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Interactions among the plant microbiome and its host are dynamic, both spatially and temporally, leading to beneficial or pathogenic relationships in the rhizosphere, phyllosphere, and endosphere. These interactions range from cellular to molecular and genomic levels, exemplified by many complementing and coevolutionary relationships. The host plants acquire many metabolic and developmental traits such as alteration in their exudation pattern, acquisition of systemic tolerance, and coordination of signaling metabolites to interact with the microbial partners including bacteria, fungi, archaea, protists, and viruses. The microbiome responds by gaining or losing its traits to various molecular signals from the host plants and the environment. Such adaptive traits in the host and microbial partners make way for their coexistence, living together on, around, or inside the plants. The beneficial plant microbiome interactions have been exploited using traditional culturable approaches by isolating microbes with target functions, clearly contributing toward the host plants’ growth, fitness, and stress resilience. The new knowledge gained on the unculturable members of the plant microbiome using metagenome research has clearly indicated the predominance of particular phyla/genera with presumptive functions. Practically, the culturable approach gives beneficial microbes in hand for direct use, whereas the unculturable approach gives the perfect theoretical information about the taxonomy and metabolic potential of well-colonized major microbial groups associated with the plants. To capitalize on such beneficial, endemic, and functionally diverse microbiome, the strategic approach of concomitant use of culture-dependent and culture-independent techniques would help in designing novel “biologicals” for various crops. The designed biologicals (or bioinoculants) should ensure the community’s persistence due to their genomic and functional abilities. Here, we discuss the current paradigm on plant-microbiome-induced adaptive functions for the host and the strategies for synthesizing novel bioinoculants based on functions or phylum predominance of microbial communities using culturable and unculturable approaches. The effective crop-specific inclusive microbial community bioinoculants may lead to reduction in the cost of cultivation and improvement in soil and plant health for sustainable agriculture.
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INTRODUCTION

Cultivated soils are one of the most diverse microbial ecosystems, harboring bacteria, fungi, archaea, viruses, protists, and many others and supporting various biogeochemical cycles and plant growth. Soil microbial communities are critical to plant health and adapt rapidly to different abiotic and biotic stresses (Abdul Rahman et al., 2021). The soils and their microbial members provide humans with 98.8% of the plant foods we eat (FAO, 2018; Kopittke et al., 2019; Soto-Giron et al., 2021). The Food and Agriculture Organization (FAO) predicts that soil erosion could result in between 20 and 80% losses in agricultural yields due to human activities and climate change events. This erosion of topsoil could result in variable agricultural yields, depending on the soil type and the resource use pattern (Kopittke et al., 2019; Christy, 2021). The agrarian management of soils depends on many synthetic chemical inputs for increasing profitability and productivity. Unfortunately, intensive use of these chemical inputs has led to adverse environmental consequences from regional to global scales. To reduce chemical inputs and their associated undesirable effects in the soil and environment, microbial interventions as biological products are becoming an integral part of plant nutrient management programs and pest and disease management practices.

Microbial communities associated with plants, presently referred to as the plant microbiome, extend the host plant genome and their functions (Figure 1). Many studies demonstrate that these microbiomes are the key determinants of plant development, health, and productivity (Conrad et al., 2006; Bulgarelli et al., 2012; Lundberg et al., 2012; Turner et al., 2013; Williams, 2013). The recent investigations have unraveled the complex network of genetic, biochemical, physical, and metabolic interactions among the plant host, the associated microbial communities, and the environment. These interactions shape the microbiome assembly and modulate beneficial traits such as nutrient acquisition and plant health (Trivedi et al., 2021). Nutrient acquisition by plants is mediated by diverse mechanisms that include (i) augmenting the surface area accessed by plant roots for uptake of water and nutrients, (ii) through nitrogen fixation, (iii) P-solubilization, (iv) the production of siderophore and HCN production, and other unknowns. Furthermore, their contributions in protection against biotic (pests and diseases) and abiotic stresses directly or through modulating intrinsic resistance/tolerance have been reported (Pii et al., 2015; Govindasamy et al., 2020; Abiraami et al., 2021). The basis of this review is to highlight strategic approaches for designing novel bioinoculants based on the plant microbiome data generated from both culturable and unculturable approaches. Such plant microbiome-based specific bioinoculants may function in a better way as compared to the conventional bioinoculants with non-specific microbial isolates. The agricultural bioinoculant market is a fast-growing sector with a compound annual growth rate (CAGR) of 6.9% with a predicted value of over 12 billion US dollars by 2025. The growth of the market is driven by increasing health concerns and awareness among consumers, resulting in the inclination toward organic farming practices or low-chemical-input agriculture. Hence, the bioinoculant technology will move forward toward reducing the cost of cultivation while improving soil and plant health for sustainable agriculture.
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FIGURE 1. Microbial colonization depicted in different plant niches: Rhizosphere, phyllosphere and endosphere of root, stem, leaf, and grain.




PLANT-MICROBIOME-MEDIATED ADAPTIVE FUNCTIONS

The microbiome is playing a significant role, throughout the plant life cycle, in altering the physiologies, and development through phytohormones, metabolites, signals, responses, nutrients, and induction of systemic resistance against pathogens as well as tolerance mechanisms against abiotic stresses such as drought, salinity, or contaminated soils (Mendes et al., 2013; Marag and Suman, 2018; Compant et al., 2019). At the community level, the microbiome functional capability is more than the sum of its individual microbial components as individual microbial species in the microbiome may interact to form a complex network, which interrelates with the host plant(s) in a mutualistic, synergistic, commensalistic, amensalistic, or parasitic mode of relationship. These interactions influence each member of the complex network for their survival, fitness, and propagation. The sum of all these interactions influences plant health vis-a-vis soil fertility (Berg et al., 2020). The advancement in the molecular methods and affordable sequencing has led to a greater understanding of the microbiome composition; however, translating species or gene composition into microbiome functionality still remains a challenge. Using community ecology concepts, Saleem et al. (2019) have indicated that more than individual functions, the overall microbiome biodiversity is critical as the driver of plant growth, soil health, and ecosystem functioning. By meta-analysis of numerous publications on microbial biodiversity and ecosystem functioning (BEF), they indicated that the impacts can be classified into (i) biodiversity effects (negative, no (or unknown), and positive effects of biodiversity on microbial derived services), (ii) assessed functions (nutrient cycling, protection from different stresses, etc.), and (iii) underlying mechanisms (cooperation, mutualism, etc.). Higher diversity can increase the number and resilience of plant-beneficial functions that can be co-expressed and can unlock the expression of plant-beneficial traits that are hard to obtain from any species in isolation. Therefore, the maintenance and modulation of desired microbial activities (functional pools) in the vicinity of the plant system may have more significant potential to provide crops with required nutrition and other protection systems (Figure 2).
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FIGURE 2. Beneficial functions of Plant associated microbiome. N, Nitrogen; P, Phosphorous; K, Potassium; Zn, Zinc; Fe, Iron; S, Sulfur; IAA, Indole Acetic Acid; GA, Giberrelic Acid; CK, Cytokinin; ACC, 1-AminoCyclopropane Carboxylate; HCN, Hydrocyanic Acid.


With increasing knowledge of plant microbiome vis-à-vis plant performance, approaches are being devised for tapping the potential of plant-growth-promoting (PGP) isolates, by employing both culturable and unculturable approaches. The advent of “omics” technologies understandably provides the tools for a broader understanding of microbial ecosystems and their dynamic interaction with their hosts. These techniques and methods enable the screening of large microbial populations and easily identify the individual or groups of taxa with functional capabilities. Large-scale genomic analyses of plant-associated bacteria have indicated that the bacteria from phyla Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria are dominant in different plant niches (Levy et al., 2018a,b). The exhaustive investigations on wheat seeds followed by rhizospheric, epiphytic, and endophytic bacterial diversity, growing in six diverse agro-climatic zones in India, led to more than 200 diverse bacterial isolates with PGP traits (Suman et al., 2016; Verma et al., 2016, 2019; Verma and Suman, 2018; Sai Prasad et al., 2021). The PGP rhizobacteria (PGPR) can adapt easily to adverse conditions and protect the host plants from the deleterious effects of specific environmental stresses (Glick et al., 1997). Several bacteria like Bacillus sp., Azospirillum, Herbaspirillum, and pink-pigmented methylotrophic bacteria have been shown to mitigate stress conditions in maize, wheat, and other crops (Chakraborty et al., 2013; Vurukonda et al., 2016; Curá et al., 2017; Ahlawat et al., 2018). Various factors related to host, microbes, and the environment influence the community composition and diversity of plant microbiome (Dastogeer et al., 2020). Our knowledge on the underlying mechanism(s) of microbiome assemblages and how they influence the host plants is still lacking. How the entire assembly of microbial communities interfere with the host fitness and health remains largely unknown. Connecting the microbiome composition comprising PGP as well as plant-growth-compromising activities and diversity to their function is a great challenge for future research.

These fundamental, microbial-mediated adaptive functions can help address the significant challenges in sustainable food production under the changing climatic conditions. Likewise, the strategic application of microbial communities rather than as individual isolates to improve plant production offers enormous potential, particularly under adverse environmental conditions. Their applications can serve multiple purposes, such as reducing climate change impact and avoiding excessive reliance on chemical fertilizers and pesticides. Earlier studies solely based on culture-dependent techniques have overlooked the benefits of collective microbial functional and genetic diversity and the advantages of the culture-independent methods (Banik and Brady, 2010; Stewart, 2012; Turner et al., 2013; De Souza et al., 2016; Waigi et al., 2017; Armanhi et al., 2018; Mourad et al., 2018).

The cultivable isolates of the microbial community members such as plant probiotics, biofertilizers, or agricultural bioinoculants have shown their distinct influences on plant growth, fitness, and stress resilience but with certain limitations. The developed formulations containing one or more beneficial microorganism strains (or species) can mediate the cycling of several elements from the soil and transform them into the more readily available form of nutrients for plant uptake. Not only do the probiotic action of these formulations increase the growth, yield, and quality of plants, but they are also a tool to produce high-quality functional foods. The use of microbial-based agricultural inputs has a long history, beginning with broad-scale rhizobial inoculation of legumes in the early twentieth century (Desbrosses and Stougaard, 2011). The “Fresh” Green Revolution, perhaps the Bio-Revolution, needs to be based on fewer intensive inputs with reduced environmental impact. It would be based on biological inputs through utilization of the phytomicrobiome (with inoculants, microbially produced compounds, etc.) and improved crops (by manipulation of the phytomicrobiome community structure) (Timmusk et al., 2017; Backer et al., 2018). With increasing data availability on plant microbiome from different ecological niches, strategic approaches based on the concomitant use of culture-dependent and culture-independent techniques, targeting all the plant-beneficial microbial groups, are necessitated to develop novel biological products in all categories like biofertilizers, biopesticides, bioagents, or bioinoculants and biostimulants.



POTENTIAL OF BIOINOCULANTS FOR FIELD APPLICATION

The current knowledge on functions, ecological adaptations, host interactions, and putative beneficial traits of microorganisms associated with the host plants mainly revolves around a handful of cultivable rhizospheric and endophytic bacteria or fungi. Many microbial formulations having individual or mixture of strains are developed and used at present. These biological or bioinoculants are nitrogen fixers, phosphate solubilizers, siderophore producers, photohormone producers, and exopolysaccharide producers. Some of them are involved in lytic enzyme production against pests and pathogens, antibiosis, and induced systemic resistance (Gupta et al., 2015; Sruthilaxmi and Babu, 2017).

The bioinoculants are grouped as either biofertilizers or bioagents depending on the intended purpose of plant growth promotion or protection, respectively. The biofertilizers include the individual species of Azotobacter, Azospirillum, and Rhizobium; phosphate-, potassium-, and zinc-solubilizing bacteria; vesicular–arbuscular mycorrhiza (VAM), and Acetobacter. Crop-specific biofertilizers like Gluconacetobacter diazotrophicus for sugarcane or generic biofertilizers like Pantoea isolates showing multi-PGP activities in several crops have demonstrated benefits in improving crop yield and productivity (Suman et al., 2005, 2008). Not only the rhizosphere-colonizing but also several endosphere-colonizing bacteria have been exploited for their beneficial contributions in sustainable agriculture (White et al., 2019). Presently, bioinoculants are available mostly as single entities (Bashan et al., 2014) but are also being formulated as consortia with multiple bacteria and fungi, which have synergistic PGP traits for improving plant production and productivity. Tables 1, 2 summarize the current status of various microbial formulations developed using single, dual, or multiple isolates as bioinoculants to improve nutrient uptake or protect against various biotic and abiotic stresses.


TABLE 1. Status of various microbial inoculants developed as synthesized microbial communities in use for improving nutrient uptake and protections against plant pathogens.
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TABLE 2. Fungal inoculants developed as synthesized microbial communities used for improving nutrient uptake and protections against plant pathogens.
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Although the biofertilizer/bioinoculant technology has grown into a proven biological or biotechnological innovation, it is still struggling to get acceptability and popularity with farmers, the end-users. The availability and quality of bioinoculants and their inconsistent performances under field conditions have been identified as significant issues in their adoption by the farming community (Martínez-Hidalgo et al., 2019), which requires the attention of the policymakers in different countries. Along with the development, large-scale production, and assured quality of bioinoculants, one of the most promising ways to increase their efficacy is by introducing effective delivery systems. The farmers may repose the faith, buy these products confidently, and compare their usefulness and cost–benefit ratios with conventional fertilizer inputs. Many studies on bioinoculant development and laboratory-based and field studies proving their worth indicate that these microbial resources must be considered a partial replacement as the application of chemicals may not be wholly replaceable or transferable into biologicals or microbials (Sessitsch et al., 2019).



DESIGNING TARGETED SYNTHETIC BIOINOCULANTS

The natural microbial communities are composed of a mix of microbes with often unknown functions. A promising way to overcome the difficulties associated with studying natural communities is to create artificial synthetic communities that retain the key features of their natural counterparts. With reduced complexity, synthetic microbial communities behave like a defined system and can act as a model system to assess the role of key ecological, structural, and functional features of communities in a controlled way (Großkopf and Soyer, 2014).

The existing thought process of top-down and bottom-up approaches for synthesizing microbial communities is based on the functional character of the individual microbial isolate and metabolic interactions among isolates, respectively. Basic motifs of commensalism, competition, predation, cooperation, and amensalism are the key metabolic interactions for the common substrate or metabolites leading to the community formations (Großkopf and Soyer, 2014). Several reviews have summarized the study of ecological interactions among microbes in synthetic as well as in natural microbial communities (Faust and Raes, 2012; Mitri and Richard Foster, 2013). Linking the composition of microbial communities with the functions is a central challenge in microbial ecology. It may be linked in some systems, but not in others, as some functions are restricted to certain taxa (e.g., sulfate reduction), but other functions are widespread across diverse groups (e.g., photosynthesis). A microbiome may contain both phylogenetic and functional redundancy. Many novel insights on the microbial community composition and organization of plant microbiomes of several crops have come from metagenomic studies using high-throughput sequencing (Edwards et al., 2015; Beckers et al., 2016; Wagner et al., 2016). Metagenomics enables the study of all microorganisms, cultured or not, through the analysis of genomic data obtained directly from an environmental sample, providing knowledge of the species present and information regarding the functionality of microbial communities in their natural habitat. Functional metagenomics has been utilized, with much success, to identify many novel genes, proteins, and secondary metabolites such as antibiotics with industrial, biotechnological, pharmaceutical, and medical relevance (Culligan and Sleator, 2016).

A microbiome may contain both phylogenetic and functional redundancy. Phylogenetic redundancy occurs when multiple OTUs from the same lineage are present in a microbiome, while functional redundancy occurs when multiple OTUs perform the same action (e.g., nitrogen fixation) within a microbiome (Shade and Handelsman, 2012). Phylogenetic redundancy is important for defining the core microbiome, which may buffer the ecological disturbances and enable the recovery of community functions. Several reports on human microbiome indicate that gut microbiome disturbances due to heavy antibiotics are restored due to the redundancy of the core group only (Antonopoulos et al., 2009). It carries relevance in agriculture as different agri-management systems lead to the disturbances in soil microbiome vis-a-vis plant microbiome. Recently, Berg et al. (2021) summarized the effects of microbial inoculants on the indigenous plant microbiome and termed this unexplored mode of action as “microbiome modulation.”

Synthetic microbial community analysis in gnotobiotic systems is a valuable approach to create reproducible conditions to experimentally test microbial interactions in situ. Such systems have been developed for animal and plant models including the well-studied plant Arabidopsis thaliana. With established huge volume of data on the metagenome of different crops, there is a need for its translation to certain tailored microbiome-based solutions for promoting plant growth under a range of environmental conditions and increasing resilience to biotic and abiotic stresses. The genomic data with taxonomic status, habitat compatibility, and functional trait knowledge including metabolic potential of plant microbiome communities can be followed as the approach for designing effective microbial inoculants. Here, based on phylogenetic or functional redundancy, two approaches for synthesizing microbial-communities-based bioinoculants are discussed.


Community-Based SB

Microbial colonization in the plant root rhizosphere is the outcome of the interplay between roots exuding chemical compounds that microbes capture as signals and on which their survival and perpetuance depend. The differential abundance of colonizing microbes and the establishment of core-microbiome-based microbial communities forms the basis for plant–microbe interactions. The core members remain present throughout the development of the crop, which may be joined by other taxa during the crop growth. The metagenome data about the relative abundance of colonizing phyla/taxa and core microbiome in the plant rhizosphere and endosphere form the basis for developing Community-Based SB (CSB). Microbial isolates representing the abundant phyla can be sourced either from the crop associated culture bank or with targeted culturomics, for developing the synthetic community. The isolates are expected to be rich in community-forming characteristics like motility, chemotaxis ability, quorum sensing, metabolic diversity, and others. This approach is a direct microbiome manipulation where inoculated CSB may serve to reduce the time required for the rhizosphere microbiome to achieve niche saturation and competitive exclusion of pathogens (Bakker et al., 2012).

Taye et al. (2021) reported that in field-grown Brassica napus, rhizosphere core genera found at each growth stage were generally part of the overall core taxa at the 75% prevalence threshold. Arthrobacter, Bradyrhizobium, and an unclassified Acidobacteria in the class Ellin6075 were present in all growth stages, while other genera joined at the flowering or harvesting stage, as the recruitment of the microbiome is governed majorly by the host plant. Metagenome analysis of more than 600 Arabidopsis thaliana plants from eight diverse, inbred accessions growing at different locations indicated that the core endophytic microbiome is less diverse than their corresponding rhizosphere soil microbiomes. The soil types influenced the microbial communities in the A. thaliana rhizosphere, but the endophytic communities were overlapping and less complex with maximum of actinobacteria and selected proteobacteria. Lundberg et al. (2012) concluded that the host plants influenced the bacterial colonization in the rhizosphere which varied between inbred lines of Arabidopsis, but in the endophytic compartment, it remained consistent across different soil types. An extensive bacterial culture collection that captures a large part of the natural microbial diversity of healthy A. thaliana plants was established (Bai et al., 2015). Carlström et al. (2019) conducted dropout and late introduction experiments by inoculating A. thaliana with synthetic communities from a resource of 62 native bacterial strains to test how arrival order shapes community structure and indicated that individual Proteobacteria (Sphingomonas and Rhizobium) and Actinobacteria (Microbacterium and Rhodococcus) strains have the greatest potential to affect community structure as keystone species.

Similar influences of maize inbred lines growing in different soils and agri-management systems suggested the substantial variation in α- or β-bacterial diversity and relative abundances of taxa with a small proportion of heritable variation across fields. Despite significant differences between the microbial community profiles of maize inbreeds, the estimated α- and β-diversity could not define the kinship of the 27 maize inbreeds to supplement the diversification history of maize (Peiffer et al., 2013). Edwards et al. (2015) resolved the distinct nature in the microbiomes associated with rhizosphere, rhizoplane, and endosphere of rice roots, influenced by the growing conditions and genotypes.

The functional diversity within microbial communities enables metabolic cooperation toward accomplishing more complex functions than those possibly exhibited by a single organism. The consortium members or communities can communicate by exchanging metabolites or molecular signals to coordinate their activity through temporal and spatial expression and further execution of required functions. In contrast with monocultures, microbial members at the community level can self-organize to form spatial patterns, as observed in biofilms or soil aggregates. This self-organization enables them to adapt to the gradient changes, improve resource interception, and exchange metabolites more effectively (Zhang and Wang, 2016; Ben Said and Or, 2017). Hence, the selection and sourcing of microbial members are very important for the construction of CSBs, and they can be from the microbial communities specific to plant niches like rhizosphere (Huang et al., 2018), endosphere, and phyllosphere (Kong and Glick, 2017). Kong et al. (2018) reviewed the strategies for developing synthetic microbial consortium (SMC) and suggested that the crops with good quality can be a good origin of SMC. Based on next-generation sequencing and network analysis, the core microbes can be isolated from the rhizospheric soils or the plant roots using the web-based platform KOMODO (Known Media Database). Herrera Paredes et al. (2018) designed synthetic bacterial communities based on predominant phyla and demonstrated their effect on developing specific and predictable phenotypes in A. thaliana. Using the plant–bacterium binary-association assays, the effect of bacterial community manipulation was observed on the plant response to phosphate (Pi) starvation. This approach might contribute to microbial communities’ rational design and deployment to improve the host response to biotic and nutritional stresses.

In vitro techniques have demonstrated that the host genotypes and abiotic factors influence the composition of plant microbiomes. At the in vivo level, it is a challenge to define the mechanisms controlling the community dynamicity, its assembly, and the beneficial effects on the plant hosts. In an earlier study, the host-mediated natural selection of bacteria by maize roots was employed to select a simplified synthetic bacterial community consisting of seven strains (Enterobacter cloacae, Stenotrophomonas maltophilia, Ochrobactrum pituitosum, Herbaspirillum frisingense, Pseudomonas putida, Curtobacterium pusillum, and Chryseobacterium indologenes) representing the dominant phyla such as Proteobacteria and Actinobacteria (Niu et al., 2017). By assessing the functional role of these bacterial community combinations using axenic maize seedlings, E. cloacae was identified as the keystone member in this model ecosystem. This model community inhibited the phytopathogenic fungus Fusarium verticillioides, both in vitro and in planta, indicating a stronger benefit to the host plant. The reductionist approaches to disentangle the inherent complexity of microbial communities’ interactions have also been suggested for SynComs to be used as inoculants for a given host to decipher their key functions under the gnotobiotic system (Vorholt et al., 2017). Thus, these recent reports support the strategy of combining unculturable and culturable methods, giving the possibility of assembling a representative, yet simplified, bacterial synthetic communities from the pool of dominant genera present in the system. Figure 3 represents an outline for developing CSB based on the metagenome data and bioinformatic applications for predominant taxa and core microbiome. The key functions for developing such communities are collection of available individual isolates representing predominant taxa or isolating them using culturomic tools. Furthermore, such communities can be strengthened by their ecological interactions and probable functional annotations under gnotobiotic conditions.
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FIGURE 3. Schematic depiction of different steps for the development of microbial community based synthetic bioinoculants (CSB) by employing metagenomic and bioinformatic techniques.




Function-Based SB

Due to high organic matter, soils with dynamic microbial ecologies typically have lower fertilizer requirements than conventionally managed soils (Bender et al., 2016). Focusing on the functional groups of microorganisms rather than on taxonomic relatedness and manipulating their activities (functional pools) in the vicinity of the plant ecosystem have more significant potential for providing nutrients and stress protection requirements of crops. Further exploration into the mechanisms and specificity of plant growth promotion from these key microorganisms will refine their specific use and maximize the potential inherently possessed by the microbiomes of plants or soils (Parnell et al., 2016). As only a limited proportion of microbial diversity is cultured, there is much scope for culturomics to identify, culture, and include important taxa for their beneficial exploitation (Sarhan et al., 2019). Few commercial products have emerged that take advantage of combining different biofertility products. A bacterial consortium Mammoth P™ consisting of Comamonas testosteroni, P. putida, E. cloacae, and Citrobacter freundii has been reported to enhance phosphate mobility and improve crop productivity twofold (Baas et al., 2016). The combined abilities of Bacillus amyloliquefaciens and the filamentous fungus Trichoderma virens marketed under the trade name QuickRoots® (Monsanto BioAgAlliance, 2015), when applied to field corn, show positive yield improvements ranging from 220 to 500 kg ha–1. Similarly, several microbial consortia have been reported to improve host plants’ nutrition (Shukla et al., 2008; Suman et al., 2008; Dal Cortivo et al., 2018). The synthetic microbial community of P. putida KT2440, Sphingomonas sp. OF178, Azospirillum brasilense Sp7, and Acinetobacter sp. EMM02 has been shown to improve drought stress tolerance in maize (Molina-Romero et al., 2017). Two synthetic microbial communities (SynComs 1 and 2) of known antagonistic Bacillus and other isolates from compost-rich soils inhibited Fusarium wilt symptoms and promoted tomato growth (Tsolakidou et al., 2019). Menéndez and Paço (2020) have explored synergies between rhizobial and non-rhizobial bacteria for beneficial effects on different crops. Woo and Pepe (2018) described Trichoderma and Azotobacter as anchorage microorganisms for developing their respective consortia for promoting plant health and mitigating stress conditions. The established arbuscular mycorrhizal fungi (AMF) system, mainly known for P transport, is also a carrier of endophytes in the plant system, can induce systemic resistance to pathogens, and assists in moisture conservation (Cameron et al., 2013; Rouphael et al., 2015). Through the genomic approach of using multiplex amplicon sequencing of the community-based culture collection, Xu et al. (2016) identified the four most representative genera, Bacillus, Chitinophaga, Rhizobium, and Burkholderia, for the development of bioinoculants. Armanhi et al. (2018) gave a novel methodology for developing a PGP community-based culture collection (CBC) from sugarcane microbiomes, particularly roots and stalks. The CBC recovered 399 unique bacteria, representing 15.9% of the rhizosphere core microbiome and 61.6–65.3% of the endophytic core microbiomes of sugarcane stalks. This synthetic community of highly abundant genera was tested for colonization of maize as the test crop. The inoculated synthetic community efficiently colonized plant organs (53.9%) and improved plant biomass production, indicating their beneficial effects. Hence, the steps for designing Function-Based SB (FSB) essentially involve identifying and culturing the core microbes, selecting the microbes for plant growth functions, optimizing the microbial interactions according to their compatibility and suitable conditions, and assessing the efficacy of these FSBs under in vitro and in vivo conditions for the final release of the formulated product for farmers (Figure 4). Therefore, the FSBs can be foreseen as a small subset of the community from the natural existing microbial communities. Although the FSB may be similar to many other microbial consortia used in different crops, the fundamental difference lies in the functional analysis of the microbiome and the subsequent selection and formulation.
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FIGURE 4. Schematic depiction of different steps for the development of microbial Function based Synthetic Bioinoculants (FSB) using functional characteristics of cultured isolates.





HARMONY OF BIOINOCULANTS WITH SUSTAINABLE AGRICULTURE GOALS

The UN framework of the “2030 Agenda” for 17 Sustainable Development Goals (SDGs) has been adopted by the 193 member states to develop their vision, strategy, and targets for achieving SDGs by effectively making them part of their policies. In its sustainability framework to realize the goal of ending hunger (SDG2), India has several initiatives that include the management of soil health. Successful organic cultivation and integrated agriculture will be highly dependent on the efficient microbiome-based bioinoculants for plant nutrient management and, more importantly, the recycling of crop residues for soil health (Vision 2030, DARE, India). In contrast, many other practices affect the abundance of microbial taxa involved in pest and soil disease suppression and nutrient cycling (Lupatini et al., 2017). The importance of microbiome-based solutions is gaining attention in the interrelated systems of environmental management, sustainable food, and fuel production, and human/animal health (FAO, 2019). There is a strong need for integrated research among soil and microbial scientists, growers, extension clienteles, ecologists, and policymakers to develop strategies to preserve and utilize microbial resources for soil health and crop production (Saleem et al., 2019). The microbiome research also leads to a paradigm shift in preserving axenic samples in culture collections to preserving complex communities such as “microbiome biobanks” with their functional perspectives (Ryan et al., 2021). D’Hondt et al. (2021) have summarized the key role of microbiomes in contributing policies interfacing the SDGs globally and emphasized the investments, collaborations, regulatory changes, and public outreach for innovations in microbiome-based bioeconomies.



CONCLUSION

The sustainability of the modern agriculture system is critical to feed the continuously growing human and animal populations, wherein the guided use of microbiomes has an inevitable role in promoting plant growth, development, productivity, and nutrient value. The current biofertilizers are based on individual bacterial cultures with specific traits such as N fixation or the solubilization of P or K. But with the detailed diversity and functional analyses of plant-associated microorganisms, a better understanding has emerged that the plant-associated microbiomes have a tremendous and so-far untapped potential to improve the acquisition of nutrients and resilience to abiotic and biotic stresses and, ultimately, the crop yields. The options of generating synthetic communities using taxonomy abundance alone or with functionally annotated predominant taxa are now available for the improved use of microbial resources in crop cultivation. Nevertheless, developing any microbial community requires a collection of promising functionally annotated and compatible isolates in hand, rather than only microbiome data. Hence, it will be appropriate to holistically use the knowledge of unculturable microbiome generated through structural and functional genomics tools and culturable approaches to get the common and rare taxa for synthetic community preparations. The rational workflow for developing community and function-based bioinoculant preparations has been described, which can be used for developing formulations with the targeted functions of nutrient supplementation and stress management in sustainable agriculture.
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Sr No. Microorganism (fungal) Host/plant PGP activity References
associated
Single-culture inoculation
1. Glomus sp. 88 Wheat Phosphorus solubilization Singh and Kapoor, 1999
2. Penicillium rugulosum Maize Phosphorus solubilization Reyes et al., 2002
IR-94MF1
3. Eupenicillium parvum NRRL Tea Phosphorus solubilization and high stress levels of aluminum and iron Vyas et al., 2007
2095 desiccation
4. Trichoderma harzianum Soil Trichoderma-enriched compost extracts, symbiotic association, and Siddiqui et al., 2008
suppression of fungal infections
5. Trichoderma asperellum Q1 Cucumber Siderophore production and inducement of plant systemic resistance Qi and Zhao, 2013
(broad spectrum), resistance to plant pathogens, and plant growth
promotion
Dual-culture inoculation (mostly with bacteria)
6. Gluconacetobacter Sugarcane Improved nutrient uptake (N, P, and K) on inoculation with FYM Shukla et al., 2008
diazotrophicus 15100
7. Trichoderma viride
Gluconacetobacter Sugarcane Consortium brought economy in the use of fertilizer N by 45.2 kg ha™" Yadav et al., 2009
diazotrophicus 15100 and also increased the yield by 6.1t ha~! compared to the control
treatment
8. Trichoderma viride
Bacillus/Pseudomonas Soil/rhizosphere P solubilization and symbiotic association Sharma et al., 2013
Aspergillus/Penicillium
9. Pseudomonas aeruginosa Soil and Biocontrol agent against pathogen, pest, symbiotic association Afzal et al., 2013
rhizosphere
10. Trichoderma viride
Microbispora sp. Soil ACC deaminase (stressbuster) and IAA production, N2 fixation, P Glick, 2014; Souza et al., 2015
solubilization, siderophore production, and symbiotic association
1. Streptomyces sp.
Trichoderma harzianum Tobacco Effective Ralstonia solanacearum suppression at 68.2% disease Yuan et al., 2016
incidence
12. Glomus mosseae
Aspergillus sp. Common bean Increased P uptake and N content, increased biomass, and increased Elias et al., 2016
nodule number
13. Penicillium sp.
Funneliformis mosseae Chili Increased plant growth, dry weight, fruit yield, and nutrient Thilagar et al., 2016
concentration
Bacillus sonorensis
14, Pseudomonas Tomato Sugar and vitamin production and increased sweetness Bona et al., 2017
AM fungi
Triple-culture inoculation (mostly with bacteria)
15. Pseudomonas reactans Soil N fixation and symbiotic association Moreira et al., 2016
Chryseobacterium humi
Rhizophagus irregularis
16. Pseudomonas putida Abiotic (water) Stimulation of plant growth, drought tolerance, IAA production, and Marulanda-Aguirre et al., 2008
stress condition symbiotic association
Bacillus megaterium
AM fungi (Glomus coronatum,
Glomus constrictum, or
Glomus claroideum)
17. Two Pseudomonas Tomato Increased flowering, dimensions, and weight of tomato fruits and Bona et al., 2017
improved industrial and nutritional features of fruits
Mixed mycorrhiza
18. Pseudomonas aeruginosa Chick pea Suppression of Sclerotium rolfsii Singh et al., 2013
(PHUO094)
Trichoderma harzianum
(THUO816)
Mesorhizobium sp. (RLO91)
19. P, aeruginosa PJHU15 Peas Suppression of Sclerotinia sclerotiorum Jain et al., 2015
T. harzianum TNHU27
Bacillus subtilis BHHU100
Multiple-culture inoculations (with bacteria)
20. Azospirillum, Rhizobium, Soil Soil conditioner, plant pathogen suppressor, biofertilizer, plant Berg, 2009

Bacillus, Pseudomonas,

straightener, phytostimulator, biopesticide, and symbiotic association

Serratia, Stenotrophomonas,
Streptomyces, Coniothyrium,
Ampelomyces, Trichoderma
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S. No. Microorganism (Bacteria) Host/Plant PGP Activity References
associated
Single culture inoculation
1. Bacillus megaterium TRS-4 Tea Biofertilization and biocontrol activity to reduce brown root rot Chakraborty et al. (2006)
disease (Fomes lamaoensis)
2. Pseudomonas putida BO Sub-alpine Phosphate solubilisation and antagonistic activity Pandey et al. (2006)
3. Pseudomonas fluorescens GRS1 Pea Phosphorus solubilisation and increased biomass production atiyar and Goel (2003)
4. Bacillus pumilus ES4 Soil itrogen fixation Hernandez et al. (2009)
5. Azospirillum sp. P1AR6-2 Black pepper Phosphorus solubilisation along with improved root and Ramachandran et al. (2007)
shoot growth
6. Paenibacillus polymyxa P2b-2R Canola itrogen fixation, phosphate solubilisation, antibiotic Padda et al. (2016)
production, and other plant growth regulators for increased
plant biomass
7. Pseudomonas fluorescens PGPR1 Peanut Siderophore production, phosphate solubilization, increased Dey et al. (2004)
yield and biomass production
8. Bacillus sp. EUCB 10 Gum trees IAA production, phosphate solubilization, nitrogen fixation Paz et al. (2012)
and increased biomass production
9. Herbaspirillum seropedicae ZAE94 Rice itrogen fixation and increased biomass production Alves et al. (2015)
0. Bacillus megaterium B388 Pine IAA production, phosphate solubilization, antagonistic activity Trivedi and Pandey (2008)
and increased biomass production
1. Pseudomonas fluorescens L.321 Pea Phosphate solubilisation and increased biomass production Otieno et al. (2015)
2. Bacillus aryabhattai MDSR7 Soybean Zinc solubilisation, decreased rhizosphere soil pH, increased Ramesh et al. (2014)
dehydrogenase, glucosidase, auxin production, microbial
biomass
3. Acinetobacter sp. AGM3 Rice Zinc solubilisation and IAA production Gandhi and Muralidharan (2016)
4. Bacillus megaterium CDK25 Cow dung Phosphate solubilization, IAA production, phytase production, Bhatt and Maheshwari (2020)
siderophore production and increased plant growth
5. Enterobacter cloacae ZSB14 Rice Zinc solubilization and increased plant growth rithika and Balachandar (2016)
6. Enterobacter sp. MN17 Chickpea Improved productivity, profitability, Zinc use efficiency and Ullah et al. (2020)
quality
7. Bacillus sp. BPR7 Common Production of plant growth regulators and antagonistic umar et al. (2012)
bean activity
8. Bacillus sp. SC2b Applegate ACC deaminase activity, IAA production, siderophore a et al. (2015)
stonecrop production, increased chlorophyll content and plant growth
9. Burkholderia ambifaria MCl 7 Maize Siderophore production and antifungal activity Ciccillo et al. (2002)
20. A. brasilense Ab-V5 Maize itrogen fixation and IAA production Ferreira et al. (2013)
21. Rhizobium leguminosarum bv. viciae Pea ncrease in nodule number, N accumulation and nitrogen Clayton et al. (2004)
ixation
22. P, fluorescens (PGPR1, PGPR2, and Peanut ACC-deaminase activity, IAA production, siderophore Dey et al. (2004)
PGPR4) production, antifungal activity
23. Azospirillum sp. B510 Rice itrogen fixation, IAA production, increase in tiller number sawa et al. (2009), Bao et al. (2013)
and seed yield
24, Bacillus amyloliquefaciens sks_bnj_1 Soybean Siderophore production, IAA production, ACC-deaminase Sharma et al. (2013)
activity and antifungal activity, phytases production
25. Gluconacetobacter diazotrophicus V127 Sugarcane itrogen fixation, siderophore production, IAA production, Beneduzi et al. (2013)
phosphorus solubilisation and increase in germination
26. Azospirillum brasilense INTA Az-39 Wheat itrogen fixation, IAA production and increased dry matter Diaz-Zorita and Fernandez-Canigia
accumulation (2009)
27. A. brasilense (Ab-V5 and Ab-V6) Wheat and itrogen fixation, IAA production and increased yield Hungria et al. (2010)
maize
28. Pseudomonas sp. PS1 Mung bean ncrease plant dry weight, root nodule, total chlorophyll Ahemad and Khan (2011a, 2012a)
content, seed yield and seed protein
29. Bradyrhizobium sp. MRM6 Mung bean ncreased plant growth parameters Ahemad and Khan (2011b, 2012b)
30. Pseudomonas sp. A3R3 Cabbage ncreased biomass production Ma et al. (2011)
31. Rhizobium sp. MRP1 Pea itrogen fixation, increased nodulation, increase in N, P Ahemad and Khan (2009, 2010)
uptake, increase seed yield and seed protein
32. Bacillus Weihenstephanensis SM3 Sunflower ncreased plant biomass and accumulation of trace elements Rajkumar and Freitas (2008)
ike Cu, Niand Zn
33. Single inoculation of Brayrhizobium Soybean Rhizobitoxine production, improved symbiotic effectiveness Govindasamy et al., 2017
diazoefficiens USDA 110, B. Elekani hrough high nodulation and nitrogen fixation under drought
USDA 61 and USDA 94 stress
34. Single inoculation of Ochrobactrum sp. Sorghum Multi-PGP traits on molecular regulation of stress responsive Govindasamy et al., 2020

EB-165, Microbacterium sp. EB-65,
Enterobacter sp. EB-14 and
FEnterobacter cloacae strain EB-48

genes and improved physiological stress tolerance under
drought
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Triple culture inoculation

Gluconacetobacter azotocaptans DS1 Maize Alcohol production, IAA production, phosphorus Mehnaz and Lazarovits (2006)
solubilization, nitrogen fixation and increased biomass
production

Pseudomonas putida CQ179
Azospirillum lipoferum N7

Bacillus thuringiensis KR-1 Kudzu HCN production, IAA production and increased biomass Selvakumar et al. (2008)
production

Enterobacter asburiae KR-3
Serratia marcescens KR4

Bacillus cereus PK6-15 Guinea grass Zinc solubilization, ammonia production, nitrogen fixation, Bokhari et al. (2019)
phosphorus solubilisation and increased plant growth

Bacillus subtilis PK5-26

Bacillus circulans PK3-109
Pseudomonas fluorescens A506 Pear Biological control against Fire blight pathogen Stockwell et al. (2011)
Pantoea vagans C9-1
Pantoea agglomerans

Rhizobium spp. Chickpea Nitrogen fixation, biocontrol activity and Phosphorus Elkoca et al. (2007)
solubilisation

B. subtilis OSU- 142

Bacillus megaterium M-3

Pseudomonas alcaligenes PsA15 Maize Nitrogen fixation and antifungal activity Egamberdiyeva (2007)
Bacillus polymyxa BcP26

Mycobacterium phlei MbP18

P, fluorescens ACC-5 (biotype G) Pea ACC-deaminase activity Zahir et al. (2008)

P, fluorescens ACC-14

P, putida Q-7 (biotype A)

B. vietnamiensis MG43 Sugarcane Nitrogen fixation and increased biomass production Govindarajan et al. (2008)
G. diazotrophicus LMG7603

H. seropedicae LMG6513

Bradyrhizobium japonicum Soybean and Nitrogen fixation and increased grain yield Hungria et al. (2013)
common
bean

Rhizobium tropici
Azospirillum brasilense

Rhizobium leguminosarum Common Increased grain yield Kumar et al. (2016)
bean

Bacillus sp.
Pseudomonas sp.

Pseudomonas aeruginosa Tomato Increased root and shoot length, ACC deaminase activity, IAA  Tank and Saraf (2010)
production, phosphate solubilization and siderophore
production

Pseudomonas uorescens

Pseudomonas stutzeri

Xanthomonas sp. WCS2014-23 Arabidopsis Less fungal spores and higher plant fresh weight Berendsen et al. (2018)
Stenotrophomonas sp. WCS2014-113

Microbacterium sp. WCS2014-259

Multiple culture inoculations

Exiguobacteriumaurantiacum MS-ZT10, Wheat Zinc solubilisation, enhanced N, P, and K concentration Shaikh and Saraf (2017)
Trabusiella sp. MS-ZT1, Aeromonas sp.
MS-ZT4, Arthrobacter sp. MS-ZT5

1:1:1:1 ratio of Proteobacteria, Arabidopsis Reciprocal relocation between root and leaf microbiota Bai et al. (2015)

Actinobacteria, Bacteroidetes and members and functional overlap in the communities with
Firmicutes improved plant growth
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Triple culture inoculation
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Bacillus amylolquifaciens, Bacillus
simplex, MCP of 12 isolates Azotobacter
vinlandlii, Clostridium sp., Lactobacillus
sp., Bacillus velezensis, Bacillus subtilis
(SlLo Sil® BS), Bacillus thuringiensis,
Pseudomonas fluorescens, Acetobacter,
Enterococcus, Rhizobium japonicum,
Nitrosomonas, and Nitrobacter, as well
as fungi: Saccharomyces, Penicillium
roqueforti, Monascus, Aspergillus
oryzae, Trichoderma harzianum
(TRICHOSIL®), and algae extracts from
Arthrospira platensis (Spirulina) and
Ascophyllum nodosum

Arthrobacter nitroguajacolicus E46,
Bacillus mojavensis K1, Pseudomonas
frederiksbergensis A176, Arthrobacter
nitroguajacolicus E46, Bacillus cereus
CNZ2, Bacillus megaterium B55, Bacillus
mojavensis K1, Pseudomonas
azotoformans A70, Pseudomonas
frederiksbergensis A176, Pseudomonas
azotoformans A70

Bacillus megaterium SOGA_2,
Curtobacterium ceanosedimentum
SOGA3, SOGA6, Massilia aurea
SOGA7, Pseudomonas coleopterorum
SOGAS5, 11, 12, Pseudomonas
psychrotolerans SOGA13,
Pseudomonas rhizosphaerae SOGA14
and 19, Frigoribacterium faeni SOGA17,
Xanthomonas campestris OGA20

8 Pseudomonas spp.

Pseudomonas spp., Bacillus
amyloliquefaciens, Bacillus subtilis, soil
yeast

Rhizobium, Sinorhizobium, Bacillus,
Burkholderia

Arthrobacter nitroguajacolicus, Bacillus
cereus, Bacillus megaterium, Bacillus
mojavensis, P azotoformans, P
frederiksbergensis

Mixes of various Pseudomonas,
Enterobacter and Serratia strains
Various consortia involving Enterobacter,
Serratia, Pseudomonas, Microbacterium
and Achromobacter

Bacillus amyloliquefaciens strains
Pseudomonas spp. CHAO, PF5, Q2-87,
Q8R1-96, 1M1-96, MVP1-4, F113,
PhI1C2

4 Small communities each of
endophytes from sugarcane, maize,
brassica and wheat

Tomato

Tobacco

Tomato

Pea, wheat,
etc.

Rice

Pigeon pea

Tobacco

Rapeseed

Avocado

Tomato
Pea

Wheat-maize
cropping
system

Improved phosphate (P) acquisition, increased biomass
production and fruit yield

Increased fitness and survival of tobacco plants

Fewer pathogen (Pseudomonas syringae pv. tomato) DNA
copies in the phyllosphere of field-grown tomato plants

Reduced disease severity and pathogen (Ralstonia
solanacearum) abundance in pea, wheat, cotton, tomato,
sugar beet and tobacco

ncreased grain and straw yields, total N uptake, as well as
grain quality in terms of N percentage

ncreased plant biomass and nodule mass per plant

Reduced disease incidence and mortality without influencing
growth or herbivore resistance

ncreased rapeseed oil and grain yields

Mitigate water shortage and salt stress

Decreased disease incidence

Reduced disease severity and pathogen abundance in pea,

wheat, cotton, tomato, sugar beet and tobacco

Improves system productivity at low input of nitrogen and
irrigation managing abiotic stress

Bradacova et al. (2019)

Santhanam et al. (2015)

Berg and Koskella (2018)

Hu et al. (2016)

Cong et al. (2009)

Pandey and Maheshwari (2007)

Verma et al. (2013)

Lally et al. (2017)

Barra et al. (2016)

Wei et al. (2011)
Hu et al. (2016)

Suman et al. (unpublished)
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39. Gluconacetobacter dlazotrophicus Sugarcane Efncient in promoting plant growth and N recovery more at suman et al. (2005)
-1S100 low nitrogen input
36. Pantoea sp (8) as single inoculant Wheat, Maize Multi PGP generic bioinoculant for cereals Suman et al. (2020)
and Rice
Dual culture inoculation
37. Azospirillum brasilense Az39 Maize Promote seed germination, nodule formation, and early Cassan et al. (2009)
development of corn and soybean seedlings
Brayrhizobium japonicum E109
38. Pseudomonas fluorescens Auré Rice Most effective control against rice blast pathogen Lucas et al. (2009)
Chryseobacterium balustinum Aur9
39. Bacillus subtilis SU47 Wheat Salinity tolerance and increased dry weight Upadhyay et al. (2012)
Arthrobacter sp. SU18
40. Pseudomonas jessenii R62 Wheat ncreased grain yield ader et al. (2011)
Pseudomonas synxantha R81
41. Azotobacter chroococcum A-41 Rice Potassium solubilization, Nitrogen fixation and Mobilization of Basak and Biswas (2010)
potassium-bearing minerals.
Bacillus mucilaginosus
42. Bacillus subtilis OSU-142 Chickpea itrogen fixation, Phosphorus solubilisation, increased seed Elkoca et al. (2007)
and total biomass yields
Bacillus megaterium M-3
43. Gluconacetobacter diazotrophicus Sugarcane mproves nutrient uptake (N, P and K) on inoculation with Shukla et al. (2008)
FYM
Trichoderma viride
44, Chryseobacterium sp. PSR10 Soil Phosphorus solubilization, enhanced plant growth and yield Singh et al. (2013)
Escherichia coli RGR13
45. Bacillus sp. ZM20 Bhendi Zinc solubilisation, improved relative water content and Fatima et al. (2018)
biomass production
Bacillus aryabhattai ZM31
46. Pantoea dispersa MPJ9 Mungbean Iron chelation and increased plant growth Patel et al. (2018)
Pseudomonas putida MPJ6
47. Pseudomonas aeruginosa LSE-2 Soybean IAA production, phosphorus and zinc solubilization, Kumawat et al. (2019)
siderophore production and increased plant growth
Bradyrhizobium sp. LSBR-3
48. Pseudomonas jessenii PS06 Chickpea Higher nodule fresh weight, nodule number and shoot N Valverde et al. (2007)
content, highest in seed yield and nodule fresh weight
Mesorhizobium ciceri C-2/2
49. Bacillus cereus UW85 Soybean Stimulations in shoot dry weight, increased seed yield and John Bullied et al. (2002)
seed N content
B. japonicum
50. B. japonicum (SEMIA 5079 and SEMIA Soybean itrogen fixation, IAA production and increased yield Hungria et al. (2013)
5080)
A. brasilense (Ab-V5 and Ab-V6)
51. Azospirillum sp. Artichoke ncreased radical, shoot length, shoot weight and increased Jahanian et al. (2012)
germination
Azotobacter sp.
52. Rhizobium leguminosarum Lentil mproved leghemoglobin content, growth and grain yield Singh et al. (2018)
Pseudomonas. fluorescens
53. Azospirillum sp. AZ204 Cotton itrogen fixation, Phosphorus solubilisation and biocontrol Marimuthu et al. (2013)
activity
Pseudomonas fluorescens Pf1
54. Enterobacter cloacae Mung bean ncrease salt tolerance, seed yield, dry biomass, plant height, Mahmood et al. (2016)
eaf area, relative water content and chlorophyll
Bacillus drentensis
55. Gluconacetobacter sp. Rice Higher phosphatase activity, increased P uptake, increased Stephen et al. (2015)
biomass, yield, number of panicles and seeds/panicles.
Burkholderia sp.
56. Pantoea cypripedii Maize, Wheat ncreased grain yield, P uptake, shoot and root biomass Gurdeep and Reddy (2015)
Pseudomonas plecoglossicida
57. Ochrobactrum ciceri Kabuli and ncreased nodulation, biomass and grain yield Imran et al. (2015)

Mesorhizobium ciceri

Desi chickpea
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