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How new functions evolve fascinates many evolutionary biologists. Particularly
captivating is the evolution of rotation in molecular machines, as it evokes familiar
machines that we have made ourselves. The archaellum, an archaeal analog of the
bacterial flagellum, is one of the simplest rotary motors. It features a long helical propeller
attached to a cell envelope-embedded rotary motor. Satisfyingly, the archaellum is
one of many members of the large type IV filament superfamily, which includes pili,
secretion systems, and adhesins, relationships that promise clues as to how the rotating
archaellum evolved from a non-rotary ancestor. Nevertheless, determining exactly how
the archaellum got its rotation remains frustratingly elusive. Here we review what is
known about how the archaellum got its rotation, what clues exist, and what more
is needed to address this question.
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HOW DOES ROTARY MOTION EVOLVE IN MOLECULAR
MACHINES?

How do molecular machines evolve new roles? Macroscopic structures such as wings or eyes have
evolved from simpler limbs or photoreceptors. In many cases, evolution of new functions in such
macroscopic structures involved co-option of a pre-existing feature for the new role. Gould and
Vrba coined the phrase exaptation to define this process, distinguishing it from adaptation, in which
a pre-existing feature evolves to become more beneficial in its current role. Lightweight feathered
wings, for example, existed in nascent forms before exaptation for flight (Gould and Vrba, 1982).

How such processes operate at the molecular scale remains less well understood. Nevertheless,
it appears that at the molecular scale new functions also result from exaptation of existing
underlying mechanisms instead of radical genesis of fully formed new machines. For example,
rotary nanomachines used by cells for propulsion demonstrate exaptation of rotary mechanisms
(Beeby et al., 2020). The best known such machine is the bacterial flagellum, which rotates a multi-
micron filament as a rotary helical propeller to generate thrust. Bacterial flagella are believed to
have exapted the intrinsic rotary mechanism of a family of rotary ion channels (the ExbBD/TolQR
family, discussed elsewhere in this special issue), to drive rotation of a large axial ring, cogwheel-
style, that in turn rotates an extracellular helical propeller (Chang et al., 2020; Deme et al., 2020;
Santiveri et al., 2020). Better understanding of how this exaptation occurred, however, is frustrated
by the absence of contemporary flagellar relatives that diverged prior to the evolution of rotation,
leaving the evolutionary path to rotation speculative (Abby and Rocha, 2012; Beeby et al., 2020).

If the emergence of novelty in molecular machines involves exaptation, evolution of rotary
motors suggests that rotary function should be a nascent function of ancestral protein components.
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Four decades ago, Roger Hendrix suggested that rotation may
be inherent to symmetry mismatched protein subcomplexes
(Hendrix, 1978): the phase shifts in binding interactions around
the interaction surface of two symmetry-mismatched cyclic
subcomplexes will reduce the activation barrier to the small
rotations required to achieve an identical–albeit rotated–set of
interactions. In other words, unless active measures are taken
to prevent rotation, rotation may be inevitable in such cases.
Hendrix based his thesis on symmetry mismatch in phages, and
symmetry mismatch was subsequently implicated as important
for function of the bacterial flagellum (Thomas et al., 1999), ATP
synthase (Pogoryelov et al., 2005), Clp proteases (Ripstein et al.,
2020), kinetochore movement along microtubules (Westermann
et al., 2006), and DNA translocases (Liu et al., 2015).

Curiously, rotation is not as frequently seen as we anticipated.
Since Hendrix published his work, the phage portal protein has
been shown not to rotate (Hugel et al., 2007), the protease ClpAP
has been shown to function without rotation (Kim et al., 2020),
and diverse symmetry-mismatched secretion systems have been
shown to have architectures that preclude rotation (Umrekar
et al., 2021a). Together, this suggests that strategies such as
the sophisticated interlocking of different symmetries in phages
(Fang et al., 2020) may have evolved to preclude the potential
side-effect of inter-subcomplex rotation (Liu et al., 2014). If
this assumption is the case, how might a protein machine
overcome a selectively detrimental state to exapt an intrinsic
rotary mechanism?

“How” is a nebulous word, and we use it to capture diverse
questions: has exaptation played a role in the evolution of
rotary protein machines? How many mutations are required to
switch from a non-rotary interface to a rotary interface? What
selective pressures exist to retain a protein complex in a non-
rotary or rotary state? What structural features implement the
retention of one or the other state (for example, symmetry
adaptor domains, proteins that mediate stoichiometry matching,
or promiscuous inter-subunit binding interfaces)? Do (or must)
selectively metastable “gateway” evolutionary intermediates exist
that facilitate the evolutionary pathway from non-rotary to rotary
function? Such questions remain broadly unanswered, in part
because we lack a model system in which to ask them.

THE ARCHAELLUM: AN EXCELLENT
CASE STUDY OF THE EVOLUTION OF A
ROTARY MOTOR

A possible model system to study emergence of rotation in
molecular machines is the “archaellum” (previously known as the
“archaeal flagellum”), whose diverse non-rotary contemporary
relatives provide clues to its evolution (Albers and Jarrell, 2018).
Archaella are members of the type IV filament (TFF) superfamily,
a family of otherwise non-rotary machines that includes type
II secretion systems, type IVa pili, type IVb pili, and various
adhesin pili (Berry and Pelicic, 2015; Beeby, 2019; Denise et al.,
2019), but feature additional proteins apparently associated with
torque generation (Figure 1). Like bacterial flagella, archaella spin

FIGURE 1 | The archaellum is a rotary motor that evolved from a non-rotary
ancestor. The archaellum descends from a clade of the type IV filament
superfamily that produced adhesive pili. Evolution of rotary motion included
paralogous duplication of its filament protein, ArlB, to form the putative stator
ArlFG, recruitment of ArlH from an unknown source as putative timer protein
to switch from assembly to rotation, and recruitment of ArlX (or, in some
species, ArlCDE) from an unknown source as a putative stator scaffold. The
details of these recruitments, and how they affected the function of
intermediate states, however, remains unclear.

a filament to form a helical propeller that generates thrust for
cell propulsion.

Although the archaellum is less well-known than other rotary
motors, its simplicity makes it an excellent system for studying
the evolution of rotary function. The simplest archaellum,
from Sulfolobus acidocaldarius, features just seven proteins.
A multimicron-long extracellular filament of ArlB assembles on
a platform composed of transmembrane ArlJ and cytoplasmic
ArlI and ArlH; paralogs ArlF and ArlG likely span the pseudo-
periplasm, while ArlX may mediate complex formation between
ArlHIJ to ArlFG. (Note that archaellar proteins have recently
been renamed “Arl” from “Fla/Flg” to prevent confusion with
bacterial flagellar proteins Pohlschroder et al., 2018).

The ArlHIJ complex lies at the heart of the archaellum.
Transmembrane ArlJ features two conserved cytoplasmic
domains (Ghosh and Albers, 2011), dimerizes, and likely
interacts with the cytoplasmic ATPase, ArlI, a cyclic hexamer that
is the sole energy source of the complex. Curiously, ArlI powers
both archaellum assembly and rotation, and it is a conserved
member of the same ATPase family used across other members
of the TFF family. These ATPases drive filament assembly in all
TFF superfamily members; some family members also feature
paralogs that can retract the filament; some family members
have multiple paralogs capable of retraction with different forces
(Chlebek et al., 2019; Talà et al., 2019). Beneath ArlI lies ArlH,
which features ATP-binding motifs but has not been shown
to be an ATPase (Hanson and Whiteheart, 2005; Chaudhury
et al., 2016). ArlH has a RecA/RAD51-like fold related to
the circadian clock protein KaiC (Chaudhury et al., 2016;
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Meshcheryakov and Wolf, 2016), suggesting a timer function
implicated in triggering a switch in ArlI between its two roles in
assembly and rotation.

ArlB forms the archaellar filament, which coils to form a
helical propeller when rotated by the archaellar motor (Poweleit
et al., 2016; Daum et al., 2017; Meshcheryakov et al., 2019).
This filament is assembled atop ArlJ using energy from ArlI’s
ATP hydrolysis activity. The ArlB filament is a compact
helix assembled around a bundle of hydrophobic N-terminal
α-helices. The head and N-terminal helix interact with six
or eight neighboring protomers to assemble a strong and
relatively rigid filament.

As with all rotary motors, productive rotation must depend
upon a static stator component that the rotor component can
rotate relative to. In the case of the archaellum, ArlF and ArlG
have been implicated to form this stator (Banerjee et al., 2015).
Both localize to the archaeal pseudo-periplasm; ArlG forms a
helical filament that is probably capped by S-layer-anchored ArlF;
deletion of either gene or abolition of S-layer binding abolishes
rotation (Tsai et al., 2020).

The final component of the archaellum is an enigmatic
cytoplasmic protein complex. In the model crenarchaeon
S. acidocaldarius, ArlX, a protein with a transmembrane helix,
forms 30 nm-wide cyclic oligomers (Banerjee et al., 2012, 2013).
Other species instead feature a complex of ArlCDE. These lack
predicted transmembrane helices but feature sequence motifs
that evoke ArlX, although whether ArlCDE and ArlX are
homologs remains to be seen. For brevity, for the remainder of
this text we use “ArlX” as shorthand to denote both ArlX and
ArlCDE. Little more is known about the role or location of ArlX.

What Is Known About the Mechanism of
Archaellar Rotation?
Rotary motors rotate a rotor component against a stator
component. In many, including human-made motors, the
ATP synthase, and the bacterial flagellar motor, the energized
component is integral to the stator, harnessing an energy source
to drive rotation of the passive rotor. It remains unclear whether
the archaellar energized component is part of the stator or rotor,
however, and it is unclear for many components which rotate
and which remain static–except for the S-layer-anchored ArlFG
complex and rotating ArlB filament (Shahapure et al., 2014;
Kinosita et al., 2016). While it follows that ArlJ, the assembly
platform for ArlB, is contiguous with the archaellar filament
to prevent the ArlB filament from detaching and diffusing
away, in situ structures of related type IVa pili suggested that
the ArlJ homolog could rotate against the pilus (Chang et al.,
2016). The ArlJ:ArlI or ArlI:ArlH interfaces are candidates
for intersubunit rotations because ArlI homologs undergo 60◦
rotations of conformational states, suggesting that this might be
converted into physical rotation by pushing against ArlJ or ArlH.
Indeed, conflicting evidence for the oligomeric state of ArlH
in situ highlights the possibility of symmetry mismatch-mediated
rotation between ArlI, ArlH, ArlJ, or ArlX. Nevertheless, ArlI,
ArlH, and ArlX interact, suggesting they form a contiguous
complex (Chaudhury et al., 2016), and ArlX is destabilized in

the absence of ArlJ, suggesting that it is a structural component
associated with the core of the motor. These insights hint that the
rotor:stator interface may instead lie between ArlX and ArlFG;
conformational changes in ArlI resulting from ATP hydrolysis
could be communicated via ArlX to exert force against an
interface with ArlFG, resulting in ArlFG being the stator and
ArlX, ArlH, ArlI, ArlJ, and ArlB being the rotor. Nevertheless,
ArlX would also provide an obvious structure to anchor a ring
of ArlFG stator units. Understanding the location of this elusive
interface, and identifying the mechanism of torque generation, is
crucial to understanding where the archaellum got its rotation.

Direct observations of archaellum rotation provide some
clues to the underlying mechanism (Alam and Oesterhelt, 1984;
Shahapure et al., 2014). Archaella rotate both clockwise and
counterclockwise but do not extend or retract during rotation.
The torque produced by the archaellar motor is of the magnitude
expected from ATP hydrolysis by a single hexameric ATPase
(Iwata et al., 2019): the estimated torque required to rotate the
archaellum one full turn would require hydrolysis of 12 ATP
molecules, suggesting that two of the hexameric ArlI ATPase
subunits are active at any one time, which coincides with
the dimeric nature of ArlJ (Iwata et al., 2019). This, in turn,
corresponds to detection of 60◦ steps in archaellar rotation in
both directions (Kinosita et al., 2016), although a confounding
observation is that the archaellum also rotates in 36◦ steps in
both directions.

The Current Model for How the
Archaellum Got Its Rotation
Understanding the evolutionary steps required to bridge the gap
between a non-rotary ancestor to a rotary archaellum may be
within our reach. Two phylogenetic studies of the TFF family
provide first clues into how the archaellum evolved (Makarova
et al., 2016; Denise et al., 2019). The more recent study assumed
that archaellar components are organized in gene clusters in
order to annotate TFF family members across bacteria and
archaea, revealing that archaella diverged from a non-retracting
pilus clade of the TFF family that includes Aap pili, halo pili, UV-
inducible pili and bindosomes (Denise et al., 2019), suggesting
the non-rotary ancestor of the archaellum assembled such a
pilus. Archaella differ from this putative ancestor in three ways:
first, their ATPase can generate torque; second, their ATPase
can switch from assembly to torque generation; and third, they
feature a stator complex against which to exert this torque. These
differences involved gain of ArlF, ArlG, ArlH, and ArlX.

Naively, the biggest step would have been the first: to evolve
an ATPase that exerts torque. It may be, however, that the
intrinsic rotation of conformational states in the hexameric
AAA+ATPase family was exapted for rotation of the rotor. It has
even been suggested that all TFF ATPases rotate while extending
the pilus (Campos et al., 2013) due to a symmetry mismatch
between the hexameric ATPase and the helical pilus, suggesting
that TFF ATPases rotate within the cytoplasm while the pilus
extends. This, however, may be a red herring, as it holds that
assembly is integral to rotation; the archaellum, meanwhile, can
still rotate after assembly has halted.
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What is required, then, is the second step: evolution of a
stator complex to anchor to the cell superstructure to exapt the
rotation of ArlI to rotate the pilus. Curiously, the probable stator
proteins ArlF and ArlG are paralogs of the filament protein ArlB
(Banerjee et al., 2015; Tsai et al., 2020). ArlF and ArlG share a
fold and binding interfaces with ArlB, although ArlG forms an
open helix, unlike the more rigid closed ArlB filament (Umrekar
et al., 2021b). Although superficially dissimilar, closer inspection
reveals that ArlG protomers still retain a subset, but not all, of the
inter-protomer interactions of ArlB protomers, resulting in loss
of lateral interactions and fewer ArlG protomers incorporating
into the helix. Such an open helix of the ArlG filament will
be more flexible than the tightly interconnected ArlB filament
and could facilitate elastic storage of the energy burst from ATP
hydrolysis. ArlX may couple the ATPase to the stator complexes.

The remaining step, functional switching of the ATPase from
assembly to rotation, may not have been essential, as a rotating
pilus that continues to extend, while wasteful, would still generate
thrust. Switching from assembly to rotation may have initially
been achieved by chance, and later enhanced by adding a
dedicated ArlH timer. Indeed, because measuring the length of
the archaellar filament is difficult, a timer may have been easier to
evolve than a ruler.

WHAT IS NEEDED TO UNDERSTAND
HOW THE ARCHAELLUM GOT ITS
ROTATION?

More Information on Diversity That Might
Reveal the Evolutionary Path to Rotation
Understanding how the archaellum evolved to rotate will benefit
from the most comprehensive possible view of (meta)genomic
diversity to understand contemporary variants and to ascertain
whether any proto-archaellum “missing links” exist. Earlier
studies lacked the current wealth of (meta)genomic data
available, or assumed that all archaellum components cluster
together in a genome (Makarova et al., 2016; Denise et al., 2019).
Their sequence models can serve as a foundation for future
focused studies across the breadth of genomic diversity (Parks
et al., 2021) and can be updated to generate more sensitive
models. False positives can be removed by iteratively removing
proteins established to function elsewhere. Whether an identified
TFF is an archaellum can also be suggested based on the presence
of a class F1 chemosensory system (Wuichet and Zhulin, 2010),
which appears to signal exclusively to archaella in the Archaea
(Briegel et al., 2015). Most chemosensory proteins are easy to
detect and unique to the chemosensory pathway.

A phylogeny derived from concatenated alignments of
ubiquitous components of only archaella and close relatives will
allow us to understand sequence changes during evolution and,
ideally, “missing links” that lack one of the proteins exclusive
to archaella. Should such a missing link be discovered, it will
be valuable in illuminating the evolutionary steps taken to
form the first fully fledged contemporary archaellum. Such
missing links, however, are notoriously elusive, and they have

still not been discovered for analogous, intensively studied
machines like the bacterial flagellum (Beeby et al., 2020).
Absence of these intermediary steps is similar to gaps in
fossil records (Gould and Eldredge, 1993) and is suggestive
of punctuated evolution, in which the first rotary archaellum
rapidly (almost instantaneously on the evolutionary timescale)
adapted to form an archaellum that already resembled that of
contemporary S. acidocaldarius. Anecdotal support of this may
come from the (admittedly problematic) use of core functionally
invariant components as molecular timekeepers. For example,
selective pressure on the prepilin peptidase, ArlK (Bardy and
Jarrell, 2002), may not have changed in the transition to
becoming an archaellum from a pilus, making ArlK a potential
chronometer against which to assess rapid punctuated evolution
of other components.

The diversity in bacterial flagella was unanticipated until they
were imaged (Chen et al., 2011). Similarly, archaella may also
have such unanticipated diversity. Comparative genomics may
highlight variants of archaella and predict novel components.
Consistent operon co-occurrence of two genes is a strong
indicator of functional interaction of their products (Overbeek
et al., 1999) and may suggest novel archaellum components.
Similarly, curated phylogenetic profiles of protein families can
highlight consistent cross-genome co-occurrences of protein
families that are candidates for novel archaellum components
(Pellegrini et al., 1999).

More Information on the Mechanism of
Rotation
To understand how archaellar rotation evolved, it will be crucial
to understand the mechanism of rotation. Obtaining atomic
models of the archaellum in different conformational states is
now conceivable given recent advances of ex situ and in situ
cryoEM and structure prediction (Baek et al., 2021; Jumper et al.,
2021). The best candidate for such structural work is likely to
involve electron cryotomography with subtomogram averaging
of the archaellum from Pyrococcus furiosus, which has proved to
be the most tractable system for in situ archaellar imaging (Daum
et al., 2017). More data collected using contemporary hardware
will be required to push to the ∼8 Å-resolutions required to
position α-helices.

By combining such structural snapshots of the machinery
in action with biophysical studies and molecular dynamic
simulations, it may be possible to parameterize a predictive
molecular model of torque generation. Biophysical
measurements will require high temporal and spatial resolution
of torque and speed to identify steps and torques, mapped
to different motor conformations using correlated structural
and cellular techniques. Perturbations to mechanical output
in mutants will provide more information about the roles of
subcomponents. For example, the recent determination of the
structure of the ArlG filament suggests that it acts as a stator and
as an elastic storage device for the energy released during ATP
hydrolysis (Umrekar et al., 2021b). Would a more rigid ArlG
filament change the mechanical output of the motor by making
steps more abrupt?
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Understanding these results will ultimately also require us to
understand which components rotate and which remain static,
a goal that will require sophisticated imaging of live cells to
detect rotation of different archaellar labeled subcomponents.
Combining this with high resolution subtomogram averages
of functional archaella in situ will enable mapping of
conformational states to show what rotates and what does not.

More Information on the Origin of
Rotation: Was It an Exaptation of
Intrinsic Type IV Filament Rotation?
Is rotation intrinsic to TFFs, and was it exapted for rotation in
archaella? Success in understanding which proteins rotate and
which remain static may be extended to components of other
TFF members to test whether proteins that rotate in archaella also
rotate in other family members. Alternatively, a mutant could be
created that binds or crosslinks (using, e.g., cysteines or unnatural
amino acids) components to the cell body to create a surrogate for
a stator complex to see if this results in pilus rotation.

Ultimately, the acid test of our theories will be whether we
can recapitulate the evolutionary events we infer. First steps will
be to “break” the archaellum in targeted components so that
it no longer rotates and to identify suppressor mutations that
restore motility. What is required for this? More extensive efforts
may generate plausible ancestral states using ancestral sequence-
reconstruction techniques to timepoints along the evolution of
the contemporary archaellum and attempt to recapitulate the
subsequent steps using strong lab-based selective pressure. Yet

more ambitious would be to attempt to evolve an archaellum
analog from a contemporary TFF superfamily member.

CONCLUDING REMARKS

The time is ripe for us to make substantial advances in
understanding how rotation emerged in a molecular machine.
The archaellum is a rotary motor that is uniquely simple
(with many fewer components than all other rotary motors
except the ExbBD family), easy to assay (with a long filament
whose rotation is easier to monitor than complexes such
as ExbBD), and phylogenetically well-understood (with many
non-rotary cousins), making it an ideal case study of the
emergence of rotation. Recent and continued advances in
genomics, biophysics, and structural biology suggest that the
archaellum is poised to become the first rotary machine whose
evolution we understand.
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