles/µl) and 5 µl of diluted template DNA for a
final reaction volume of 20 µl. Similar to amplicon sequencing
analysis, for the qPCR assays bacterial 16S rRNA gene universal
primers 520F (5′-AGCAGCCGCGGTAAT-3′) and 799R (5′-
CAGGGTATCTAATCCTGTT-3′) (Edwards et al., 2008), and
the fungal ITS1F (5′-CTTGGTCATTTAGAGGAAGTAA-3′)
and 58A2R (5′-CTGCGTTCTTCATCGAT-3′) (Martin and
Rygiewicz, 2005) were used. The PCR conditions consisted of an
initial denaturation step at 95◦C for 5 min followed by 30 cycles
of denaturation at 95◦C for 30 s, annealing at 57◦C for 30 s and
elongation at 72◦C for 30 s. Fluorescence was measured at the end
of each cycle at the elongation step. A melt curve analysis was
done to verify the specificity of the amplicons. The qPCR cycle
threshold (Ct) values are presented in Supplementary Figure 1.

Statistical Analyses
Statistical analyses were carried out using R (The R Foundation
for Statistical Computing) and the PAST program (Hammer
et al., 2001). In this study, absolute gene copy numbers based
on qPCR assays varied between the “T0” samples (that is three
subsamples of the sieved soil before wheat seeding) for both
bacteria (IR soils: 3.9 × 107 copies and NI soils: 2.2 × 107 copies
g−1 soil-dry weight) and fungi (IR soils: 9.8 × 106 copies and
NI soils: 1.6 × 107 copies g−1 soil-dry weight). To consider the
inter-sample differences in the initial microbiome biomass, we
measured the number of copies of the 16S rRNA gene and of the
ITS region in each rhizosphere sample to estimate the absolute
abundances of bacteria and fungi and to normalize amplicon
sequencing data. Two datasets were produced: OTU relative
abundance (fraction of total reads) and absolute OTU abundance,
which was estimated by multiplying the OTU relative abundance
matrix by the corresponding abundance of 16S rRNA gene
and ITS region obtained by qPCR quantifications, as previously
suggested (Zhang et al., 2017; Lou et al., 2018; Jian et al.,
2020). Since soil history was previously identified as the main
factor structuring rhizosphere microbial communities (Azarbad
et al., 2018, 2020; Figure 1 and Supplementary Figure 2), we
focused on this factor for the needs of our demonstration. Still,
similar conclusions could be reached by focusing on cultivar
or SWC effects. Principal coordinate analyses (PCoA) based
on Bray–Curtis dissimilarity were performed to visualize the
effect of soil history, wheat genotype, and SWC on rhizosphere-
associated microbial community composition. The effects of the
experimental factors and their possible interactions on microbial
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FIGURE 1 | The abundance of (A) bacterial 16S rRNA gene (copies g-1 soil dry weight) and (B) fungal ITS region (copies g-1 soil dry weight) in the rhizosphere of
four wheat genotypes grown in soil with two contrasting stress histories (Soil history) under different contemporary water stress (SWHC).

community composition were assessed using Permanova (with
1,000 permutations). To investigate the possible impact of soil
history on the relative and estimated absolute abundance of
the most abundant bacterial and fungal phyla associated with
the rhizosphere of wheat genotypes, an analysis of variance
(ANOVA) was performed. Because of the primary role of bacteria
in soil organic matter decomposition, Pearson correlation tests
were performed between the estimated absolute and relative
abundances of the dominant bacterial phyla and CO2 production
to verify which approach is most closely related to the functional
processes in the rhizosphere.

RESULTS AND DISCUSSION

Relative and the Estimated Absolute
Abundance Data Give a Contrasting
Pattern
PCoAs based on relative abundance data revealed that
soil history was the primary factor shaping bacterial
(Supplementary Figure 2A) and fungal (Supplementary
Figure 2C) communities associated with the rhizosphere of
wheat genotypes. Permanova analyses confirmed PCoAs patterns

and showed that soil history was the main source of variation
(higher F-ratio, Supplementary Table 1). However, when PCoA
based on estimated absolute data was performed, we observed
notably different patterns such that, besides the strong effect of
soil history, the effect of SWC and wheat genotype became more
evident (Supplementary Figures 2B,D). Permanova analyses
corroborated this finding, indicating a higher F-ratio for the
genotype and SWC effect for the estimated absolute dataset
(Supplementary Table 1). In the following parts, to better
differentiate relative and the estimated absolute abundance
pattern, particular attention is paid to the soil history.

By comparing the relative and the estimated absolute
abundances of dominant bacterial and fungal phyla associated
with the rhizosphere, we observed completely different and
sometimes contradictory trends. For instance, the relative
abundances of Acidobacteria and Firmicutes were significantly
higher in the rhizosphere of plants growing in the non-irrigated
soil as compared to the irrigated soil (Figure 2A). In contrast,
the estimated abundances of Proteobacteria, Actinobacteria,
Bacteroidetes, Acidobacteria, Gemmatimonadetes, Firmicutes, and
Verrucomicrobia were significantly higher in the rhizosphere of
plants grown in irrigated soil when compared to non-irrigated
soils (Figure 2B). On the other hand, Gemmatimonadetes and
Verrucomicrobia had significantly higher relative abundances
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FIGURE 2 | The effect of soil history on (A) the relative and (B) estimated absolute abundance of different bacterial phyla associated with the rhizosphere of four
wheat genotypes grown in Saskatchewan soils with a water stress history (NI) or with no history of water stress (IR) exposed to four levels of soil water content. Dots
are values for individual observations, the horizontal lines in boxes are representative of the median, the upper and lower part of boxes indicating 75th and 25th
quartiles, and whiskers on the boxes showing 1.5 × the interquartile range. ANOVA tests comparing the abundance of each phylum between IR and NI soils.

in the rhizosphere of plants grown in irrigated soil than non-
irrigated soils, coherent with the picture observed for estimated
abundances (Figure 2A). It has been shown previously that
the relative abundance of Actinobacteria increases under dry
conditions and this phylum becomes a dominant group of
bacteria in the soil environment (Naylor et al., 2017; Meisner
et al., 2018; Preece et al., 2019). However, based on our
study, when the estimated absolute abundance was considered,
we observed the opposite pattern where the rhizosphere of
plants growing in the soil with no history of water stress
harbored significantly more Actinobacteria as compared with the
rhizosphere of plants growing in the soil with a water stress
history (Figure 2B). There were also inconsistent trends between
the relative and estimated absolute abundances for fungal phyla
(Figure 3). For instance, the relative abundance of Zygomycota
and Ascomycota increased in the rhizosphere of plants grown in
irrigated soils, but this pattern was absent when looking at the
estimated abundances (Figures 3A,B). In contrast, both relative
and estimated abundances agreed that a history of water stress
significantly increases the abundance of Basidiomycota in the
rhizosphere of wheat (Figures 3A,B).

In the present study, absolute gene copy numbers (qPCR
data) were significantly different between the two soils before
starting the experiment, which is one of the many cases for which
analyses of microbial communities based on relative abundance
is unlikely to reflect actual community patterns (Stämmler et al.,
2016; Props et al., 2017; Vandeputte et al., 2017; Zhang et al.,
2017; Lundberg et al., 2020) and associated ecosystem processes.

Here, when estimated absolute abundances were considered,
we observed notable differences from the relative abundance
data, and new, often contradictory, trends became visible. It is
relatively easy to understand why these differences occur: for
example, if a single drought-tolerant bacterial species increases
its absolute abundance under water stress, this will increase its
relative abundance and a concomitant decrease in the relative
abundance of all other species, even though their absolute
abundance did not change. Such compositional effects may
not fully reflect actual microbial profiles and their associated
ecological functional processes.

The Estimated Absolute Abundance
Gives a More Realistic View of the
Impact of Soil Water Stress History on
the Rhizosphere Microbiome Profiles
As shown in the previous section, depending on relative
and estimated absolute abundance approaches, an inconsistent
pattern was evident in the response of rhizosphere microbiome
associated with plants grown in soil with contrasting soil water
stress histories. For instance, most of the bacterial phyla linked
with the rhizosphere of plants grown in soil with no history
of water stress showed enrichment patterns in their estimated
absolute abundance (Figure 2). However, in the case of the
fungal group (except for Basidiomycota), such an enrichment
pattern was not observed and the abundance of fungi showed
no significant change under different soil water stress histories
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FIGURE 3 | The effect of soil history on (A) the relative and (B) estimated absolute abundance of different fungal phyla associated with the rhizosphere of four wheat
genotypes grown in Saskatchewan soils with a water stress history (NI) or with no history of water stress (IR) exposed to four levels of soil water content. Dots are
values for individual observations, the horizontal lines in boxes are representative of the median, the upper and lower part of boxes indicating 75th and 25th quartiles,
and whiskers on the boxes showing 1.5 × the interquartile range. ANOVA tests comparing the abundance of each phylum between IR and NI soils.

when estimated absolute abundance was considered (Figure 3). It
is well known from previous research that fungi have strong cell
walls (Schimel et al., 2007) and a hyphal network (Khalvati et al.,
2005) which help them to better withstand drought conditions
than bacterial (Manzoni et al., 2012; Fuchslueger et al., 2014).
These results indicate that the estimated absolute abundance
based on the qPCR method gives a more realistic picture of
changes in microbial profile under water-limited environments.

Relative and Quantitative Abundances
and CO2 Production
To determine which approach was more closely linked to
functional processes in the rhizosphere, we correlated relative
and absolute abundances of dominant bacterial phyla with
CO2 production, which was previously measured (Azarbad
et al., 2018). When the estimated absolute abundance
was used, Pearson correlations showed no significant
correlations between bacterial phyla and CO2 production.

However, when relative abundance data were used, we
observed significant negative (Actinobacteria: r = −0.361,
p = < 0.001) and positive (Acidobacteria: r = 0.158, p = 0.048;
Gemmatimonadetes: r = 0.272, p = 0.001; Proteobacteria:
r = 0.277, p = < 0.001) correlations between bacterial phyla and
CO2 emissions (Table 1).

Using real-time PCR, we previously showed that the microbial
abundance is quite stable across SWHC treatments for both soil
history types (Azarbad et al., 2018). However, CO2 emissions
were severely reduced under low water content, which is clearly
due to a change in the activity of the microbial community, rather
than a massive death and reduction of the abundance of the
microbial communities. The estimated absolute data supported
this observation as no correlation between the abundance of
the dominant bacterial phyla and CO2 production was detected.
Conversely, in the case of the relative abundance approach,
significant correlations between many taxa and CO2 production
were found. These correlations were most probably spurious
and due to shifts in the microbial community composition
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TABLE 1 | Correlation tests between relative and absolute abundances of the
most abundant bacterial phyla associated with the rhizosphere of four wheat
genotypes grown in Saskatchewan soils with a water stress history (NI) or with no
history of water stress (IR) exposed to four levels of soil water content vs.
CO2 production.

CO2 production

Relative abundance Quantitative abundance

R P-value R P-value

Acidobacteria 0.158 0.048 0.101 0.208

Actinobacteria −0.361 <0.001 0.040 0.615

Bacteroidetes −0.036 0.656 0.061 0.451

Firmicutes −0.079 0.327 0.051 0.528

Gemmatimonadetes 0.272 0.001 0.104 0.193

Proteobacteria 0.277 <0.001 0.093 0.249

Verrucomicrobia 0.071 0.378 0.078 0.331

Bold P-values are significant at P < 0.05.

with decreasing water content. Some results were even non-
sensical, as negative correlations were found, which would be
interpreted as if soil respiration would decrease when some taxa
become more abundant.

CONCLUSION AND FUTURE
DIRECTIONS

The objective of this study was to differentiate the change in the
relative and estimated absolute abundances of the rhizosphere
of wheat plants when grown in soil with contrasting soil water
stress histories under contemporary water limitations. With a
commonly used qPCR protocol for both bacteria and fungi,
this study demonstrated the usefulness of incorporating changes
in microbial biomass to rhizosphere microbiome evaluation.
Comparing relative and estimated absolute abundances of
dominant bacterial and fungal phyla, as well as their correlation
with CO2 production in the rhizosphere, allowed us to conclude
that the estimated absolute quantification provides a more
realistic view of the impact of soil water stress history on the
rhizosphere microbiome profiles. This conclusion is consistent
with a study by Lou et al. (2018), who reported that qPCR
is an accurate approach to quantitively evaluate the absolute
abundance of genes, thus integrating the qPCR with high-
throughput sequencing helped to better characterize the actual
change in microbial abundance. Since both qPCR and sequencing
approaches were performed on the same DNA extract with
the same set of primers, they shared the same methodological
limitations (e.g., amplification efficiency and the specificity
of primers) thereby making the qPCR and sequencing data
compatible (Dannemiller et al., 2014; Props et al., 2017; Jian et al.,
2020). In line with this, Jian et al. (2020) discussed the advantage
and potential biases of microbiome data with regards to linking
qPCR with amplicon-based sequencing data. In their study, they
pointed out that since the qPCR does not add additional biases,
which already exist in the amplicon sequencing approach, it can
be considered as an advantage.

It is important to mention that the primers used in this study
are designed to exclude plant mitochondrial and chloroplast
DNA, which was one of the main criteria to select these sets
of primers. We acknowledge that contamination might still
occur due to the homology between bacterial 16S rRNA genes
and plant material. However, since the focus of this study was
only on the soil and rhizosphere microbiomes, this should have
a minor impact on the resulting data. We believe that this
approach, with its limitations, is better than reporting only
relative abundance data (Dannemiller et al., 2014; Jian et al.,
2020).

In this study, we performed qPCR of the V3-V4 hypervariable
region of the 16S rRNA gene (which serves as a standard marker
to assess total bacterial biomass) and of the ITS1 region to assess
fungal biomass. To provide better insights into the abundance
of specific taxa, another approach would be to perform qPCR
by using specific primers for various bacterial and fungal taxa.
Therefore, we highly encourage further studies to perform qPCR
with taxa-specific primers which would provide the ability to
track whether a given taxa increased its absolute abundance while
other taxa remained the same without the need for sequencing.
Other promising approaches such as flow cytometry (Props et al.,
2017), adding a known number of 16S rRNA gene copies of
exogenous bacteria into the samples before DNA extraction to
normalize endogenous bacterial counts (Stämmler et al., 2016)
or synthetic spike-in standards (Tourlousse et al., 2016; Palmer
et al., 2018; Tkacz et al., 2018) could also be applied to estimate
microbial loads.

In summary, this study allowed us to quantitatively evaluate
the differences between the rhizosphere microbiome of
wheat plants growing in soil with contrasting long-term
water management history. We showed that quantitative
microbiome profiling provides a contrasting picture of the
response of rhizosphere microbial communities to soil water
stress legacy, which appeared to be better aligned to actual
ecosystem processes. Such a quantification approach provides
complementary information that helps to better interpret
changes in the abundance of microbial taxa, which is critical
when substantial differences in total microbial biomass between
samples are expected.
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