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Stenotrophomonas maltophilia (S. maltophilia) is widely distributed in nature 

and frequently causes nosocomial infections. In this work, the biological 

characteristics and genome of a new S. maltophilia phage BUCT609 isolated 

from hospital sewage with S. maltophilia strain No. 3015 as host was analyzed 

and its therapeutic effect in vivo was explored. It was observed by TEM that 

phage BUCT609 belongs to the Podoviridae with a 10 nm tail structure and 

a capsid with a diameter of about 50 nm. It has a short latent period (about 

10 min) and its burst size is 382 PFU /cell when multiplicity of infection (MOI) 

is 0.01. Furthermore, it has a high survival rate in the environment with a pH 

range from 3 to 10 and temperature range from 4°C to 55°C. The complete 

genome of phage BUCT609 is linear double-stranded DNA of 43,145 bp in 

length, and the GC content is 58%. The genome sequence of phage BUCT609 

shares <45% homology with other phages. No virulence genes and antibiotic 

resistance genes were found in bacteriophage BUCT609. In vivo animal 

experiments showed that the survival rate of mice infected with S. maltophilia 

was significantly improved after the intranasal injection of phage BUCT609. 

Therefore, our study supports that phage BUCT609 could be  used as a 

promising antimicrobial candidate for treating S. maltophilia infections.
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Introduction

Stenotrophomonas maltophilia is Gram-negative bacteria that widely exists in 
nature and also resides in the human respiratory and intestinal tract. The isolation 
rate of S. maltophilia was only less than Acinetobacter and Pseudomonas aeruginosa 
among non-fermented glycogram negative bacilli (An and Berg, 2018). As a 
conditioned pathogen, S. maltophilia is a major pathogenic bacterium for iatrogenic 
infection that can cause many diseases such as infections of the respiratory tract, 
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urinary tract, and wounds. In recent years, with the extensive 
use of broad-spectrum antibiotics, S. maltophilia has become 
one of the most important pathogens of nosocomial infection, 
which brings great difficulties to clinical treatment (Gokhan 
Gozel et al., 2015). Phages are specific for infection and lysis 
of host bacteria in the environment and organisms. During the 
recent years, many countries have made exciting achievements 
in phage therapy (Bao et  al., 2020) which demonstrate the 
unique advantages of phage therapy and greatly promote 
further research of phage therapy, indicating that phage 
therapy has a very bright application prospect (Moelling 
et al., 2018).

In this study, phage BUCT609 was isolated from hospital 
sewage. The biological and genomic characteristics of phage 
BUCT609 were analyzed to evaluate the infectivity and animal 
experiments were conducted to explore its therapeutic effect on 
S. maltophilia in vivo. This study will increase the diversity of 
S. maltophilia phage and provide a potential candidate for phage-
based therapy.

Materials and methods

Bacterial strains and culture conditions

S. maltophilia strain No. 3015 in our laboratory bacteria bank 
was used as the host bacterium of phage BUCT609, which is a 
clinical strain isolated from Shanghai Public Health Clinical 
Center. The bacteria were cultured 5 h to reach the exponential 
phase in Luria-Bertani (LB) medium at 37°C.

Isolation and purification of phage 
BUCT609

Phage BUCT609 was isolated from sewage in the China-
Japanese Friendship Hospital of Beijing. Ten milliliters of 
sewage water were centrifuged at 12,000 × g for 5 min and 
filtered by membrane filtration with 0.22 μm pore diameter 
(Ding et  al., 2020). The host bacteria were cultured to the 
exponential phase (OD600 = 0.7) at 37°C for phage infection. 
Then the filtered phage (100 μl) was mixed evenly with 500 μl 
of the host bacteria. The mixture was added into 5 ml LB 
liquid medium and incubated at 37°C for 5 h. Phage was 
diluted by phosphate-buffered saline (PBS) buffer and verified 
by the standard double-layer agar method. Eventually, a single 
plaque was picked up and amplified and purified three times 
(Chang et al., 2005).

To obtain a high titer of phage solution, 8 ml of 30% sucrose 
solution was slowly added to phage solution (32 ml). After 
centrifugation at 30,000 × g for 2 h at 4°C, the supernatant was 
discarded. The phage was re-suspended with 200 μl of 
PBS buffer.

Transmission electron microscopy

The morphological characteristics of phage BUCT609 were 
observed by transmission electron microscopy (TEM). As 
reported previously, 10 μl of purified phages were loaded onto a 
copper grid for 20 min and the phage particles were negatively 
stained with 10 μl of 2% (w/v) phosphotungstic acid (PTA) for 
10 min. The samples were dried for 5 h at room temperature. 
Morphology of the phage was observed by a transmission electron 
microscope (JEM-1200EX, Japan) at 80 kV (Li et al., 2019).

The optimal multiplicity of infection

MOI refers to the ratio of the number of phages (PFU) to the 
host bacteria (CFU) and the optimal MOI is the multiplicity of 
infection when the phage can achieve the optimal growth state 
(Xing et al., 2017). Five hundred microliters of each purified phage 
and the host bacteria were mixed (MOI = 100, 10, 1, 0.1, and 0.01) 
evenly and incubated for 20 min. Then the mixture was added into 
fresh sterile LB liquid medium for 5 h at 37°C. After incubating, 
the mixture was centrifugated (12,000 × g, 5 min) and filtered to 
obtain the phage in the supernatant. The phage titer was 
determined by the standard double-layer agar method and the 
MOI with the highest titer is the optimal MOI.

One-step growth curve

To evaluate the infectivity of phage BUCT609 with the latent 
period and the burst size, it is necessary to study the one-step 
growth curve of the phage (Hagens and Loessner, 2010). The latent 
period is defined as the stage in which the phage proliferates in the 
bacterial cells. The burst size refers to the ratio of the ultimate titer 
of phage to the number of infected bacteria in the latent period. 
Phage BUCT609 was mixed with S. maltophilia strain No. 3015 
(OD600 = 0.7) to the optimal MOI and allowed to adsorb at 37°C 
for 20 min. Then the mixture was centrifugated (12,000 × g, 1 min). 
The sediment containing phage was resuspended with 20 ml of LB 
liquid medium. The phage titer was determined by the soft agar 
overlay method every 10 min during the incubation at 37°C. Three 
replicates were performed and the results were averaged.

Thermal stability and pH sensitivity

To test the thermal stability of phage BUCT609, the purified 
phage was incubated at different temperatures (4, 37, 45, 55, 65, or 
75°C) for an hour. Then, the phage titer was calculated by the 
method of soft agar overlay (Fan et al., 2012). Similarly, to explore 
the effect of pH on phage BUCT609, the phage suspensions were 
incubated at various pH values ranging from 1 to 12 at 37°C for 
an hour and the phage titer was calculated. Each experiment was 
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performed three times and the initial phage concentration was 
about 109 PFU/ml.

Multilocus sequence typing and host 
range

Multilocus sequence typing (MLST) is a bacterial typing 
method based on nucleic acid sequence determination (Larsen 
et al., 2012). In this experiment, multiple internal fragments of 
housekeeping genes were amplified by PCR and sequenced to 
analyze the variation of strains. Using housekeeping gene primers 
of S. maltophilia (atpD, gapA, guaA, mutM, nuoD, ppsA, and recA) 
for PCR amplification (Supplementary Table 1) and the amplified 
products were sequenced and analyzed on the MLST database.

To determine phage BUCT609 host range, 13 strains of 
S. maltophilia were cultured to the exponential phase (OD600 = 0.7). 
500 μl of each sample were added into 5 ml 0.7% LB agar medium. 
Then, the mixture was immediately poured into the solid medium. 
After solidification, 2 μl phages were added to a double-layer plate, 
and PBS was added on the other side as a control. The formation 
of plaque was observed and recorded after 9 h.

Antimicrobial susceptibility testing

To quickly and effectively detect the sensitivity of pathogenic 
bacteria to various antibiotics and guide rational drug use in the 
clinic, the drug sensitivity test of S. maltophilia strain No. 3015 was 
carried out by disc diffusion method. The host bacteria were 
cultured to the exponential phase (OD600 = 0.7) at 37°C. 500 μl of 
bacteria was added into 5 ml 0.7% LB agar medium. The mixture 
was immediately poured into the solid medium. After 
solidification, the antibiotic sensitivity testing disc was placed on 
the plate for incubating at 37°C overnight. If the strain was 
sensitive to the drug, the formation of the inhibitory zone could 
be observed. This experiment was repeated three times.

Phage DNA preparation

Phage genomic DNA was extracted by the Proteinase K/SDS 
method (Pickard, 2009). 600 μl of purified phage were incubated 
with DNase I and RNase A overnight at 37°C after which the 
enzymes were inactivated at 80°C for 15 min. 24 μl of EDTA 
(20 mM) with 1.5 μl of proteinase K (50 μg/ml) and 30 μl of SDS 
(0.5%) were added to the mixture and were incubated at 56°C for 
1 h. Phage DNA was extracted with an equal volume of extraction 
agent (phenol: chloroform: isoamyl alcohol, 25:24:1). 400 μl of 
isopropanol was added to the upper aqueous layer and then the 
sample was incubated at −20°C for more than 1 h. 75% ethanol 
was added to rinse the precipitate. Eventually, the deionized water 
was used to dissolve the nucleic acids and supposed to be stored 
at −20°C.

Whole genome sequencing and 
bioinformatics analysis

The whole genome was sequenced using Illumina’s MiSeq 
sequencing platform (Thermo Fisher Scientific, United  States; 
Kozich et al., 2013) and the low-quality sequences were filtered by 
Trimmomatic (V0.32) program (Bolger et al., 2014). Then, the 
complete genomic sequence of BUCT609 was assembled by 
Newbler V3.0 software (Roche, Switzerland; Zhang et al., 2012) 
and CLC software (QIAGEN, Germany; Liu and Di, 2020). Using 
the online tools RAST (https://rast.nmpdr.org/; Aziz et al., 2008) 
to predict the ORFs and ORF Finder (https://www.bioinformatics.
org/sms2/orf_find.html; Rombel et al., 2002) to annotate the DNA 
sequencing result. Sequence similarity analyses and comparisons 
were performed using the NCBI BLAST algorithm. A phylogenetic 
tree of phage BUCT609 was conducted by VICTOR (https://ggdc.
dsmz.de/victor.php; Meier-Kolthoff and Göker, 2017) and average 
nucleotide identity (ANI) analysis was analyzed by another online 
tool VIRIDIC (http://rhea.icbm.uni-oldenburg.de/VIRIDIC/; 
Moraru et al., 2020).

Antibacterial effect of BUCT609 in vivo

Specific pathogen-free (SPF) Balb/c mice reared for 
6–8 weeks, weighing 17-19 g, were chosen as the animal model 
in this study. The median lethal dose (LD50) refers to the 
minimum number of bacteria required to kill half of the animal 
population through a specified route of infection within a 
specified period of time (Welkos and Brien, 1994). Pick a single 
clone of S. maltophilia No.3015 strain on the agar plate and 
cultivate it in LB liquid medium to exponential phase (37°C, 
220 rpm). Then, the bacteria were centrifuged at 10,000 × g  
for 10 min and resuspended with PBS diluting to 8 × 107  
CFU/ml, 6 × 107 CFU/ml, 4 × 107 CFU/ml, and 2 × 107 CFU/ml, 
respectively, for use. Forty mice were randomly divided into 5 
groups (n = 8 in each group), of which 4 groups were used as the 
experimental group (injected with bacteria) and 1 group was 
used as the control group (injected with PBS). All mice were 
immunosuppressed by injection of cyclophosphamide (125 mg/
kg) 4 days before infection and injected with cyclophosphamide 
(125 mg/kg) and dexamethasone (12.5 mg/kg) next day to 
stabilize the immunosuppression. After above pretreatment, 
each mouse was anesthetized by intraperitoneal injection of 
50 mg/kg of 0.5% sodium pentobarbital. The experimental 
groups were injected intranasally with 40 μl of No.3015 bacterial 
solution with titers of 8 × 107 CFU/ml, 6 × 107 CFU/ml, 
4 × 107 CFU/ml, and 2 × 107 CFU/ml, respectively, and the 
control group was injected with 40 μl of sterile PBS solution. 
The activity status of mice was observed twice a day after 
infection. The changes in body weight and death situation 
were recorded.

To explore the therapeutic effect of phage BUCT609 in vivo, 
30 mice were equally divided into three groups (n = 10 in each 
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group), two of which were the experimental group (injected with 
both bacteria and phage) and one was the control group (injected 
with PBS only). Mice were immunosuppressed and anesthetized 
in the same manner as described above. 40 μl of No.3015 bacterial 
solution was injected into the nasal cavity of the experimental 
group and 40 μl of PBS solution was injected into the control 
group. After 2 h, 40 μl of phage BUCT609 was injected into one of 
the experimental groups, 40 μl sterile of PBS solution was injected 
into other groups. The activity status of mice was observed daily 
after infection and the changes in body weight and death situation 
were recorded.

Statistical analysis

Three replicates were performed for each experiment. Take 
the mean of the three sets of data and calculate the standard error. 
The data were subjected to one-way ANOVA test and Tukey test 
by GraphPad Prism 8.0.2 (GraphPad Software, Inc., La Jolla, 
United States). p < 0.05 means that the data of repeated groups are 
statistically significant.

Results

Morphology

A virulent phage BUCT609 was successfully isolated from 
untreated sewage in the hospital using S. maltophilia No. 3015 as 
the host bacterium. Phage BUCT609 can form transparent plaques 
with a diameter of 1 ~ 2 mm on a double-layer plate (Figure 1A). 
TEM images showed that the head diameter of phage BUCT609 
was about 51.93 ± 1.68 nm, and the tail length was about 
12.36 ± 1.37 nm, which can be  inferred as a Podoviridae phage 
(Figure 1B).

The optimal multiplicity of infection and 
One-step growth curve

Phage and host bacteria were cocultured for 5 h at different 
MOI ratio as shown in Supplementary Table 2 and the average 
titer of each phage was measured, respectively. As can be seen 
from Supplementary Table 2, when MOI = 0.01, the phage titer 
was the highest with 3.1 × 109 PFU/ml. Therefore, the optimal 
multiplicity of infection was defined as 0.01.

The one-step growth curve showed that the latent period was 
about 10 min (Figure 2A). In the following 60 min, the phage titer 
increased rapidly, where was the burst period. About 10 min later, 
the phage grew into the plateau phase. According to the 
calculation, phage BUCT609 had a large burst size (382 PFU/cell). 
Compared with the phage P24 (the latent period was 55 min and 
the burst size was 147 PFU/cell), phage BUCT609 had a shorter 
latent period and a larger burst size (Zhang et  al., 2020). In 

conclusion, it was a lytic phage and had the potential to be used 
for phage therapy.

Thermal stability and pH sensitivity

The thermal stability test showed that phage BUCT609 was 
high-temperature sensitive (Figure 2B). There was no significant 
difference in the titer between 4 and 55°C for 1 h. At 65°C, phage 
titer decreased significantly (p < 0.0001) compared with that at 4°C 
and it was completely inactivated at 75°C. As for pH tolerance 
(Figure 2C), phage BUCT609 exhibited a strong tolerance from 
pH 3 to 10. At pH 2 or 11, the phage titer was significantly lower 
than at pH 7 (p < 0.0001). And at pH 1 or 12, the phage was almost 
completely inactivated. Compared with phage IME392 
(temperature tolerance range: 30–50°C; pH tolerance range: 4–11; 
Hu et al., 2021), phage BUCT609 had a wider adaptation range of 
temperature and pH, indicating that it had a good temperature 
and pH tolerance and could be broadly applied for phage therapy 
in the future.

MLST and host range

The MLST results showed that 13 strains of S. maltophilia had 
different ST values, suggesting that they were 13 different species. 
The analysis of the host range results showed that phage BUCT609 
could lyse not only S. maltophilia strain No. 3015 but also the 
other 4 S. maltophilia strains (No. 118, No. 548, No. 992, and No. 
1207; Supplementary Table 3).

Antimicrobial susceptibility testing

The main reason S. maltophilia infection is difficult to treat is 
that the bacteria present low susceptibility to antibiotics (Gil-Gil 
et  al., 2020). Drug susceptibility tests confirmed that the host 
S. maltophilia No. 3015 of phage BUCT609 was resistant to a 
variety of antibiotics but sensitive to only a few antibiotics such as 
ceftriaxone, tetracycline, trimethoprim, minocycline, and 
levofloxacin (Supplementary Table 4).

Characterization of phage BUCT609 
genome

The complete sequence of phage BUCT609 was 43,145 bp in 
length and the CG content of the genome was 58% that had been 
submitted to the NCBI database with the accession number 
MW960043. The online comparison tool BlastN showed that it 
had 42% homology with S. maltophilia phage vB_SmeS_BUCT703 
(GenBank: OM735688.1) at nucleotide level. The results of RAST 
online annotation showed that BUCT609 had 56 open reading 
frames (ORFs), of which 25 had known functions and the rest 
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were annotated as hypothetical proteins. The majority of ORFs 
presented an ATG start codon (87.5%) while 2 of them started 
with TTG and 5 with GTG. There is no tRNA in the whole 
genome. The 25 functional proteins are shown in different colors 
on the whole genome map (Figure 3).

Functional ORF analysis

Same as most dsDNA phage, phage BUCT609 has the same 
modular genomic structure such as DNA replication, regulation, 
phage packaging, structural, and host lytic proteins (Table 1). The 
structural proteins of phage BUCT609 are mainly distributed at 
the front of the genomic sequence. According to previous data 
analysis, ORF6, ORF8, ORF9, ORF13, and ORF14 were predicted 
to be tail related proteins. ORF14 encodes tail tubular protein A 
(TTPA) that is usually responsible for adhering the phage to host 
cells (Pyra et al., 2017), having 62.98% homology to the protein of 
S. maltophilia phage Ponderosa at amino acid level (the following 
homology values are all at amino acid level in this section). 
Besides, the major capsid protein was encoded by ORF16 and had 
75.62% homology with that of S. maltophilia phage Ponderosa.

Terminase is a key protein in phage DNA packaging that 
includes large subunit and small subunit. Generally, terminase 
large subunit and terminase small subunit are adjacent and both 
involved in the splicing and packaging process of phage 
DNA. The large subunit is responsible for ATP-driven DNA 
translocations while the small subunit interacts with terminase 
large subunit and initiate packaging through binding and 
cleaving specifically near the initial package site (Weiditch et al., 
2019Gao et  al., 2020). Terminase small subunit specifically 
recognizes viral DNA, while the terminase large subunit plays an 
important role in ATP recognition and hydrolysis (Loredo-
Varela et  al., 2013). As is shown from the chart, ORF3 from 
phage BUCT609 encodes the terminase large subunit that has 

69.26% homology with that of S. maltophilia phage Ponderosa. 
The terminase small subunit is the product of ORF14 and 
exhibited 39% identity to that of Xanthomonas phage Xaa_vb_
phi31. The portal control protein is encoded by ORF18 and 
forms a channel at the phage tail attachment site through where 
the phage can inject its genome into the host cell (Prevelige Jr 
and Cortines, 2018).

Replication is a complex process involving a variety of 
proteins and enzymes. In the initiation phase, the DNA helicase 
encoded by OFR33 can unlock double-stranded DNA by 
hydrolyzing ATP for energy, with 63.53% homology to that of 
S. maltophilia phage Ponderosa. DNA primer enzyme encoded 
by ORF35 has 63.44% homology with that of Xanthomonas 
phage Xaa_vb_phi31, which can catalyze the synthesis of RNA 
primer. Different DNA polymerases play different roles in DNA 
replication (Hoitsma et al., 2020). Exhibiting 69.95% identity 
to DNA polymerase of S. maltophilia phage Ponderosa, the 
DNA polymerase encoded by ORF30 is mainly used for DNA 
replication and repair. Furthermore, exonuclease is a class of 
enzymes that degrade nucleotides one by one from the end of 
a polynucleotide chain (Dean et al., 2001). In phage BUCT609, 
ORF26, ORF27, and ORF28 encode three different exonuclease 
enzymes, with 44.4% homology to that of Xylella phage Cota, 
65% homology to that of Xanthomonas phage Xaj24 and 
65.12% homology to that of Xanthomonas phage XAA VB 
phi31, respectively. The DNA ligase encoded by ORF23 plays 
an important role in the process of DNA replication and repair, 
catalyzing the reaction that two adjacent bases connect 
consuming ATP and has 42.42% homology to the protein of 
S. maltophilia phage Ponderosa by comparison (Shi et  al., 
2018). ORF21 encodes RNA polymerase whose main function 
is to synthesize RNA using DNA or RNA as templates and 
triphosphate ribonucleoside as substrates. Due to that RNA is 
involved in the transcription of genetic information about 
genes within a cell, it is also called a transcriptase (Griesenbeck 

A B

FIGURE 1

Plaques and transmission electron micrograph of phage BUCT609. (A) Plaques formed by BUCT609. (B) Transmission electron micrograph of 
phage BUCT609. Scale bar 50 nm.
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et al., 2017). The RNA polymerase ORF21 has 100% coverage 
but only 72% identity with that of S. maltophilia 
phage Ponderosa.

For the lytic mechanism, the phage lyses the host bacteria 
under the combined action of holin, lyase, and spanin. Holin 
encoded by OFR5 plays a crucial role in the penetration of 
phages after attaching to the host. Holin forms pores in the 
cell membrane and begins the process of osmosis and 
dissolution (Palmer et al., 2021). By the BlastN comparison, 
the holin of phage BUCT609 has 59.68% homology with 
S. maltophilia phage Ponderosa. Most phages produce a 
two-component protein complex consisting of outer 
membrane lipoprotein (o-spanin) and inner membrane 
protein (i-spanin) which are necessary for the host outer 
membrane destruction (Cahill and Young, 2019). Phage 
BUCT609 has an o-spanin ORF54 with 57.14% homology to 
the protein of S. maltophilia phage Ponderosa and i-spanin 
ORF55 with 30.85% homology to the protein of Xylella phage 
Paz. The endolysin transcribed by ORF56, which showed 

65.06% identity to that of S. maltophilia phage Ponderosa, was 
synthesized by host bacteria and can result in bacteria death 
through inducing the lysis of bacteria cell walls specifically 
and effectively (Ghose and Euler, 2020).

Phylogenetic analysis

A total of 21 phages in NCBI had homology (>0%) with 
BUCT609. To study the evolution of phage BUCT609 and its 
relationship with other phages, a phylogenetic tree of 
complete genome sequences of above 22 phages including 
BUCT609 was constructed. According to VICTOR’s 
classification of family, genus, and species, 21 strains of 
phages homologous to phage BUCT609 belonged to the same 
genus. From NCBI records, all of these strains were presumed 
to be  Autographiviridae family and Pradovirus genus. 
However, at the species level, there were 16 different clusters, 
among which BUCT609 independently represented a species 

A

B C

FIGURE 2

Biological characteristics of phage BUCT609. (A) One-step growth curve. The latent period of the phage was about 10 min, and the burst period of 
the phage was the following 60 min. And after 70 min, the phage grew into the plateau phase. The data is the average of three parallel experiments. 
Two bars above and below each point represent the standard deviation of the results of three parallel experiments. (B) Thermal stability. Phage titer 
of BUCT609 after incubation for 1 h at different temperatures. The data is the average of three replicates. There was no significant difference in the 
titer between 4 and 55°C. At 65 and 75°C, its titer decreased significantly (p < 0.0001) compared with that at 4°C. (C) pH sensitivity. Phage titer of 
BUCT609 after incubation at various pH values at 37°C for 1 h. The data is the average of three replicates. There was no significant difference in the 
titer from pH 5 to 9. Compared with the titer at pH 7, its titer decreased slightly (p < 0.01) at pH 3, 4, and 10 and decreased significantly (p < 0.0001) at 
pH 1, 2, 11, and 12. There is no significant difference between the two groups of data when p < 0.5, which was showed as ns in the figure. The bar 
above column represents the standard deviation of the results of three parallel experiments.
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(Figure 4A). To determine whether phage BUCT609 could 
form an independent clade as a new genus, average nucleotide 
identity (ANI) analysis with other 21 phages was analyzed. 
The results showed that BUCT609 had a maximum similarity 
with Stenotrophomonas phage vB_SmaS_P15 (57.3%), which 
was sufficient for classification at the level of a new genus 
(Figure 4B).

Antibacterial effect of BUCT609 in vivo

We conducted animal experiments to further explore the 
possibility of phage BUCT609 for clinical treatment. In mouse 
models, there was no significant change before and after 
No.3015 infection (fluctuation within 1 gram). Remarkably, the 
hair of the mice before bacterial infection was white and shiny 

while sparse and coarse after infection. Besides, they appeared 
weaker and clustered together, suggesting that S. maltophilia 
infections could have adverse effects on the organism. The 
results of infection in mice with different doses were shown in 
Figure 5A. No mice died in the control group. The survival rate 
of mice gradually decreased with the increase of injected 
bacterial titer. When the titer of No.3015 was 4 × 107 CFU/ml, 
the survival rate of mice was 50%, which was defined as the 
value of LD50.

The effect of phage BUCT609 in lysing host bacteria in 
vivo was studied by injecting phage BUCT609 to mice infused 
with LD50. The vital signs of all mice stabilized after 3dpi after 
the treatment (Figure 5B). After injection of phage BUCT609, 
the survival rate of mice increased to 80%, which was 30% 
higher than that of the other group of mice that did not receive 
treatment. There was no significant change in the weight of 

FIGURE 3

The whole genetic map of phage BUCT609. The outermost circle represents the open reading frame. Colors distinguish different functional genes 
while arrows represent ORF directions. The middle circle represents (G + C) mol% (outwards larger than the whole-genome average (G + C) mol%, 
inwards the opposite). The innermost circle represents the G + C tilt of G−C/G + C (outward for greater than 0 and inward for less than 0).

https://doi.org/10.3389/fmicb.2022.1001237
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Han et al.� 10.3389/fmicb.2022.1001237

Frontiers in Microbiology 08 frontiersin.org

TABLE 1  Predicted ORFs in the genome of phage BUCT609.

ORFs Start Stop Strand Predicted 
Function

Best-match 
BLASTp Result

Accession 
number

E-values Cover Identity

ORF1 897 130 R hypothetical protein Xylella phage Paz YP_008858922.1 1.00E-68 96% 53.36%

ORF2 1366 911 R hypothetical protein Xanthomonas phage 

Xaa_vB_phi31

QOI69551.1 1.00E-40 99% 50.65%

ORF3 3165 1375 R terminase large 

subunit

Stenotrophomonas 

phage Ponderosa

QEG09767.1 0 99% 69.26%

ORF4 3448 3149 R terminase small 

subunit

Xanthomonas phage 

Xaa_vB_phi31

QOI69549.1 3.00E-09 100% 39.00%

ORF5 3626 3438 R holin class II Stenotrophomonas 

phage Ponderosa

QEG09765.1 1.00E-16 98% 59.68%

ORF6 4206 3628 R tail fiber protein phage Titan-X QGH45075.1 1.00E-36 99% 38.78%

ORF7 5216 4203 R hypothetical protein phage Titan-X QGH45074.1 8.00E-58 100% 38.76%

ORF8 6424 5213 R tail fiber protein Stenotrophomonas 

phage Ponderosa

QEG09762.1 1.00E-134 70% 66.67%

ORF9 7540 6425 R tail fiber protein Stenotrophomonas 

phage Ponderosa

QEG09761.1 0 100% 80.65%

ORF10 11683 7601 R transglycosylase Stenotrophomonas 

phage Ponderosa

QEG09760.1 0 100% 69.15%

ORF11 14140 11696 R internal virion 

protein

Stenotrophomonas 

phage Ponderosa

QEG09759.1 0 97% 49.69%

ORF12 14979 14149 R internal virion 

protein

Stenotrophomonas 

phage Ponderosa

QEG09758.1 7.00E-94 99% 51.99%

ORF13 17519 14979 R tail tubular protein B Stenotrophomonas 

phage Ponderosa

QEG09757.1 0 100% 73.32%

ORF14 18149 17529 R tail tubular protein A Stenotrophomonas 

phage Ponderosa

QEG09756.1 7.00E-91 99% 62.98%

ORF15 18418 18203 R hypothetical protein Xanthomonas phage 

Xaa_vB_phi31

QOI69538.1 4.00E-14 100% 55.56%

ORF16 19464 18463 R major capsid protein Stenotrophomonas 

phage Ponderosa

QEG09754.1 2.00E-169 99% 72.62%

ORF17 20248 19493 R scaffold protein Xylella phage Paz YP_008858906.1 2.00E-54 96% 44.94%

ORF18 21762 20245 R portal protein Stenotrophomonas 

phage Ponderosa

QEG09752.1 0 98% 71.20%

ORF19 22094 21759 R hypothetical protein Stenotrophomonas 

phage Ponderosa

QEG09751.1 4.00E-34 91% 72.55%

ORF20 22384 22205 R hypothetical protein Xylella phage Paz YP_008858903.1 6.00E-15 100% 57.63%

ORF21 24947 22548 R RNA polymerase Stenotrophomonas 

phage Ponderosa

QEG09749.1 0 100% 71.62%

ORF22 25189 24953 R hypothetical protein not hits

ORF23 26232 25186 R DNA ligase Stenotrophomonas 

phage Ponderosa

QEG09747.1 1.00E-75 99% 42.42%

ORF24 26592 26323 R hypothetical protein Stenotrophomonas 

phage Ponderosa

QEG09745.1 4.00E-15 96% 50.00%

ORF25 27173 26589 R hypothetical protein Xanthomonas phage 

Xaa_vB_phi31

QOI69527.1 1.00E-46 100% 41.59%

ORF26 28025 27183 R Phage exonuclease Xylella phage Cota CAB1282933.1 6.00E-83 98% 44.40%

ORF27 28264 28022 R DNA exonuclease Xanthomonas phage 

XAJ24

YP_009785928.1 2.00E-27 100% 65.00%

ORF28 29363 28413 R exonuclease Xanthomonas phage 

Xaa_vB_phi31

QOI69524.1 4.00E-139 95% 65.12%

(Continued)
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the mice before and after phage treatment (fluctuation within 
1 gram). Even though the survival rate of the mice improved 
after the treatment, the coarseness of the hair was not cured. 
However, the data were sufficient to demonstrate that phage 
BUCT609 was bacteriostatic in vivo and could be used as a 
potential clinical antimicrobial agent.

Discussion

Phage BUCT609 was successfully isolated from hospital sewage 
using S. maltophilia No. 3015 as the host bacterium. The host range 
test showed that 5 of 13 strains of S. maltophilia could be lysed by 
phage BUCT609. Though it does not have a broad host range as 

TABLE 1  (Continued)

ORFs Start Stop Strand Predicted 
Function

Best-match 
BLASTp Result

Accession 
number

E-values Cover Identity

ORF29 30246 29365 R hypothetical protein Stenotrophomonas 

phage Ponderosa

QEG09740.1 2.00E-88 100% 51.01%

ORF30 32597 30243 R DNA polymerase Stenotrophomonas 

phage Ponderosa

QEG09739.1 0 99% 69.95%

ORF31 32926 32606 R hypothetical protein not hits

ORF32 33146 32943 R hypothetical protein Xylella phage Prado YP_008859401.1 6.00E-23 92% 69.35%

ORF33 34456 33149 R DNA helicase Stenotrophomonas 

phage Ponderosa

QEG09736.1 0 100% 63.53%

ORF34 34996 34457 R hypothetical protein not hits

ORF35 35826 34981 R DNA primase Xanthomonas phage 

Xaa_vB_phi31

QOI69516.1 1.00E-131 99% 63.44%

ORF36 36032 35823 R hypothetical protein Xanthomonas phage 

Xaa_vB_phi31

QOI69515.1 5.00E-14 100% 66.67%

ORF37 36339 36034 R hypothetical protein Xanthomonas phage 

Xaa_vB_phi31

QOI69514.1 8.00E-08 89% 32.22%

ORF38 36521 36339 R hypothetical protein not hits

ORF39 37135 36659 R hypothetical protein Xylella phage Paz YP_008858885.1 3.00E-47 100% 57.86%

ORF40 37736 37296 R hypothetical protein Stenotrophomonas 

phage Ponderosa

QEG09730.1 9.00E-15 97% 34.23%

ORF41 38149 37736 R hypothetical protein not hits

ORF42 38710 38153 R hypothetical protein Stenotrophomonas 

phage Ponderosa

QEG09728.1 4.00E-07 98% 35.64%

ORF43 38964 38707 R hypothetical protein Stenotrophomonas 

phage Ponderosa

QEG09727.1 1.00E-04 96% 33.72%

ORF44 39141 39007 R hypothetical protein not hits

ORF45 39284 39144 R hypothetical protein not hits

ORF46 39423 39277 R hypothetical protein not hits

ORF47 39590 39420 R hypothetical protein Stenotrophomonas 

phage Ponderosa

QEG09722.1 5.00E-12 87% 66.04%

ORF48 39799 39668 R hypothetical protein not hits

ORF49 40074 39796 R hypothetical protein not hits

ORF50 40205 40071 R hypothetical protein not hits

ORF51 40767 40255 R hypothetical protein Stenotrophomonas 

phage Ponderosa

QEG09719.1 2.00E-68 92% 68.15%

ORF52 40947 40792 R hypothetical protein Xanthomonas phage 

Suba

CAA2409834.1 0.011 96% 35.19%

ORF53 41505 41386 R hypothetical protein not hits

ORF54 42342 42193 R o-spanin Stenotrophomonas 

phage Ponderosa

QEG09771.1 2.00E-13 100% 57.14%

ORF55 42658 42374 R i-spanin Xylella phage Paz YP_008858924.1 7.00E-06 100% 30.85%

ORF56 43145 42642 R endolysin Stenotrophomonas 

phage Ponderosa

QEG09769.1 4.00E-66 99% 65.06%
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phage DLP3, one of the most widespread S. maltophilia phages 
infecting 22 out of 29  S. maltophilia strains (Peters et  al., 2020), 
BUCT609 still have a relatively wide host range compared with phage 
AXL3 that can lyse 5 out of 29 S. maltophilia strains (McCutcheon 
et al., 2020). In previous studies, phage SM1 was found to be effective 
in animal S.maltophilia infection model with 184 PFU/cell burst size 
(Zhang and Li, 2013). However, the burst size of phage BUCT609 is 
382 PFU/cell, which was much higher than that of SM1. Meanwhile, 
given its temperature stability and wide pH tolerance, BUCT609 
shows promising potential to use against multi-drug resistant 
S. maltophila infections. In addition, phylogenetic tree and ANI 
results showed that phage BUCT609 is an independent new clade that 
can be classified in subsequent phage discoveries.

For Autographiviridae phages that can lyse Gram-negative 
bacteria, there are two systems for lysing bacteria: the holin-endolysin 
and pinholin-SAR endolysin pathways (Cahill and Young, 2019). In 
the former, holin first forms micron-scale pores in the inner 
membrane, releasing active endolysin into the periplasm to degrade 
peptidoglycan, thus completing the first step of lysing bacteria. 
According to genome analysis, the cleavage mechanism of phage 
BUCT609 was mainly mediated by holin protein encoded by ORF5. 
Endolysin ORF56 could promote the lysis of host bacteria as well. At 
present, there are many studies on holin protein, showing that holin 
protein can be used as a new antibacterial agent. HolGH15, the holin 
protein in Staphylococcus aureus phage GH15, can cause changes in 
the structural properties of Listeria monocytogenes leading to 

shrinkage, resulting in the release and removal of cellular contents 
and ultimately leading to the host death. HolGH15 (the final 
concentration: 240 μg/ml) can reduce L. monocytogenes (the initial 
concentration: 106 CFU/ml) to undetectable levels at 4°C (Song et al., 
2021), which shows that the holin protein of phage can potentially 
become a new type of antibacterial drug by spraying or soaking. 
BUCT609 can provide a new antibacterial agent in the field of 
antibacterial as well.

However, phage therapy has many challenges such as safety, 
ethics, intellectual property rights, and stability (Skurnik et al., 2007). 
Although this study initially explored the therapeutic effect of phage 
BUCT609 in mice, the stability of its treatment was not explored. In 
vivo experiments demonstrated that phages can reduce the bacterial 
load and weight of abscesses (Capparelli et al., 2007). At the same 
time, increasing evidence suggests that phages may have a major 
impact on the immune system by interacting with macrophages, 
neutrophils, and T-cell polarization (Chechushkov et al., 2021). Phage 
therapy as a potential regimen against drug-resistant bacteria still 
requires adequate clinical trials.

Conclusion

Phage therapy has become a new possibility to treat clinically 
drug-resistant bacteria. The diversity of phages may contribute to the 
development of phage-based therapies. In vivo animal studies 

A B

FIGURE 4

Phylogenetic analysis of phage BUCT609. (A) A phylogenetic tree was constructed based on the whole genome sequence by VICTOR 
which indicated phage BUCT609 could be a new species. (B) Percentage sequence similarity between phages calculated using VIDIRIC 
which shows phage BUCT609 could be a new clade. The horizontal and vertical coordinates indicate the corresponding phage 
Genebank number.
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demonstrated that phage BUCT609 as a new member to the 
S. maltophilia bacteriophage provided empirical data for phage 
cocktail therapy in combination with antibiotics against multi-drug 
resistant bacterial infections.
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survival rate of up to 80%, which was 30% higher than no treatment.
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