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Human immunodeficiency virus-1 (HIV-1) is the major cause of acquired
immunodeficiency syndrome (AIDs) worldwide. In HIV-1 infection, innate
immunity is the first defensive line for immune recognition and viral clearance
to ensure the normal biological function of the host cell and body health.
Under the strong selected pressure generated by the human body over
thousands of years, HIV has evolved strategies to counteract and deceive the
innate immune system into completing its lifecycle. Recently, several studies
have demonstrated that HIV capsid core which is thought to be a protector
of the cone structure of genomic RNA, also plays an essential role in escaping
innate immunity surveillance. This mini-review summarizes the function of
capsid in viral immune evasion, and the comprehensive elucidation of capsid-
host cell innate immunity interaction could promote our understanding of
HIV-1's pathogenic mechanism and provide insights for HIV-1 treatment in
clinical therapy.
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Introduction

Human immunodeficiency virus (HIV) is the major pathogen accounting for human
immunodeficiency syndrome, and innate immunity is the first defensive line against
pathogenic infection (Mogensen, 2009; Yin et al., 2020). The genic single-strand RNA
(ssRNA), double-strands DNA (dsDNA) transcripted from ssRNA or viral components of
HIV can act as pathogen-associated molecular patterns (PAMPs) that are recognized by
pattern recognition receptors (PRRs) on the host cell. PAMPs stimulate an immediate
immune response and activate the antiviral cascade to clear intra- and extra-cellular virions
(Le Sage et al,, 2014). During HIV-1 infection, PAMPs of each stage could be recognized
by different specific receptors. In the entry and uncoating stage, genomic ssRNA could
be detected by the RIG-I-like receptors (RLRs) family [retinoic acid-inducible gene
I (RIG-1) and melanoma-differentiation-associated protein 5 (MDA5)] and Toll-like
receptors (TLR) including TLR7 and TLR8 (Gringhuis et al., 2010; Muenchhoff et al., 2014;
Altfeld and Gale, 2015; Meas et al., 2020). While the innate immune activation by HIV RNA
is controversial, whether other uncharacterized RNA sensors are responsible for sensing
HIV-1 intron-containing RNA remains to be determined (Akiyama et al., 2018; McCauley
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et al., 2018). Recent studies demonstrated that HIV-1 recruits
cellular ~ 2’-O-methyltransferase ~ FTSJ3, leading to
2’-O-methylation of viral RNA and thereby escaping MDAS5-
dependent innate immune sensing in host cells (Ringeard et al,
2019). After entry, HIV-1 transcriptional product could
be recognized by interferon (IFN)-inducible protein 16 (IFI16),
DEAD-box helicase (DDX) family, and cyclic GMP-AMP synthase
(cGAS). Additionally, cGAS recognizes HIV-1 in the integration-
and translation-stages (Brai et al., 2020; Siddiqui and Yamashita,
2021). After immune activation, the host cell induces antiviral
signaling pathways to drive robust IFN, proinflammatory
cytokines, and chemokines production for efficiently inhibiting
HIV-1s replication (Thompson et al., 2014; Hoang and Paiardini,
2019). In addition to modulation of antiviral signaling pathways,
the restriction factors such as Serine Incorporator family
(SERING; Rosa et al,, 2015; Usami et al., 2015), apolipoprotein B
mRNA editing enzyme catalytic subunit 3 (APOBEC3s; Sheehy
etal., 2002), tripartite motif-containing protein 5a (Trim5a; Sayah
et al.,, 2004; Stremlau et al., 2004; Pertel et al., 2011), dGTP-
dependent deoxynucleotide triphosphohydrolase SAM domain,
HD domain-containing protein 1 (SAMHD1) and BST-2/tetherin
limit viral reproduction and spread through their unique manners
(Neil et al., 2008; Hultquist and Harris, 2009; Goldstone et al.,
2011; Hrecka et al., 2011; Laguette et al., 2011; Su et al., 2014; Yin
et al., 2020).

Under strong selection pressure, HIV has evolved strategies to
evade immune surveillance for its successful replication. The
HIV-1 accessory proteins involved in immune evasion have been
thoroughly researched for many years. For example, Nef can
exclude SERINC 3 and SERINC 5 from HIV virions (Jin et al.,
2020), while, Vif induces the degradation of APOBEC3s by
usurping the host CRL5 E3 ligase (Yu et al., 2003). Meanwhile, Vpr
targets host cell restriction factors, such as helicase-like
transcription factor (HLTF), tet methylcytosine dioxygenase 2
(TET2) or nuclear factor-kappa B (NF-kB) signaling pathway to
facilitate viral replication (Wang and Su, 2019; Yan et al., 2019;
Khan et al., 2020). Furthermore, Vpx, the homologous protein of
simian immunodeficiency virus (SIV) has the same ability to
selectively inhibit cGAS activity by targeting functional domain of
stimulator of IFN genes (STING) and triggers SAMHDI1
degradation (Hrecka et al., 2011; Laguette et al., 2011; Hofmann
etal,,2012; Wei etal., 2012; Su et al., 2019). Additionally, HIV Vpu
could counteract the antiviral effects from BST-2 and also exhibits
potent to inhibit IFN response by acting on NF-kB signaling
pathway (Van Damme et al., 2008; Douglas et al., 2009; Iwabu
et al,, 2009; Langer et al.,, 2019). Thus, in HIV infection, the
unstructured accessory proteins are broadly utilized to resist host
innate immunity through multifaceted strategies. However, the
anti-innate immunity of HIV-1’s structure protein—the capsid
(CA) protein has been barely reported. In recent studies, CA has
been identified as a restriction factor that participates in anti-
innate immune response during HIV-1’s lifecycle. Here, we review
the function of CA in HIV immune evasion, throughout
understanding of interaction between HIV CA protein and host
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cell innate immune surveillance will make HIV’s pathogenic
mechanism clearly, and also provide new sight for fighting AIDS
disease in clinical therapy.

Human immunodeficiency virus
capsid

During virus maturation, HIV structural polyprotein Gag
synthesized in the cytoplasm is proteolyzed by protease (PR) into
four domains-matrix (MA), CA, nucleocapsid (NC) and P6 with
two short peptides-SP1 and SP2 (Ono et al., 2004), ~250 CA formed
hexamers and 12 pentamers assembling into the fullerene-like, cone-
shaped core structure to enclose viral ribonucleoprotein complex
and associated proteins internally (Yang et al., 2012). CA composed
of 231 residues folds into two domains at both ends of the peptide
chain through a flexible linker (residues 146-150; Pornillos et al.,
2009; Rossi et al., 2021), N-terminal domain of CA (NTDs) which
contains seven o helices and a cyclophilin A (CypA)-binding loop
forms hexamers through an NTD-NTD interface (Gamble et al.,
1996), C-terminal domain of CA (CTDs) forms dimers with
adjacent hexamers through a CTD-CTD interface (Gamble et al.,
1997). The NTD-CTD interface formed by NTD and CTD from
two subunits is a crucial mechanical element for generating lattice
curvature, the inner structure formed by adjacent CA proteins
provides a platform for binding host cell factors to evade immune
sensors and complete the viral lifecycle (Bhattacharya et al., 2014).
Hexamers formed by CA interaction are linked together by
N-terminal residues of CA-CTD, and the lattice structure is
stabilized through intra-CA monomers modulated by water
molecules (Gres et al., 2015). Some amino acid residues in the CA
of pentamers have been confirmed to interact with hexamers, and
pentamers are localized at high curvature domains, suggesting that
hexamers may form the high curvature for pentamers to insert or
the pentamers themselves supply a high angle of curvature to
maintain the stability of mature core. Moreover, maintaining the
stability of the CA core is essential for viral biological functions,
alteration of stability would dramatically reduce HIV-1 infectivity
(Pornillos et al., 2011; Mattei et al., 2016; Dharan et al., 2017;
Achuthan et al,, 2019). In the past decade, CA core was thought to
be merely a container for viral RNA, but recently, multiple roles of
CA during infection have been identified. Importantly, CA-related
immune evasion has attracted considerable attention in many
research fields, and CA inhibitors have been thought to be a potential
antiviral target. Therefore, the exact role of CA in protecting HIV-1
from the innate immune activity is discussed below.

Capsid protects HIV from cGAS sensor

In HIV infection, cGAS is the best-studied receptor in host
innate immune responses (Gao et al., 2013; Herzner et al., 2015;
Sumner et al., 2020). At first, cGAS protein is recruited to the CA
in a polyglutamine-binding protein-1 (PQBP1) or Non-POU
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(Pit-Oct-Unc) domain-containing octamer-binding protein
(NONO)-dependent manner in the cytosol and nucleus
respectively, enabling cGAS molecules to recognize the reverse
transcriptional product of HIV (Yoh et al., 2015, 2022; Lahaye et al.,
2018). Subsequently, cGAS binds to viral dsDNA and produces a
second messenger 2"3'cGAMP. 2'3'cGAMP detected by ER-resident
STING and triggers STING translocation to Golgi, activating
TANK-binding kinase 1 (TBK1), leading to phosphorylation of
IFN regulatory factor 3 (IRF3) which is subsequently translocated
into the nucleus to activate the expression of IFN and
IFN-stimulated genes to resist HIV infection (Siddiqui et al., 2019;
Hopfner and Hornung, 2020). Additionally, the TLR and canonical
Hippo signaling pathway enhance cGAS sensing of HIV to
efficiently inhibit viral replication (Siddiqui and Yamashita, 2021).

During HIV infection, the viral CA core must maintain its
stability to ensure an efficient infection. CA-derived core structure
is required to protect the reverse transcription complex (RTC) and
pre-integration complex (PIC) from degradation by host
restriction factors (Francis and Melikyan, 2018). However, recent
study has demonstrated a new function of HIV-1 CA, suggesting
that CA protein plays an essential role in evading cGAS monitoring
(Sumner et al., 2020). Disrupting CA formation through inhibition
of HIV Gag cleavage by genetic manipulation (Gag mutant L3631
M3671) or lopinavir (a protease inhibitor) activates the cGAS
signaling pathway and significantly reduces HIV infectivity in
PMA-treated THP-1 and U87 cells. Transcriptional upregulation
of IFN-stimulated genes downstream of cGAS (C-X-C motif
chemokine ligand 10, IFN-induced protein with tetratricopeptide
repeats 2, and Myxoma resistance protein A) has been observed in
PMA-treated THP-1 cells, thus leading to a strong IFN response
after lopinavir treatment (Sumner et al., 2020). Similarly, small
molecule inhibitor PF-74 causes IFN-stimulated gene activation
in wildtype and MAVS™" cells, but not in cGAS™" cells, suggesting
that malformation of CA structure induces an innate immune
response via a cCGAS-dependent pathway (Kumar et al., 2018;
Siddiqui et al., 2019; Sumner et al., 2020). Importantly, HIV-1
infection does not trigger a cGAS-mediated immune response
(Cingoz and Goff, 2019; Elsner et al., 2020). While HIV-2 fails to
evade the immune recognition in macrophages and dendritic cells,
mainly because of distinct features of the CAs of HIV-1 and HIV-2
(Lahaye et al., 2013). The innate immune sensor of the HIV CA,
NONO, binds to the HIV-2 CA with more affinity than HIV-1 in
the nucleus, enabling sensing of HIV DNA and subsequent
activativation of cGAS-STING pathway (Lahaye et al., 2018).
HIV-1’s CA-dependent immune evasion strategy, where CA cloaks
viral DNA from cGAS sensing successfully explains this
phenomenon (Figure 1).

Capsid-mediated viral dependent factors
During HIV-1’s lifecycle, multiple virus-dependent factors of

the host cell could be hijacked at different steps to promote viral
replication through CA-dependent methods, some of which are

Frontiers in Microbiology

03

10.3389/fmicb.2022.1002476

manipulated to evade the immune response. Virus-dependent
factors that participate in immune evasion are introduced below.

Cleavage and polyadenylation specificity
factor subunit 6

Cleavage and polyadenylation specificity factor subunit 6
(CPSF6), a component of the cleavage factor 1 (CFIm), interacts
with CA protein and is strictly conserved in lentiviruses (Lee et al.,
20105 Saito et al., 2020). CPSF6 binds to HIV-1 CA through the
CTD of CA (Iwabu et al., 2009), and assists HIV-1 infection
during the uncoating steps (Saito and Yamashita, 2021). The
interaction between CPSF6 and HIV-1 CA is essential for
successful viral replication. Depleting CPSF6 induces strong IFN
activity, suggesting CPSF6 provides an advantage to HIV-1 for
avoiding immune activation. Compared to HIV-1 wildtype virus,
depleting connection between HIV-1 and CPSF6 using HIV-1 CA
mutants (N74D) is lethal for viral replication in primary human
monocyte-derived macrophages (MDM). N74D mutant triggers
IRF3 and RelA nuclear translocation, which activates the NF-xB
signaling pathway and ultimately stimulates strong IFN
production to suppress viral replication (Sumner et al., 2020).
Moreover, depleting the CPSF6-CA interaction leads to HIV-1
RTC and PIC accumulating at the nuclear envelope in
macrophages, while the IFN secretion induced by retention of
many subviral complexes in the cytoplasm also results in poor
infectivity (Bejarano et al., 2019).

Cyclophilin A

Cyclophilin A (CypA) belongs to the cellular cyclophilin
family, essential for viral replication in a variety of viruses, such as
hepatitis C virus (HCV), coronaviruses (CoVs) and HIV, and its
polymorphisms affect viral susceptibility and disease progression
(Le Sage et al., 2014; Mamatis et al., 2022). CypA interacts with
CypA binding loops at the N-terminal of HIV-1 CA, as described
above. The CypA-CA binding is crucial for HIV-1 replication in
primary human macrophages and dendritic cells, HIV-1 mutant
deficiency in CypA-CA binding stimulates type I IFN secretion
and induces an antiviral state. In MDM infection, the HIV-1
mutant P90A impairs CA-CypA interaction, which stimulates
IFN-f secretion and activates the immune response, resulting in
efficient suppression of viral infection (Sumner et al., 2020). In a
recent study, a CypA inhibitors, cyclosporine (CsA), and a
non-immunosuppressive analog of CsA, SmBz-CsA could alter
the CypA-CA affinity and elicit extreme antiviral activity in MDM,
they also induce robust IFN-f production and completely inhibit
HIV-1 infection (Li et al., 2009; Sumner et al., 2020). From the
above, it can be observed HIV-1 CA-CypA interaction is essential
for viral replication through protecting itself from innate immune
recognition, however, the excellent anti-HIV-1 activity of CypA
inhibitors in vitro is a promising prospect for clinical medicine
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The schematic of HIV-1's innate immune evasion in CA-dependent pathway. After the invasion, CA protects the HIV-1 virus after the invasion from
innate immune recognition and ensures it translocates into the nucleus to complete its lifecycle. Alteration of CA formation and CA- interaction by
genetic mutation or CA inhibitor could induce host cell IFN secretion through the cGAS-STING signal pathway. Disrupting CA interaction with
CypA, CPSF6 will stimulate NF-kB activity, and downstream IFN response leads to defects in HIV-1's infectivity. Furthermore, CA-CypA interaction
is essential for counteracting with Trim5a to keep the CA core intact and inhibit Trim5a-induced immune response through the NF-xB signal

development (Carnes et al, 2018). Moreover, CypA could
counteract Trim5a during HIV-1 infection, the exact function of
CypA facilitating HIV-1 to evade the Trim5« restriction is
discussed later (Li et al., 2016).

Nuclear pore components

The nuclear pore component or nucleoporin (NUP), a
component of the nuclear pore complex, could be manipulated by
HIV-1 during its nuclear import stage. Among the NUP family,
HIV-1 CA directly interacts with NUP153 and NUP 358, whereas
the other NUPs are thought to serve as co-factors by genome-wide
RNA interference screens (Kane et al., 2018). Depletion of CA
interaction with NUP 153 and NUP 358 by HIV-1 mutants N74D
or P90A leads to a strong IFN production, reducing viral
replication in MDM because NUP-CA interaction could efficiently
block nuclear translocation of IRF3 and NF-xB (Gres et al., 2015).
However, some studies have proposed that NUP-CA interaction
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is not the determining factor for immunosuppression, and the
immune activation caused by HIV-1 mutants is ascribed to a
defect of recruitment of CPSF6 through NUP358. Whether NUPs
directly modulate immune responses remains controversial, thus;
the exact mechanism of NUPs in immune evasion requires further
study (Rasaiyaah et al., 2013; Shen et al., 2021).

Myxovirus resistance protein B (MXB/MX2), a dynamin-like
GTPase, inhibits infection of HIV and primate lentivirus by
blocking their trafficking and nuclear entry steps (Goujon et al.,
2013; Kane et al.,, 2013; Liu et al., 2013; Wei et al., 2016; Yamashita
and Engelman, 2017; Betancor et al., 2019, 2021). After the
invasion, NUP153 and NUP 358 are manipulated by HIV-1 to
resist the IFN-induced MXB reaction to complete its lifecycle (Liu
et al.,, 2013; Fribourgh et al., 2014). Except for NUP153 and
NUP158, other NUP factors such as NUP62, NUP88, NUP93,
NUP153, NUP214, and NUP358 have been identified as HIV-1
co-factors in recent studies, which block MXB recognition and
assist HIV-1 in completing its nuclear transportation through
different NUP-dependent pathway (Engelman, 2021). It means
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that, if necessary, multiple NUP factors could be employed by
HIV-1 to evade MXB surveillance (Kane et al., 2018). Accordingly,
it is easy to elucidate why HIV-1 epidemic clades in different
regions exhibit variant characteristics of MXB-resistant activity
(Kane et al., 2018; Rossi et al., 2021).

Trimb5a

Trim5« is a non-human primate restriction factor that disrupts
reverse transcription and blocks viral infection during early
infection (Sayah et al., 2004; Berthoux et al., 2005; Novikova et al.,
2019). HIV-1 CA is captured by the SPRY domain of polymerized
Trim5a and causes premature uncoating, where the replicated
elements inside the cone-shaped core are exposed to host cell’s
cytoplasm and the reverse transcription terminated. Although
Trim5a exhibits a strong antiviral activity immediately after viral
infection, it is a pity that, the interaction between CA and its
co-factors results in the inability of human Trim5a (huTrim5«) to
bind to HIV-1 CA directly; thus, its suppression of HIV-1
replication is weak (Kim et al., 2019). Compared to that of the wild-
type virus, the HIV-1 mutant N74D bearing deficiencies in CPSF6
and CypA-interaction exhibits infectivity defect, whereas knockout
of huTrim5a rescues infectivity of N74D in human CD4* T cells,
but depletion of CPSF6 does not affect HIV-1 reverse transcription,
meaning that CPSF6 is not a key modulator against huTrim5x
restriction. Otherwise, the small molecule inhibitor CsA and
GS-Cyp Ai3 targeting CypA-CA interaction decrease HIV-1
infectivity in macrophages and CD4" T cells, respectively (Kim
et al., 2019), suggesting that CypA is an anti-HIV-1 target for
huTrim5a (Ganser-Pornillos and Pornillos, 2019; Selyutina et al.,
2022b). Moreover, in HIV-1 P90A mutant infection, Trim5ax acts
as PRR to induce IFN-f production through NF-kB and AP1
signaling pathway in a non-canonical autophagy-dependent
method (Saha et al., 2020), which means intact CA-CypA is pivotal
for resisting multiple innate antiviral pathways induced by
huTrim5a in HIV-1 infection. Although the CypA-CA interaction
protects HIV-1 from the restriction of Trim5x, CsA which has
been previously used in clinical trials targeting CypA-CA, exhibits
efficient anti-HIV-1 activity by triggering pre-mature uncoating
and innate immune responses (McArthur et al., 2019; Link et al.,
2020). This evidence demonstrates that Trim5a and CypA-CA
interaction is a promising anti-HIV target for further anti-HIV-1
medical development.

Disrupting stress granule

After viral infection, the virus-induced production of reactive
oxygen species and HIV-1 protease activity increase the
intracellular stress, which leads to the assembly of translationally
silent ribonucleoprotein and proteins into stress granule (SG; Le
Sage et al., 2014; Rao et al, 2018). Stress granule formation
suppresses viral replication, and therefore, HIV-1 manipulates
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multiple factors to disrupt SG production. The N-terminal CA of
Gag disrupts canonical type I SGs through interaction with the
host eukaryotic elongation factor 2 (eEF2; Valiente-Echeverria
et al., 2014), and non-canonical type II SGs are blocked by Gag
through disrupting hypophosphorylated 4EBP1 by targeting
eIF4E (Cinti et al,, 2016). Moreover, the interaction between CypA
with the N-terminal of Gag is essential for the immune sensing in
monocyte-derived dendritic cells. Importantly, CypA-CA binding
mutant HTV-1 G89A and CA inhibitor CsA cause HIV-1 losing
the ability of modulating SG production (Manel et al., 2010; Le
Sage et al., 2014; Cinti et al., 2016).

Discussion

As an extracellular intruder, HIV-1 needs to minimize the
cellular processes that induce innate immune responses to complete
its lifecycle. From the membrane to the nucleus, the virus must
undergo a long-range movement to arrive at its destination and
cloak itself perfectly to avoid PRR recognition (Sabo et al., 2013).
Under the selected pressure, HIV-1 has evolved unique strategies to
counteract the innate immune system to complete its successful
infection. The genetic material, accessory proteins, and replication-
associated elements (PAMPs) are packed inside the CA core to
deceive cGAS recognition. Additionally, the accessory protein,
including Vpr, Vpu, Vif, Vpx, and Nef are packaged into the
CA-derived core before its budding, to assist HIV in evading
immune surveillance, which makes the proper core stability import
for HIV-1 infection by keeping these accessory protein safely inside,
and the host cell-dependent factors strictly binds to CA to
counteract Trim5a for maintaining the stability of the viral structure
(Rose etal., 2021). HIV-1 depends on CA-derived core to avoid the
immune sensors encountered in host cytoplasm during its early
infection, which is consistent with a recent study that CA core
maintains its intact structure and escorts HIV-1 into the nucleus for
its efficient infection, and increasing evidence demonstrated that an
intact or nearly intact CA core passes through nuclear pore
complexes to enter the nucleus, suggesting that HIV-1 CA provides
unique strategies for protecting HIV-1 from innate immune
recognition (Christensen et al., 2020; Shen et al., 2021).

Because of CA’s important role in immune evasion, antiviral
research targeting CA protein attracts increasing attentions from
scientists and pharmaceutical institutions. Many small-molecule
inhibitors have been developed and exhibit efficient antiviral
activity in vitro and clinical trials. GS-CA and GS-62072,
developed from PF74, disrupt the CA interaction with CPSF6 and
NUP153, enhancing innate immune responses and ultimately
eliminating the HIV-1; additionally, the long-acting activity makes
them suitable for clinical treatment (Carnes et al., 2018). However,
breakthrough PF74
independent of reduction of PF74 binding, two SIVs that are not
sensitive to PF74 and GS-CA have been recently identified
(Siddiqui et al., 2019; Twizerimana et al., 2020). The newly
emerged immune evasion strategies of HIV-1 transmitted variant

some epidemic variants inhibition
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makes it difficult to develop broad-spectrum anti-HIV-1 medicine,
but additional studies targeting diverse HIV-lvariants may
uncover distinct mechanisms to escape restriction by these CA
inhibitors (Twizerimana et al., 2020; Saito and Yamashita, 2021).
Altough conformational changes induced by CA-mutant decrease
the sensitivity to CA inhibitor (Selyutina et al.,, 2022a), and
anti-HIV activity of CA inhibitor strictly dependent on cell types
(Twizerimana et al., 2020), it is promising that further study of
CA-related immune evasion will clearly eluciated HIV-1%s
pathogenic mechanism and provide a theoretical basis for
antiviral therapeutics.
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