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The biodegradation of organic pollutants is the main pathway for the natural dissipation
and anthropogenic remediation of polycyclic aromatic hydrocarbons (PAHs) in the
environment. However, in the saline soils, the PAH biodegradation could be influenced
by soil salts through altering the structures of microbial communities and physiological
metabolism of degradation bacteria. In the worldwide, soils from oilfields are commonly
threated by both soil salinity and PAH contamination, while the influence mechanism of
soil salinity on PAH biodegradation were still unclear, especially the shifts of degradation
genes and soil enzyme activities. In order to explain the responses of soils and bacterial
communities, analysis was conducted including soil properties, structures of bacterial
community, PAH degradation genes and soil enzyme activities during a biodegradation
process of PAHs in oilfield soils. The results showed that, though low soil salinity (1%
NaCl, w/w) could slightly increase PAH degradation rate, the biodegradation in high
salt condition (3% NaCl, w/w) were restrained significantly. The higher the soil salinity,
the lower the bacterial community diversity, copy number of degradation gene and
soil enzyme activity, which could be the reason for reductions of degradation rates
in saline soils. Analysis of bacterial community structure showed that, the additions
of NaCl increase the abundance of salt-tolerant and halophilic genera, especially in
high salt treatments where the halophilic genera dominant, such as Acinetobacter
and Halomonas. Picrust2 and redundancy analysis (RDA) both revealed suppression
of PAH degradation genes by soil salts, which meant the decrease of degradation
microbes and should be the primary cause of reduction of PAH removal. The soil
enzyme activities could be indicators for microorganisms when they are facing adverse
environmental conditions.

Keywords: bacterial community composition, soil salinity, phenanthrene and pyrene, degradation genes, soil
enzymes activity
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INTRODUCTION

Polycyclic aromatic hydrocarbons (PAHs) are organic molecules
consisting of two or more benzene or heterocyclic rings (Patel
et al., 2020), which are mainly discharged from the process of
thermal decomposition and recombination of organic materials
such as coal, petroleum, petroleum gas and wood in nature.
Due to the recalcitrance and hydrophobicity of PAHs, a great
majority are eventually deposited in soil after transformation
and migration (Sun et al., 2018), leading to a serious threat to
human health and ecosystem security (Tsibart and Gennadiev,
2013; Sushkova et al., 2017; Zhang et al., 2018). Among the
remediation processes of PAH pollution in soils (Rivas, 2006;
Ghosal et al., 2016; Kuppusamy et al., 2016, 2017; Li et al., 2020;
Zhang et al., 2021), the bio-augment remediation method is
considered the most suitable choice because of its low economic
cost, high efficiency and sustainability (Haritash and Kaushik,
2009; Ghosal et al., 2016).

Polycyclic aromatic hydrocarbon (PAH)-degrading genes in
soils are valuable biomarkers for measuring the PAH degradation
potentials of bacterial communities (Wang et al., 2016). The
aerobic biodegradation process of PAHs by bacteria usually
dominates by dioxygenases which incorporate both atoms of
oxygen molecules into the substrates (Chikere and Fenibo, 2018).
Dioxygenase, a multicomponent enzyme generally consisting
of reductase, ferredoxin, and terminal oxygenase subunits
(Ghosal et al., 2016), is categorized into ring-hydroxylating
dioxygenases (RHDs) and ring cleaving dioxygenases (RCDs)
(Chikere and Fenibo, 2018). PAH-RHDα are functional genes
that encode the RHD enzymes responsible for the catalysis of
PAH biodegradation under aerobic conditions (Song et al., 2015).
Ring-hydroxylating dioxygenase genes include the classical genes
like nah (Habe and Omori, 2003), phd, nag (Muangchinda
et al., 2015), nid, pdo, dfn/fln, and nar (Xia et al., 2015;
Chikere and Fenibo, 2018). C12O, encoding catechol 1, 2-
dioxygenase, associates with cleavage of the last aromatic ring in
the degradation pathway of PAHs (Han et al., 2014). The quantity
and expression of these genes are very important during the
biodegradation of PAHs (Ghosal et al., 2016; Liao et al., 2021).

Soil enzymes are also common representations of soil
biochemical characteristics, which are produced by soil
microorganisms (Cortés-Lorenzo et al., 2012; Singh, 2015; Azadi
and Raiesi, 2021). Soil catalase (S-CAT) can decompose hydrogen
peroxide in soil and reduce the damage of excessive accumulation
of hydrogen peroxide to soil microorganisms (Sun et al., 2021).
Soil polyphenol oxidase (S-PPO) is an oxidoreductase that can
oxidize aromatic compounds into quinones (Sullivan, 2014).
Besides, soil dehydrogenase (S-DHA), reflecting the amount of
active microorganisms and their degradation ability of organic
matter, can be used to evaluate the degradation performance (Lu
et al., 2017). The activities of these enzymes in soils are usually
the most sensitive indicators to environmental changes, and their
activities are always affected by soil conditions through shifting
the synthesis and structure of local microorganisms (Teng and
Chen, 2019; Azadi and Raiesi, 2021).

Soils in onshore oilfields are commonly suffered by multiple
environmental stresses including PAHs contamination and soil

salinization (Nie et al., 2009; Cheng et al., 2017). Actually,
soil salts are vital factors for microorganisms during their
physiological metabolic activities and important substances to
maintain cells’ osmotic equilibrium (Lozupone and Knight, 2007;
Rath and Rousk, 2015; Rath et al., 2019; Yang et al., 2020; Zhao
et al., 2020). However, high salinity can result in dehydration
or lysis of cells for microbes, then decrease microbial functions
in soils (Singh, 2015; Yang et al., 2020). For microbes with salt
tolerance, osmotic substances will accumulate in cells and thereby
enhance the adaptation of microorganisms to salts (Hagemann,
2011; Asghar et al., 2012).

Although former studies have reported effects of the salinity
on PAH degradation in soils, it is still unclear how microbial
communities relate to changes of degradation genes and soil
enzymes with increasing salinity. In this study, a 30-day soil
remediation of PAHs under 3 salinity gradients (addition of 0, 1%,
and 3% of NaCl, w/w) was conducted. The goals were to provide
a better understanding of effect mechanisms of soil salinity on
the degradation rate during a bio-augmented remediation of
PAHs under salinity changes. The objectives are as follows: (1)
to reveal the influence of salinity on composition and diversity
of the bacterial community, and (2) to elucidate the response
characteristic of functional genes and soil enzymes related to PAH
degradation. The results reveal the effect extent of soil salinity on
bioremediation of PAH and provide a new perspective for the
assessment and remediation of PAHs in extreme environment
including but not limited to oilfield soils.

MATERIALS AND METHODS

Experimental Design
In this study, bacteria colonies were isolated and enriched directly
from oil-contaminated soil in the Shengli oilfield, China. The
bacteria consortium, passed on NCBI database by Yang Li (Qilu
University of Technology Shandong Academy of Sciences, Jinan,
China), had been proven to have a synergistic biodegradation
ability for PAHs in a former experiment. The soils used in
this study were collected from the Shengli Oilfield of China.
The sampling site was not obviously polluted by crude oil, but
had beared long-term oil exploitation since the 1960s. After
air dried and ground through a 10-mesh sieve, the soils were
spiked with phenanthrene (PHE) and pyrene (PYR) thoroughly
to make their concentrations to 200 mg/kg and 50 mg/kg in soils,
respectively. Then appropriate sterilized water was added to make
the soil moisture to approximately 20%. One portion of the soil
was subjected to the measurement of the basic physicochemical
properties of the soil, and another was prepared for the PAH
degradation experiment.

After a month of aging process, the soil was divided into
three parts, named LS treatment, S1 treatment and S3 treatment,
respectively. Approximately 1% sodium chloride (NaCl, w/w) was
added to S1 treatment, and 3% NaCl (w/w) was added to S3
treatment. The mixture was placed in a plastic sterilized box. Each
box was equipped several 0.22µm filters on the cover, in order to
ensure the normal respiration of soil, and prevent the influence
of microorganisms from the air. Soil samples were cultured at
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25◦C for 30 days. All treatments were set with 3 replicates. And
during each sample collection, triplicate samples were collected
for chemical and biological analysis.

Determinations of Physico-Chemical
Properties and Polycyclic Aromatic
Hydrocarbons in Soils
The pH of the soil and the electrical conductivity (EC) method
were used to evaluate soil salinity (Bañón et al., 2021), The
percentage of weight loss of organic matter on ignition (WSOI%)
method was used to determine the soil organic matter (OM)
content (Nakhli et al., 2019). The obtained samples were air-
dried in the shade and passed through a 60-mesh standard
sieve before analysis. Ultrasonic solvent extraction technology
was used to extract PAHs from soil (Pan et al., 2013; Liao
et al., 2021). A high-performance liquid chromatography (HPLC)
system (Agilent, United States) equipped with a fluorescence
detector (RF-10AXL) was utilized to analyze PAH concentrations
(Geng et al., 2022). The soil enzymes activities of S-CAT, S-PPO
and S-DHA were determined as follows: enzymes were extracted
from prepared soil samples by enzyme kits and the activities
were determined via a microplate reader (iMark, BIO-RAD,
United States) (Li et al., 2019a).

Analysis of Microbial Community and
Degradation Genes
Genomic DNA was extracted from the fresh soil samples using
the Mag-Bind R© Soil DNA Kit M5635-02 (Omega Bio-Tek,
United States). A Nanodrop 2000 spectrophotometer (Thermo,
United States) was used to check the quality and concentration
of the extracted DNA. The two genes (C12O and PAH-RHDα)
were amplified in a triplicate and quantified using an MA-6000
real-time fluorescence quantitative PCR instrument. The primers
were synthesized following former studies (Muangchinda et al.,
2015; Wang et al., 2020). The reaction system was an 8 µl
template dilution sample and 8 µl mixture A. The thermal cycle
reaction procedure of qPCR was as follows: 5min at 95◦C for stage
1, 15 s at 95◦C and 30 s at 60◦C for stage 2. The whole process was
conducted for 40 cycles.

Shanghai Personal Biotechnology Co., Ltd was commissioned
to accomplish the composition spectrum analysis of microbial
community diversity. In brief, the V3–V4 region of the bacterial
16S rRNA genes was amplified with the forward primer 338F
(5′-ACTCCTACGGGAGGCAGCA-3′) and the reverse primer
806R (5′-GGACTACHVGGGTWTCTAAT-3′) (Xu et al., 2021).
Agencourt AMPure Beads (Beckman Coulter, Indianapolis,
IN) were used for the purification of PCR amplicons, and
the PicoGreen dsDNA Assay Kit (Invitrogen, Carlsbad, CA,
United States) was used for quantitative measurement. After
the above stages, amplicons were pooled in equal amounts, and
sequencing was performed on the Illumina MiSeq platform with
MiSeq Reagent Kit v3.

Data Statistical Analysis
Before statistical analysis, Kolmogorov-Smirnov and Levene’s
tests were carried out to test the normality and homogeneity

of differences (Liu et al., 2021). Excel 2020 (Microsoft,
United States) was used for preliminary data statistics and
processing. Origin (Version 2020) (Origin Laboratories, Ltd,
United States) was mainly used to draw statistical graphs. All
data are derived from the mean value in triplicate. SPSS Software
(International Business Machines Corp, United States) was used
to analyze the differences with one-way analysis of variance
(ANOVA) or a non-parametric test. Picrust2 software1 was
used to predict the function of soil bacteria (KEGG).2 The
community structure of bacteria was analyzed via QIIME2 and
R language. To comprehensively evaluate the characteristics of
microbial community diversity, alpha diversity was utilized. The
Chao1 index was used to represent richness, the Shannon and
Simpson indices represented diversity, and Pielou’s evenness
index represented evenness.

RESULTS AND DISCUSSION

The Removal Percentage of Polycyclic
Aromatic Hydrocarbons in Soil
Figure 1 demonstrates the percentage removal of PHE and PHY
from soil samples at different time points. After 30 days of
incubation, significant differences (P < 0.05) in the removal of
PAHs were obtained from soils treated with different salinities.
On the 7th day (Figure 1A), there was no significant difference
of removal rates of PHE and PYR among the three treatments
(P > 0.05), though values of degradation rate were higher in
lower salinity soils than in the higher. However, on the 30th

day (Figure 1B), the removal percentages of PHE and PYR in
the LS treatment reached 64.52% and 57.83%, respectively, and
the S1 treatment had the highest removal percentages of 81.85%
and 60.33%, respectively. This indicated that appropriate salinity
could probably promote the removal rate of PHE in soils (Wang
et al., 2020). Compared with LS and S1, the addition of 3% NaCl
(w/w) significantly decreased the degradation of PAHs, leading to
removal of 39.95% and 35.54% for PHE and PYR, respectively.
Many previous studies have revealed a similar result: decreased
PAHs removal was caused by salinity stress (Ibekwe et al., 2018;
Wang et al., 2019).

Changes of Soil Properties Under Salt
Stress
Soil enzymes, pH, EC and WSOI% were selected to reflect
processes of biochemical reactions in the soils. As shown in
Supplementary Table 1, pH values remained stable among
different treatments of S1, S3 and LS and different sampling
times. Soil conductivity and contents of organic matter were
significantly influenced by the gradient salinities (P < 0.05).

Soil enzymes as catalysts of biochemical conversion and the
biodegradation of PAHs have been studied intensively (Lipińska
et al., 2015). In this study, the activities of three common
soil enzymes (S-CAT, S-PPO and S-DHA) under different soil
salinities and sampling times were analyzed to evaluate the

1https://github.com/picrust/picrust2/wiki
2https://www.kegg.jp/
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FIGURE 1 | Percent removal of PHE and PYR in treatments under different salinities. (A) the 7th day, (B) the 30th day. Error bars represent standard deviations of
triplicate samples. Different letters indicate significant differences between the different salinity treatments at P < 0.05.

changes in the microbial community and metabolic processes
(Figure 2). Supplementary Table 2 showed the results of the
difference analysis of enzyme activities between samples from
the 7th day and 30th day. The results showed that the activities
of these enzymes significantly decreased with increasing soil
salinity (P < 0.05). All of the highest activities were found in the
treatment with the lowest salinity (LS treatment).

Soil catalase (S-CAT), a common antioxidant enzyme in
soil (Sun et al., 2021), can be used as an indicator of
soil biomass to some extent, and soils with high biomass
usually have higher catalase activity (Chabot et al., 2020). The
results in Figure 1 show that the highest S-CAT activity was
observed in the LS treatment, indicating that the addition
of sodium chloride reduced the S-CAT activity. On the 7th

day, there was no significant difference in S-CAT activity
between S1 and S3 treatments, but the difference became
more pronounced in the two treatments as the incubation
time progressed. The reduction of catalase activity in the
high salt state leaded to a lower antioxidant capacity of soil
microorganisms, which results in higher residual PAHs than in
the low salt state.

Activities of S-PPO and S-DHA are both important enzymes
for the breakdown of cyclic organic matter and represent
the bioremediation capacity (Lu et al., 2017). In this study,
these two enzyme activities were significantly decreased by
the addition of salt (P < 0.05). This was the result of a
significant inhibitory effect of the soil salinity on microbial
degradation abilities of organic matters. Comparing the change
in enzyme activity from the 7th day to the 30th day, the
LS treatment showed the greatest change in S-DHA activity
with a significant decrease of 67.89%. This may be because
activity of S-DHA is an indicator of total biological activity,
and bacteria without PAH-degrading abilities or that are less

adapted to the environment undergo apoptosis. Li et al. (2019b)
also pointed out that the increase in S-DHA activity was due to
an increase in the total number of microorganisms. However,
this change was absent in the treatments with relatively high
salinity (S1 and S3). The reason was probably that salinity
has a filter function of eliminating poorly adapted bacteria.
Then the halophilic bacteria remained and were well adapted to
their environment.

Abundance of Polycyclic Aromatic
Hydrocarbon-Degrading Genes in
Contaminated Soil
The biodegradation of PAHs in soil depends on a variety of
functional genes, which are valuable biomarkers for evaluating
the potential of PAH degradation (Yang et al., 2015). Real-
time quantification PCR(RT-qPCR) was applied to quantify
the absolute abundance of the PHA-RHDα and C12O genes
(Figure 3). In general, the salt in soils gave a prominent stress
to bacteria and mainly decreased the total abundance of PAH-
degrading genes with salinity. The copy number of degradation
genes was an indicator of PAH-degrading microbial abundance,
the decrease of which signified a decrease of PAH-degrading
microorganisms. All values of gene copies of PAH-RHDα in
the lower salinity treatment were higher than those in higher
soils. The copy numbers of the C12O gene showed an upward
trend from S1 to S3 on the 30th day, which meant that several
PAH-degrading bacteria in the S3 treatment were halophilic and
thrived under high salinity conditions. Previous studies have
also reported the growth and metabolism of Halobacillus (Li
et al., 2012), a halophilic microorganism containing the C12O
gene, under high salinity (Delgado-García et al., 2018). However,
there was no significant difference in the gene copies between
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FIGURE 2 | Soil enzyme activities in the LS, S1 and S3 treatments. (A) the 7th day, (B) the 30th day. Different letters over columns represent significant differences
among treatments at the p < 0.05 level of LSD post hoc comparison tests.

FIGURE 3 | Absolute abundance of the C12O gene and PAH-RHDα gene under the different salinity treatments. (A) the gene of C12O, (B) the gene of PAH-RHDα.
Different letters over columns represent significant differences among treatments at the p < 0.05 level of LSD post hoc comparison tests.

S1 and S3 (P = 0.254), which could be explained by the same
role played by the mildly halophilic bacteria in both the S1
and S3 treatments.

Picrust2 analysis was also conducted to predict the functional
genes in relative quantity of each soil treatment. Eight genes
associated with the PAH degradation (Li et al., 2019b) were
selected to show significant variations among different treatments
(Figure 4). From the 7th day to the 30th day, all numbers of
these functional genes decreased. On the 7th day, the average
percentages of all genes showed the lowest values in S3 treatment
and the highest in the LS. The results were associated with the
bacterial genera carrying PAH degradation genes (Wang et al.,
2021a). On the 30th day, the average proportions of genes like
k00452, k04101and k04100, increased in S1 treatment, which
may be due to the abundance of bacteria containing these genes
increased, and they were tolerant to the salt stress extent in the
treatment of S1 (Liao et al., 2021). For the other genes, the highest

abundances were only found in the LS treatment, which meant
most PAH degradation bacteria were not salt-tolerant and leaded
to a restrained degradation rate in high salinity soils.

Responses of Soil Microbial Community
Structure to Salt Stress
Bacteria in soils usually dominate microbial communities (Pesce
et al., 2018) and play a key role in the dissipation of PAHs in soils
(Li et al., 2019b). In order to discuss the effect of salt stress on
the microorganisms in soils, 16S rRNA sequence was conducted
to analyze the structure and diversity of bacterial communities.
The results showed that salt stress caused significant differences
in the formation of microbial community structure from the
control treatment.

Alpha diversity analysis was used to evaluate the bacterial
diversity and richness during incubation (Liao et al., 2021).
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FIGURE 4 | Mean proportions of the functional genes associated with the degradation of PAHs in soil after 7 days (A) and 30 (B) days of incubation. K00452 HAAO;
3-hydroxyanthranilate 3,4-dioxygenase [EC:1.13.11.6]; K04101 ligB; protocatechuate 4,5-dioxygenase, beta chain [EC:1.13.11.8]; K04100 ligA; protocatechuate
4,5-dioxygenase, alpha chain [EC:1.13.11.8]; K00480 salicylate hydroxylase [EC:1.14.13.1]; K14578 nahAb, nagAb, ndoA, nbzAb, dntAb; naphthalene
1,2-dioxygenase ferredoxin component; K14581 nahAa, nagAa, ndoR, nbzAa, dntAa; naphthalene 1,2-dioxygenase ferredoxin reductase component [EC:1.18.1.7];
K14583 nahC; 1,2-dihydroxynaphthalene dioxygenase [EC:1.13.11.56]; K14579 nahAc, ndoB, nbzAc, dntAc; naphthalene 1,2-dioxygenase subunit alpha
[EC:1.14.12.12 1.14.12.23 1.14.12.24].

A rarefaction curve (Supplementary Figure 1) was exhibited
to show the sequenced quantities of all soil samples could
effectively and accurately cover and estimate all microbial
communities (Xu et al., 2021). The four commonly used alpha
diversity indices were shown in Figure 5, which indicates that
all the mean values of alpha diversity indices followed the
trend of LS > S1 > S3. That is, the higher the salinity of
soils from each treatment, the lower the value of the alpha
diversity index, and then the more uneven the distribution
of the soil bacterial community. Considering that salinity was
the only factor that varied among the treatments, the results
of alpha diversity analysis further proved that salinity had
an appreciable impact on soil microbial diversity, richness
and evenness.

Principal coordinates analysis (PCoA) based on Bray-Curtis
distances was applied to analyze the overall structural variations
of microbial structure (Figure 6). The components of PCoA1
and PCoA2 could explain 69.60% and 11.20% of the variance
along their axes, respectively. The loading values of PCo1 were
greatly affected by salinity and increased with the soil salinity
of the treatment. In the plot, samples from different treatments
separated well, which suggested significant differences among
different soil salinities (P < 0.05). This result was consistent with
the findings of alpha diversity analysis.

The statistics of taxon number under different treatments
(Supplementary Figure 2) also revealed an increase in species
richness over time and a decrease with salinity. The relative
abundance and taxonomic analysis of soil microbial communities
(Supplementary Table 3) demonstrated that Proteobacteria was
the dominant phylum in all treatments (Cycil et al., 2020),
accounting for the highest proportion of 89.20%-98.31%. Among
the different treatments, the abundance was in accordance

with the trend of LS < S1 < S3. The relative abundances of
other phyla, including Bacteroidetes (0.26%–4.36%), Firmicutes
(0.92%–3.20%), Actinobacteria (0.31%–3.55%), and Chloroflexi
(0.01%–0.06%), decreased with the increase of soil salinity
(De León-Lorenzana et al., 2018). Proteobacteria, Bacteroidetes,
Firmicutes, Actinobacteria, and Chloroflexi have been reported to
contain many genera associated with the degradation of aromatic
hydrocarbons (Muangchinda et al., 2015) and to predominate in
PAH-contaminated soils (Ma et al., 2016; Li et al., 2019b). The
abundance of Proteobacteria usually increased with soil salinity
(Wang et al., 2021b), and dominated the microbe communities
under salt stress (Li et al., 2019a).

Furthermore, the genus in salt-stress associated with PAH
degradation deserve increasing attentions (Xu et al., 2019; Wang
et al., 2020; Zhang et al., 2021). Figure 7 shows the bacterial
composition at the genus level. The most frequently observed
bacterial genus was Acinetobacter, accounting for 36.05%–
81.07%, which was reported to be easier to adapt to salinity
(Zhang et al., 2021). Halomonas, accounting for 0.28%–18.08%,
showed a similar distribution characteristic to Acinetobacter
with higher relative abundance in high salt treatment (Wang
et al., 2020). In addition, the genera Marinobacter, Croceicoccus,
Stenotrophomonas, Pseudomonas, and Georgenia were negatively
affected by salinity and restrained the relative abundance. The
relative abundance of other low-abundance bacteria, such as
Salinimicrobium and Clostridiisalibacter, increased over time and
decreased with increasing salinity (Figure 7).

Among the top 20 bacterial genera, 10 bacterial genera
have been previously reported as PAH-degrading bacteria
(Fernández-Luqueño et al., 2011; Kappell et al., 2014; Huang
et al., 2015; Muangchinda et al., 2015; Ghosal et al., 2016;
Sun et al., 2018), including Acinetobacter, Marinobacter,
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FIGURE 5 | Alpha diversity index of bacterial communities in soils from the different salinity treatments. (A) the 7th day, (B) the 30th day.

Halomonas, Croceicoccus, Stenotrophomonas, Pseudomonas,
Clostridiisalibacter, Ochrobactrum, Methylophaga, and
Altererythrobacter. As shown in Figure 8, the addition of

FIGURE 6 | Principal coordinates analysis (PCoA) of bacterial communities in
soils from the different salinity treatments.

salinity significantly decreased the relative abundance of
some targeted genera in the treatment such as Marinobacter,
Salinimicrobium etc., while others were enriched. Compared with
the treatment of S1 and S3. LS treatment showed higher relative
abundances of Marinobacter, Salinimicrobium, Croceicoccus,
Stenotrophomonas Pseudomonas, Orchrobactrum, Methylophaga,
and Altererythrobacter which were reported to be positively
correlated with the removal percent of PAHs (Li et al., 2019b;
Wang et al., 2020). Caminicella, Sedimentibacter, Caenispirillum,
and Gerogenia were enriched only in the low salinity treatments,
which may participate in the enhanced degradation of PAHs. In
addition, salinity promoted an increase in some genera, including
Acinetobacter, Halomonas, and Clostridiisalibacter. Moreover,
the highest abundance of Acinetobacter and Halomonas appeared
in the S3 treatments (Wang et al., 2020; Zhang et al., 2021). It
suggested that salt application led to a decrease in soil microbial
diversity, which was consistent with the results of alpha diversity.
Besides, some low abundance genera associated with PAH
degradation are also worth of interest and future attention,
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FIGURE 7 | Relative abundance of different bacteria at the genus level in soils from different treatments.

FIGURE 8 | Heatmap of the top 20 genera in soils from each treatment.

as biodegradation in complex soils occurs through synergistic
interactions between bacteria (Adam et al., 2017).

Correlation Analysis of Soil Physical and
Chemical Properties, Degradation
Genes, Soil Enzyme Activities and Soil
Microorganisms
Redundancy analysis (RDA) was conducted based on the
correlation between pH, EC, WSOI%, degradation genes, soil

enzyme activities and the top 10 bacterial genera in relative
abundance (Figure 9). The results showed that soil physico-
chemical properties had a significant effect on the composition
and function of the microbial community (P = 0.001). Electrical
Conductivity value was the most important factor affecting
the structure of soil flora and the relative abundance of
species, followed by soil enzyme activity and organic matter
content. The soil conductivities were positively correlated with
the organic matter and some halophilic bacteria, such as
Halomonasas and Acinetobacter, while negatively correlated
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FIGURE 9 | Redundancy analysis (RDA) ordination plot to show the relationships among the soil physicochemical parameters, degradation genes, enzyme activities
and the relative abundance of top 10 bacterial genera. The red arrow represents the species, and the length of the arrow represents the variability of species in the
sorting space. The blue arrow line represents the influencing factor, and the length represents the influence of the factor on the composition and function of the flora.

with soil enzyme activities, PAH degradation, and pH. That
is to say, in higher salinity treatments, the PAH degradation
rate, soil enzyme and degradation genes will be lower.
This is in accordance with other results discussed above in
this paper.

Halomonasas, Acinetobacter, and Marinobacter are the three
largest variants of the different species in the sorting space.
The relative abundances of Halomonas and Acinetobacter were
positively correlated with the soil salinity, indicating that
these genera were important participants in the degradation
process of PAHs during a relatively high saline environment
(Czarny et al., 2020; Wright et al., 2020). However, there
was a significant negative correlation between these two
genera and the PAH degradation genes, indicating that these
bacteria may not participate in PAH degradation directly.

Wang et al. (2020) has proved that Halomonas cannot
degrade PHE directly in experiments. The relative abundances
of Marinobacter and other genera, including Croceicoccus,
Stenotrophomonas, Pseudomonas, and Salinimicrobium, were all
negatively correlated with the soil salinity, while positively
correlated with pH, PAHs degradation genes and soil enzyme
activities. These genera were reported to be the main force
of PAH degradation in low salinity treatment (Wang et al.,
2020). Marinobacter proved to require the cooperation of
other bacteria during the biodegradation of PAHs (Cui et al.,
2014), which led to a relatively low degradation rate of PAHs
in high salinity soils. Soils with lower salinities had higher
community diversity and richness, which led to a higher
cooperation rate between different bacteria and then a higher
PAH removal rate.
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CONCLUSION

This study illuminated the effects of salinity on the PAH removal
rate, soil enzyme activities, degradation gene abundance, and the
structural changes of the soil bacterial community.

(1) The PAH degradation rate increased slightly in low
saline soils, while were restrained significantly in high
salt conditions.

(2) With increasing of soil salinity, not only the bacterial
community diversity decreased, but also abundance of
degradation gene and soil enzymes. This result could
be responsible for the reduction of degradation rate
in saline soils.

(3) The microbial community was filtered in high salt
treatments and dominated by salt-tolerant and halophilic
genera, such as Acinetobacter and Halomonas.

(4) Correlation analysis confirmed that, soil salinity was
negatively related with PAH degradation, abundance of
functional genes and soil enzyme activities, while positively
related with some halophilic genera.
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