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Fermented yellow wine lees (FYWL) are widely used to increase feed utilization and 

improve pig performance. Based on the preparation of co-FYWL using Bacillus 

subtilis and Enterococcus faecalis, the purpose of this study was to investigate 

the effects of co-FYWL on growth performance, gut microbiota, meat quality, 

and immune status of finishing pigs. 75 pigs were randomized to 3 treatments (5 

replicates/treatment), basal diet (Control), a basal diet supplemented with 4%FYWL, 

and a basal diet supplemented with 8%FYWL, for 50 days each. Results showed 

that the 8% FYWL group significantly reduced the F/G and increased the average 

daily weight gain of pigs compared to the control group. In addition, 8% FYWL 

improved the richness of Lactobacillus and B. subtilis in the gut, which correlated 

with growth performance, serum immune parameters, and meat quality. 

Furthermore, acetate and butyrate in the feces were improved in the FYWL group. 

Simultaneously, FYWL improved the volatile flavor substances of meat, increased 

the content of flavor amino acids, and played a positive role in the palatability of 

meat. In addition, FYWL increased serum IgA, IgM, IL-4 and IL-10 levels. Overall, 

the growth performance, the gut microbiota associated with fiber degradation, 

meat quality, and immune status were improved in the 8% FYWL group.
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Introduction

There is a shortage of feed resources in China, but the output of yellow distiller grains 
is enormous (Hu et al., 2014; Yao et al., 2021). Due to improper using, resources are wasted 
(Li et al., 2013). Yellow wine lees are rich in crude protein (Yao et al., 2018). The residual 
soluble dietary fiber in the production of yellow rice wine can be used as an energy source 
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for livestock and poultry (Wang et al., 2010), but its amino acid 
composition is unbalanced. Therefore, in recent years, researchers 
have adopted probiotic fermentation to improve the nutritional 
status of the feed. Studies have shown that feeding probiotic 
fermented diets can improve growth performance, feed 
conversion, nutritional digestion and gut health of finishing pigs 
(Thu et al., 2011).

Yellow wine lees are rich in dietary fiber (Choi et al., 2013). 
The prebiotics that are most often researched include dietary fiber 
(Gamage et al., 2018). The hindgut microbiota frequently ferment 
dietary fiber to produce microbial metabolites, including volatile 
fatty acids (VFA) (Tremaroli and Bäckhed, 2012; Slavin, 2013; 
Janssen and Kersten, 2015). Lactobacillus can improve blood 
biochemistry and antioxidant status as well as absorption of 
nutrients (Dowarah et  al., 2018). Animals given Lactobacillus 
FT28 have been shown to have greater villi height and crypt depth, 
indicating better nutritional use by the organism (Joysowal et al., 
2018). Probiotics produce lactic acid, which forms an acidic 
environment that inhibits the growth of mold in fermented feed 
(FF) and prevents nutrient loss from secondary fermentation 
(Yang et  al., 2006). Bacillus subtilis dietary supplementation 
enhances antioxidant capacity, immunological status, and growth 
performance, boosts SCFA synthesis, and regulates the gut 
microbiota (Ruiz Sella et al., 2021; Xu et al., 2021).

Therefore, in this experiment, yellow wine lees, one of the new 
alternative feed materials, and bran were used as fermentation 
substrates to prepare mixed feed through co-fermentation with 
B. subtilis and Enterococcus faecalis. The aim of this study is to 
investigate the effects of new mixed fermented diets on growth 
performance, meat quality, immune status and gut microbiota of 
finishing pigs.

Materials and methods

Fermented mixed feed preparation

B. subtilis ZJU12 (China General Microbiological Culture 
Collection Center NO:12852) was isolated from pickled 
vegetables. Enterococcus faecium was isolated from the laboratory 
of Zhejiang University. FYWL was carried out in Kesheng Feed 
Co., Ltd., Zhejiang, PR of China. 80% of yellow wine lees, and 20% 
of bran compose up a basic substrate, ending up with 35% per 
moisture content in sterile water. B. subtilis ZJU12 (3 × 108 cfu/g) 
and E. faecium (1 × 108 cfu/g) were added to the mixed substrate 

and fermented in a FF bag with a one-way exhaust valve at 30°C 
for 72 h. The nutritional composition analysis of the UFYWL and 
FYWL is shown in Table 1.

Experimental animals and experimental 
design

All steps were approved by the Institutional Animal Care and 
Use Committee at Zhejiang University. Seventy-five fattened pigs 
(Duroc × Long White × Large White) with an average initial weight 
of 89.59 ± 1.30 kg were randomly divided into three treatment 
groups. Each treatment consisted of five replicates per group, with 
five pigs per replicate. The three treatments were the control group 
on the basal diet and the experimental group with 4% or 8% 
FYWL. Six pigs were selected from each treatment after 50 days 
slaughtered to determine carcass and meat quality. The diets in the 
experiment followed NRC (2012). The composition and 
nutritional value of the diets are shown in Table 2. Feed and water 
were provided ad libitum throughout the experiment.

Growth performance

Feed was recorded daily and pigs were weighed on the first 
and last day of the experiment. Average daily feed intake (ADFI), 
average daily gain (ADG) and feed/gain ratio (F/G) were 
then calculated.

Sample collection

Six pigs in each group were randomly selected and fasting for 
16 hours before slaughter on the same day, and blood was 
collected. Then the serum was separated and 
stored at −80°C. Samples of the longest dorsal muscle (LM) 
were collected to determine pork quality, amino acids, 

TABLE 1  The chemical analysis of the UFYWL and FYWL.

Item UFYWL FYWL

Crude protein, % 24.39 ± 0.62b 29.43 ± 0.53a

TCA-SP, % 4.14 ± 0.42b 7.32 ± 0.39a

Small peptides, % 2.11 ± 0.45b 3.79 ± 0.47a

Reducing sugar, % 2.81 ± 0.15b 3.23 ± 0.23a

CF, % 5.28 ± 0.55 5.17 ± 0.45

ADF, % 4.77 ± 0.55a 4.46 ± 0.48b

NDF, % 12.24 ± 1.13a 12.03 ± 1.35b

Total P, % 0.57 ± 0.03 0.64 ± 0.05

pH 4.02 ± 0.01 4.01 ± 0.01

Enterococcus faecalis, cfu/g - 2.9 × 108

Bacillus subtilis, cfu/g - 2.2 × 107

Analyzed values determined in duplicate. Means followed with different superscript 
letters (a, b) within each line are significantly different (p< 0.05).

Abbreviations: FF, Fermented feed; UFYWL, Unfermented yellow wine lees; 

FYWL, Fermented yellow wine lees; EE, Ether extract; AA, Amino acid; CP, 

Crude protein; TCA-SP, Trichloroacetic acid soluble protein; CF, Crude fiber; 

ADF, Acid detergent fiber; NDF, Neutral detergent fiber; AOAC, Association 

of Official Analytical Chemists; SOD, The activities of superoxide dismutase; 

GSH-Px, Glutathione peroxidase; CAT, Catalase; MDA, Malonaldehyde; T-AOC, 

Total antioxidant capacity.
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Inosine-5′-monophosphate, alcohol, aldehyde, and ketone. Fresh 
feces were collected daily for 5 days before slaughter, part of which 
was stored at −20°C to determine the apparent digestibility of 
nutrients, and part of which was stored at −80°C for 
determining SCFA.

Chemical analysis

According to the AOAC International recommendations, the 
fodder was evaluated for CP, ether extract, NDF, ADF, Ca, and 
total P. The endogenous indicator method was used to determine 
the contents of crude protein, crude fat, calcium, phosphorus and 
crude fiber in feces (Verschuren et al., 2021). The feces used to 
measure SCFA were filtered and determined by capillary GC after 
filtering (GC-2010 plus; Shimadzu, Kyoto, Japan) (Yang et  al., 
2020; Zhao et al., 2022). Observe the intestinal morphology with 
hematoxylin and eosin staining (Cao et al., 2019) by transmission 
electron microscopy.

Inosine-5′-monophosphate was measured according to the 
method of Lee et  al. (2017). The determination of alcohol, 

aldehyde, and ketone was carried out with HS-SPME-GC–MS (Li 
et al., 2022). And the pretreatment and determination of amino 
acids were performed according to the method of “Determination 
of amino acids in food” (GB/T 5009.124–2003). pH values of meat 
were measured using a pH meter. a*, b*, and L* of samples from 
the different pigs were measured using a colorimeter. To determine 
drip loss, meat was measured by using EZ-DripLoss method 
(Huang et al., 2020).

The levels of serum IL-4, IL-6, and IL-10 were measured 
according to the instructions using the pig source assay kit 
(Jiangsu Meibiao Biotechnology Co., Ltd., Jiangsu P.R. China). 
SOD, GSH-Px, CAT, MDA, and T-AOC were detected by using 
commercial assay kits (Nanjing Jiancheng Bioengineering 
Institute, Nanjing, China) according to the instructions.

Microbial analysis of feces

FastDNA SPIN Kit for Soil (MP Biomedicals Ltd., 
United States) was used to extract the total genomic DNA from 
the feces samples. The V3-V4 gene region of the bacterial 16S 
rRNA gene was amplified with the primers 338F 
(5’-ACTCCTACGGGAGGCAGCAG-3′) and 806R (5’-GGA 
CTACHVGGGTWTCTAAT-3′). A PCR was performed at 95°C 
for 3 min, followed by 27 cycles of denaturing at 95°C for 30 s, 
annealing at 55°C for 30 s and extension at 72°C for 45 s, and 
single extension at 72°C for 10 min, and 10°C until halted by the 
user. PCR products were then extracted, purified and quantified. 
Purified amplicons were collected and sequenced on the Illumina 
MiSeq PE300 platform (Illumina, San Diego, United States). The 
raw reads were deposited into the NCBI Sequence Read Archive 
(SRA) database (Accession Number: PRJNA860351). At last, the 
data were processed using the QIIME package (V1.7.0).1

Statistical analysis

All data were statistically analyzed using SPSS 19.0 
software. One-way ANOVA and Duncan test were used to 
determine the mean difference. At p  < 0.05, the difference 
between treatments was significant. Bar graphs were generated 
in GraphPad Prism 7.

Results

The chemical analysis of the UFYWL and 
FYWL

Table  1 shows the nutritional content of UFYWL and 
FYWL. FYWL had the higher content of CP, TCA-SP and P 

1  http://qiime.org/scripts/split_libraries_fastq.html

TABLE 2  The composition and nutritional content of the diet.

Item Control 4%FYWL 8%FYWL

Ingredients, %

Corn 47.50 44.10 40.60

Barley 15 15 15

Peeled soybean meal 10 9 6

Rice bran 8 8 8

Rice bran meal 8 8 8

Wheat 5 5 5

Fermented yellow wine lees - 4 8

Premix 4 4 4

Soya oil 2.50 2.90 2.90

Puffed soybean - - 2.50

Total, % 100 100 100

Nutrition composition

GE, MJ/kg 14.11 14.12 14.21

CP, % 12.22 12.41 12.45

CF, % 4.52 4.28 3.96

Ca, % 0.79 0.79 0.80

Total P, % 0.73 0.73 0.73

Phe, % 0.52 0.51 0.55

Lys, % 1.49 1.49 1.50

Leu, % 0.81 1.02 1.06

Thr, % 0.54 0.53 0.53

Pro, % 0.65 0.65 0.68

Ala, % 0.72 0.85 0.89

Provided quantities of the following vitamins per kilogram of the complete diet: 6480 
I.U. (international units) Vitamin A, 2800 I.U. Vitamin D3, 26 mg Vitamin E, 2 mg 
Vitamin K3, 50 mg Vitamin B1, 4 mg Vitamin B2, 3.0 mg Vitamin B6, 0.03 mg Vitamin B12, 
23 mg D-Pantothenic acid, 20 mg niacin, 1.2 mg Folic acid, 0.2 mg Biotin, 300 mg 
Choline chloride, 95 mg copper sulfate, 200 mg Ferrous Sulfate, 0.35 mg Potassium 
iodide, 30 mg Manganese Sulfate, 0.3 mg Sodium selenite, 100 mg Zinc sulfate.
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compared to the UFYWL, which were 20.66, 76.81 and 12.28% 
higher than that of UFYWL, respectively.

Effects of supplementation with FYWL on 
the growth performance of finishing pigs

Compared with the control group, there was no significant 
difference in ADFI and ADG among the groups (p > 0.05), but 
FYWL group tended to increase the average daily gain and daily 
feed intake, and the 8% FYWL group markedly reduced F/G 
(p < 0.05; Table 3).

Effect of FYWL on digestibility and 
intestinal morphology of finishing pigs

As shown in Figure  1A, the addition of FF to the diet was 
beneficial in improving the nutrient digestibility of pigs, and the 
FYWL improved the apparent nutrient digestibility of crude 
protein, crude fat, calcium, phosphorus and crude fiber. Among 
them, the apparent digestibility of crude protein, crude fat, calcium, 
and crude fiber was best improved by adding 8% FYWL to the diet 
compared with the control group. AS shown in Figures 1B–D, we 
can visually see the villi height and crypt depth. From Figures 1E,F, 
it can be seen that the FYWL group can significantly improve the 
villi height and the ratio of villus height to crypt depth, and there 
was no significant difference between the 4% FYWL and 8% FYWL.

Effect of FYWL on gut microbiota of 
finishing pigs

Three groups of pig manure were sequenced to achieve Good’s 
coverage of 0.99 (Figure 2A), suggesting that the sequencing depth 
is sufficient for microbiological structural analysis. To explore the 
diversity of the microbial community, we examined α-diversity 
indices at the species level. The results showed that the control 
group was significantly less abundant than the 8% FYWL 
(Wilcoxon rank-sum test p < 0.05; Figure 2A). In addition, the 
FYWL showed a tendency to increase in the Ace index, Chao1 
index, and Shannon index. This suggests that FYWL may increase 

the gut microbial diversity in pigs. Venn (Figure 2B) shows the 
shared and specific OUTs of different groups. The unique OUT 
numbers of the control group, the 4%FYWL and the 8% FYWL, 
were 17, 25 and 33, respectively, and the number of common 
OUTs of the three groups is 770. To understand differences in 
microbial composition between the three groups, we calculated 
Bray-Curtis distances at the species level in each sample group as 
part of the β-diversity measures. Principal coordinates analysis 
(PCoA) (Figure 2C) revealed significant differences between the 
three groups. Analysis of similarity (ANOSIM) analysis also 
showed that the microbial composition of the different groups was 
significantly different (p < 0.05).

At the phylum level and genus level, the microbial composition 
differed between treatment groups (Figure  3). Firmicutes, 
Bacteroidota, and Spirochaete are the dominant microflora of 
fattening pigs. Clostridium_sensu_stricto_1, Terrisporobacter, 
norank_f__Muribaculaceae, and Lachnospiraceae_XPB1014_group 
decreased. Figure 3C shows that the FYWL group increased the 
abundance of Fibrobacterota (p < 0.05), Figure 3D showed that 
Lactobacillales, Prevotella, Coprococcus, Bacilli, dgA-11 gut group, 
Bacteroides, Sphaerochaeta, and Negativibacillus (p < 0.05) 
abundances. We performed LDA coupled with effect size (LEfSe) 
on the taxa with LDA scores greater than 2.5, and the results are 
shown in Figure 3E. The most influential bacterial group structure 
in the Control was Turicibacter, Eubacterium_coprostanoligenes, 
and Escherichia-Shigella, The most influential genera on 
the 4% FYWL were Phascolarctobacterium, streptococcus-
hyointestinalis,prevotellaceae, Rikenellaceae, dgA-11 gut group, 
Prevotellaceae UCG 003, Bacteroides, Alloprevotella, Sphaerochaeta, 
Parabacteroides. The most influenced by the 8% FYWL 
group was Lactobacillus_amylovorus, Lactobacillales, Prevotella, 
Frisingicoccus, Bacilli, Treponema_porcinum.

Effect of FYWL on faecal SCFAs of 
finishing pigs

The content of short-chain fatty acids (SCFAs) in the feces is 
shown in Table 4. 8% FYWL group had significantly higher acetic 
acid and butyric acid content than the Control (p < 0.05). 
Meanwhile, propionate, isobutyrate, valerate, and isovalerate have 
an increasing trend in the FYWL group.

Effects of FYWL on the meat quality of 
finishing pigs

The 8% FYWL group significantly improved the marbling 
score, meat color score, a* (p < 0.05). There was also a facilitation 
effect on the loin eye muscle area. FYWL had a significant increase 
in intramuscular fat (p < 0.05) and inosine-5′-monophosphate 
content (p < 0.05) compared to the control group (Table 5).

The content of amino acids in muscle, especially flavor amino 
acids, such as Asp., Pro, Glu, Gly, Thr, Ser and Ala, was closely 

TABLE 3  Effects of supplementation with FYWL (4 and 8%) on the 
growth performance in finishing pigs.

Item Control 4%FYWL 8%FYWL

Initial body weight, kg 89.27 ± 2.11 89.30 ± 0.38 90.20 ± 1.21

Final body weight, kg 125.28 ± 0.93 126.05 ± 1.3 129.63 ± 2.51

ADFI, kg/d 2.78 ± 0.01 2.81 ± 0.02 2.82 ± 0.01

ADG, kg/d 0.92 ± 0.01 0.93 ± 0.01 0.95 ± 0.02

F/G 3.03 ± 0.02a 3.01 ± 0.04a 2.98 ± 0.06b

The data is the mean of 5 replicates per treatment. Means without a common letter are 
significantly different (p < 0.05).
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related to the flavor of the meat. As shown in Table 6, 8%FYWL 
was the most effective for the improvement of flavor and 
indispensable amino acids in muscle. The changes in volatile 
flavor substances are shown in Supplementary Material. In 
comparison, pigs fed FYWL showed an improvement in volatile 
flavor compounds. Specifically, the addition of 8% FYWL to the 

feed significantly increased the content of aldehydes such as 
hexanal, heptanal, acetaldehyde (p < 0.05), and significantly 
increased the content of (E)-3-octen-2-ol, cis-menthyl-2,8-dienol 
(p < 0.05), and 2-pentylfuran (p < 0.05). The experimental results 
showed that 8% FYWL had a better enhancement effect on the 
enhancement of volatile flavor substances.

A

B C D

E F

FIGURE 1

Nutrient digestibility and jejunal morphology. (A) Effect of fermented feed on the apparent digestibility of intestinal nutrients in fattening pigs, CP, 
crude protein; EE, ether extract; CF, crude fiber. (B–D) Pig intestine stained with H&E. (E,F) Effect of fermented feed on the length of intestinal villi 
and depth of crypt in finishing pigs. *, **, and *** represented significant differences (p < 0.05), (p < 0.01) and (p < 0.001) from indicated control 
groups, respectively.
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Effects of FYWL on serum antioxidant 
ability and immunity of finishing pigs

Compared to the control group, T-AOC, GSH-Px, and CAT 
activities were significantly higher (p < 0.05) in the pigs fed 8% 

FYWL, and MDA content was significantly lower (p < 0.05) in the 
pigs fed 8% FYWL (Table 7).

For serum immunity (Table 8), FYWL significantly increased 
the level of IL-4. The level of IL-6 was significantly decreased 
(p < 0.05). Serum indicators were measured to assess serum 

A

B C

FIGURE 2

Diversity and composition of microbiota in different groups. (A) Column of α diversity indices of bacterial community based on 16S rRNA 
sequencing. (B) Venn diagram. (C) Principal co-ordinates (PCoA) analyzes.
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immunoglobulin concentration. Differences in IgG levels between 
the groups were not significant, but IgA and IgM were significantly 
increased in 8% FYWL group (p < 0.05).

Spearman’s correlation among gut 
microbiota, meat quality, serum index, 
and SCFA

Analysis of Spearman correlation to study the relationship 
among gut microbiota, meat quality, serum index, and SCFA 

(Figure 4). Lactobacillus, which was enriched in the 8% FYWL group 
and positively correlated with intramuscular fat, IL-10, meat color 
score, lgG, IL-4, butyrate, propionate, isobutyrate (p < 0.05), was 
positively related to valerate, acetate (p < 0.01) and was a negative 
correlation with IL-6 (p < 0.05). Prevotella enriched in FYWL was 
positively correlated with lgM, IL-4, a* (p < 0.05), and negatively with 
IL-6 (p < 0.05). On the contrary, Ruminococcaceae, Lachnospiracea, 
and Eubacterium coprostanoligenes were abundant in control group. 
Ruminococcaceae, and Lachnospiraceae had a passive correlation 
with valerate, butyrate, acetate, propionate (p < 0.05). Interestingly, 

A C

B

E

D

FIGURE 3

Effect of different feeds on the relative abundance of different bacterial species. (A) Phylum-level of the bacterial community in feces. (B) Genus-level 
of the bacterial community in feces. (C) Phylum-level in Kruskal–Wallis H. (D), Genus-level in one-way ANOVA. (E) Linear discriminant analysis LDA 
scores (>2.5) were computed for features. Letters represented the taxonomy of the bacteria: p, phylum, c, class; o, order; f, family; g, genus.
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TABLE 8  Effect of FYWL on serum immunity.

Item Control 4%FYWL 8%FYWL

IL-6, pg./mL 1215.33 ± 69.02a 1118.52 ± 69.33b 1039.60 ± 46.38c

IL-4, pg./mL 94.88 ± 3.69b 100.36 ± 3.12b 110.50 ± 5.37a

IL-10, pg./mL 706.03 ± 14.08 729.62 ± 12.42 732.05 ± 7.38

lgA, g/L 0.59 ± 0.05c 0.61 ± 0.07b 0.63 ± 0.03a

lgM, g/L 0.28 ± 0.01c 0.34 ± 0.02b 0.36 ± 0.01a

lgG, g/L 0.90 ± 0.06 0.93 ± 0.07 0.98 ± 0.07

The data is the mean of 6 replicates per treatment. Means without a common letter are 
significantly different (p < 0.05).

Eubacterium coprostanoligenes were negatively correlated with 
butyrate, acetate, and propionate (p < 0.05).

Discussion

In this study, yellow wine lees (YWL) co-fermented by B. subtilis 
and Enterococcus faecalis could regulate growth performance, 
intestinal flora, meat quality, and immune status of finishing pigs. 
Interestingly, the beneficial effect of 8% FYWL was superior to 4% 
FYWL. YWL is the main by-product of yellow rice wine industry, 
and carbohydrates can be used as an important energy source for 
microorganisms. Its amino acid composition is unbalanced, and 
improper treatment of residual alcohol may cause intestinal diseases 
in animals. The fermentation of probiotics improved the crude 
protein and polypeptide content of YWL with high efficiency. The 
results showed that FYWL contained more proteins and TCA-SP 
compared to YWL. Crude protein, acid-soluble protein, ANF, and 
pH are important indicators to assess the nutritional value of feeds. 
TCA-SP are easily available in the intestine and have antioxidant and 
immunomodulatory functions (Gilbert et al., 2008). Degradation of 
macromolecular proteins, including antigenic proteins, leads to an 
increase in TCA-SP. Carbohydrates are used by probiotics leading to 
an increase in bacterial protein is the main reason for triggering an 
increase in crude protein in FFs, B. subtilis secretes proteases to 
degrade macromolecular proteins leading to an increase in 
TCA-SP. Our results showed that FYWL contained more CP and 
TCA-SP than UFYWL. In addition, B. subtilis can also secrete 
cellulase, hemicellulase and xylanase to increase soluble dietary fiber 
in feeds. Overall, the synergistic fermentation of bacteria and 
enzymes improves protein quality by degrading anti-nutritional 

TABLE 4  Effect of FYWL on content of SCFA.

Item Control 4%FYWL 8%FYWL

Acetate, mg/g 2.56 ± 0.43b 2.90 ± 0.28b 3.48 ± 0.23a

Propionate, mg/g 1.43 ± 0.31 1.53 ± 0.17 1.69 ± 0.26

Isobutyrate, mg/g 0.15 ± 0.04 0.17 ± 0.04 0.20 ± 0.03

Butyrate, mg/g 0.83 ± 0.17b 0.91 ± 0.13ab 1.09 ± 0.07a

Valerate, mg/g 0.28 ± 0.03 0.29 ± 0.04 0.31 ± 0.03

Isovalerate, mg/g 0.17 ± 0.07 0.21 ± 0.01 0.22 ± 0.05

The data is the mean of 6 replicates per treatment. Means without a common letter are 
significantly different (p < 0.05).

TABLE 5  Effect of FYWL on meat quality of finishing pig.

Item Control 4%FYWL 8%FYWL

Live weight, kg 131.08 ± 3.38 131.00 ± 2.55 131.17 ± 1.86

Carcass weight, kg 95.92 ± 1.72 95.42 ± 2.15 97.25 ± 1.04

Dressing percentage, % 0.73 ± 0.03 0.73 ± 0.01 0.74 ± 0.01

Drip loss,% 3.29 ± 1.85 3.12 ± 1.91 2.42 ± 0.58

Backfat thickness, mm 25.11 ± 4.16 26.82 ± 2.44 29.25 ± 3.42

Loin eye area,cm2 63.60 ± 1.29 66.97 ± 5.26 67.90 ± 8.80

Intramuscular fat,% 1.71 ± 0.13b 2.10 ± 0.25a 2.15 ± 0.08a

Marbling score 1.90 ± 0.42ab 1.90 ± 0.22ab 2.60 ± 0.55a

Inosine-5′-

monophosphate, mg/g

1.98 ± 0.20c 2.05 ± 0.32b 2.26 ± 0.50a

Meat color score 2.08 ± 0.49b 2.58 ± 0.58ab 3.08 ± 0.58a

L* 47.79 ± 3.59 46.73 ± 5.55 46.28 ± 2.16

a* 10.48 ± 0.74b 12.24 ± 1.09ab 13.01 ± 2.36a

b* 10.09 ± 1.27 9.45 ± 1.04 9.25 ± 0.50

pH 5.48 ± 0.09 5.51 ± 0.11 5.56 ± 0.17

The value is the average of 6 repetitions per treatment. No identical letter indicates 
significant difference (p < 0.05). L* indicates lightness, while a* and b* indicate 
chromaticity.

TABLE 6  Effect of FYWL on amino acid content of meat.

Item Control 4%FYWL 8%FYWL

Asp 2.25 ± 0.03c 2.36 ± 0.07b 2.53 ± 0.06a

Ser 0.97 ± 0.06b 1.03 ± 0.06ab 1.06 ± 0.04a

Glu 3.98 ± 0.02b 3.98 ± 0.03b 4.17 ± 0.04a

Gly 1.00 ± 0.03b 1.04 ± 0.02ab 1.05 ± 0.04a

Ala 1.25 ± 0.17b 1.39 ± 0.06ab 1.47 ± 0.04a

Cys 0.39 ± 0.02 0.36 ± 0.04 0.34 ± 0.04

Tyr 0.82 ± 0.01 0.83 ± 0.04 0.86 ± 0.04

Pro 0.90 ± 0.03 0.90 ± 0.02 0.91 ± 0.05

Thr 1.11 ± 0.07b 1.18 ± 0.03ab 1.21 ± 0.04a

Val 0.46 ± 0.04c 0.55 ± 0.02b 0.60 ± 0.02a

Met 1.19 ± 0.05a 1.09 ± 0.05b 1.06 ± 0.05b

Ile 1.18 ± 0.06a 1.11 ± 0.06ab 1.04 ± 0.04b

Leu 1.88 ± 0.06c 1.98 ± 0.06b 2.11 ± 0.04a

Phe 0.92 ± 0.01b 0.94 ± 0.05b 1.04 ± 0.09a

Lys 2.17 ± 0.05c 2.29 ± 0.06b 2.41 ± 0.08a

His 1.08 ± 0.09 1.07 ± 0.05 1.06 ± 0.05

Arg 1.50 ± 0.06 1.54 ± 0.08 1.59 ± 0.08

The data is the mean of 6 replicates per treatment. Means without a common letter are 
significantly different (p < 0.05).

TABLE 7  Effects of FYWL on serum antioxidant ability of finishing pigs.

Item Control 4%FYWL 8%FYWL

T-AOC, U/mL 2.43 ± 0.08b 2.54 ± 0.12ab 2.64 ± 0.07a

GSH-Px, U/mL 813.01 ± 5.63b 817.68 ± 6.07b 835.39 ± 4.63a

CAT, U/mL 5.52 ± 0.14c 5.73 ± 0.15b 6.43 ± 0.11a

SOD, U/mL 60.57 ± 2.03 61.53 ± 1.71 62.23 ± 1.71

MDA, nmol/mL 2.54 ± 0.09a 2.52 ± 0.07ab 2.41 ± 0.07b

The data is the mean of 6 replicates per treatment. Means without a common letter are 
significantly different (p < 0.05).
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factors and fiber, which in turn enhances the nutritional value of 
feeds. It helps to improve the digestibility of nutrients in animals.

One study noted that due to the enrichment of probiotics on the 
surface and inside the feed and the secretion of extracellular enzymes 
or organic acids by probiotics, this change is more favorable for the 
digestive enzymes to work and improve the nutrient utilization of the 
animal (Xie et al., 2021). Fiber digestibility in pigs is mainly derived 
from the hindgut flora, and it has been reported that pigs provided 
with 19.10% dietary fiber contained higher intestinal microbial 
richness. At the genus level, compared with the control group, the 
number and types of several fiber-degrading bacteria related to 
carbohydrate metabolism and energy metabolism increased (Pu 
et al., 2020). In addition, fiber induced an increase in fiber-degrading 
bacteria, promoting VFA metabolism, which may help Suhuai pigs 
grow. It has been suggested that dietary corn bran may improve the 

growth performance of pigs by increasing butyrate production. 
Specifically, the Lactobacillus in fermented yellow wine lees promote 
butyric acid production and increase feed utilization efficiency (Lin 
et al., 2020; Direkvandi et al., 2021).

The increase in the ratio of villus height to crypt depth indicates 
that the digestion and absorption of nutrients in the small intestine 
are enhanced. The results of this study suggest that fermented wine 
lees can improve intestinal morphology, increase the height of 
intestinal villi and decrease the depth of the crypt, thus increasing the 
villi to crypt ratio. This also explains one of the reasons for the 
increased digestibility in the FYWL group (Hedemann et al., 2003). 
Bacteria capable of producing SCFAs were found to be beneficial in 
improving the efficiency of feed utilization. Meanwhile, the 
contribution of cellulosic bacteria to SCFA is significant and will 
increase the efficiency of feed utilization by the host.

FIGURE 4

Spearman’s correlation among gut microbiota, serum index, meat quality and SCFAs. * and ** represented significant differences (p < 0.05) and 
(p < 0.01) from indicated control groups, respectively.
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It was found that the more bacteria capable of producing 
SCFA, the higher the efficiency of feed utilization (Tan et al., 2017; 
Yang et al., 2017; Quan et al., 2018). The FF can improve animal 
health, intestinal morphology and immunity (Sun et al., 2015; Liu 
et al., 2017; Li et al., 2019; Suda et al., 2021) by affecting intestinal 
flora, so we  also measured intestinal flora to investigate the 
potential causes affecting the apparent indicators of pigs.

The sobs index showed a significant increase in gut microbial 
diversity in the 8% FYWL. The increase in microbial diversity 
contributed to the improvement of the intestinal condition. The 
low pH and probiotics from FYWL prevented pathogenic 
infections and improved the gut health (Missotten et al., 2015). The 
results of the LEFSe analysis showed that Bacteria capable of 
digesting fibers in the control group included the genus 
Ruminiclostridium (Wang et  al., 2021). The abundance of 
Ruminococcus was positively correlated with TNF-α, a common 
pro-inflammatory factor. Previous studies have shown that 
enrichment of this family is associated with inflammation of the 
colonic mucosa (Willing et  al., 2010). The 4% FYWL was 
significantly enriched with Prevotella and Phascolarctobacterium. 
Prevotella can degrade mucin (Wright et al., 2000; de la Cuesta-
Zuluaga et  al., 2017), has a growth-promoting effect on the 
organism, and is capable of producing SCFAs (Li et al., 2020). This 
bacterium is usually associated with fiber-rich feeds (Wu et al., 
2011). Phascolarctobacterium was positively associated with acetic 
acid, propionic acid and total VFA production and it has synergistic 
effect with fiber degradation. The 8% FYWL was significantly 
enriched with Lactobacillus amylovorus, Lactobacillales and Bacilli. 
L. amylovorus can effectively utilize dietary fiber and 
oligosaccharides, and its metabolites help prevent pathogenic 
bacteria-induced damage to the intestinal barrier (Trevisi et al., 
2018). The increased abundance of Lactobacillus can effectively 
regulate the intestinal microbiota and reduce pH. FYWL can 
effectively prevent pathogenic infections by lowering pH 
(Missotten et  al., 2015). The increase in the abundance of 
Lactobacillus can effectively regulate the immune system. Also, the 
massive proliferation of beneficial bacteria can competitively 
adhere to intestinal mucosal cells and reduce the chances of 
pathogenic bacteria colonization (Valeriano et al., 2017). With the 
use of probiotic FFs, many studies have demonstrated the 
promotion effect of B. subtilis on animal growth performance 
(Bader et al., 2012; Liu et al., 2012; Chen and Yu, 2020), and even 
more, studies have demonstrated the improvement of growth 
performance under heat stress and immune stress (Musa et al., 
2019; Sokale et al., 2019; Abdelqader et al., 2020). In line with this 
result, our study demonstrated that the addition of B. subtilis was 
effective in increasing ADG, ADFI and decreasing F/G, which was 
related to B. subtilis metabolites such as extracellular digestive 
enzymes and antifungal proteins (Kim et al., 2004; Sahu et al., 
2008). Adding B. subtilis to the feed also enhances the immunity 
(Dong et al., 2020; Guo M. et al., 2020) and improves the metabolic 
function of the intestine (Xu et al., 2018; Rodrigues et al., 2020). 
Serum immunoglobulins, especially IgA, IgG, and IgM, usually 
respond to the immune status of the organism (Balan et al., 2019). 

In agreement with previous studies (Fazelnia et al., 2021), the levels 
of IgA and IgM were markedly increased in the experimental 
group supplemented with B. subtilis. This reflects the enhanced 
immune function of the organism.

Some researchers have indicated that Lactobacillales can 
improve the carcass quality and physicochemical properties, 
sensory attributes (juiciness and appearance) of pork. Animals 
given P. acidilactici FT28 showed higher total ash and CP 
percentages in their meat (P < 0.05) (Joysowal et al., 2018). Some 
studies have shown that animals treated with Bacillus sp. The meat 
gets higher protein and amino acid content, which is consistent 
with our findings (Musa et al., 2019). It has been reported that 
feeding FF can improve meat color, which is consistent with our 
experimental results (Guo S. et al., 2020). Muscle fat content is 
important for evaluating the various sensory qualities of meat, 
such as tenderness, flavor and juiciness (Hocquette et al., 2010; 
Van Elswyk and McNeill, 2014). FYWL affects finishing pigs’ meat 
quality by influencing the muscle’s fat deposition (Yin et al., 2017). 
A study applied to finishing pigs had similar results to ours. The 
article effectively improved meat quality through SCFA 
supplementation and verified that SCFA improves carcass traits 
and meat quality in pigs by regulating fat metabolism (Zhang 
et al., 2011; Jiao et al., 2021).

Serum immunoglobulins are important immunoreactive 
molecules. The results of this study showed that the levels of IgA 
and IgM were markedly higher in the FYWL group compared to 
the control group. FYWL with B. subtilis was effective in increasing 
the level of immunoglobulins and decreasing the level of 
pro-inflammatory factors. This is consistent with the previous 
results (Xu et  al., 2021). In addition, it has been reported that 
dietary fiber improves the immune performance by regulating the 
secretion of butyric acid to inhibit the secretion of pro-inflammatory 
factors and promote the secretion of anti-inflammatory factors. 
Compared to control, pigs supplemented with FYWL in this study 
observed increased serum levels of IL-4, and IL-10. The reduction 
in IL-6 suggests FYWL may reduce inflammatory responses 
without antibiotics. FYWL improves immunity by SCFAs in the 
FYWL group, especially acetate and butyrate (Parada Venegas et al., 
2019; Luu et  al., 2020). Butyrate can act by inhibiting 
pro-inflammatory cytokines. There is ample evidence that many 
bacteria present in the intestinal tract of animals are effective in 
improving feed utilization and enhancing the immune capacity of 
the organism (Corrigan et al., 2015; Waite and Taylor, 2015; Best 
et  al., 2016; Li et  al., 2017). It has been noted that due to the 
degradation of fiber by intestinal microorganisms to produce 
butyrate, it can indeed enhance the intestinal barrier through the 
HIF-1 and AMPK signaling pathways thereby (Peng et al., 2009; 
Kelly et al., 2015). Oxidative stress is a state of imbalance between 
antioxidants and free radicals that can generate various reactive 
oxygen species (ROS) in the body. Excess ROS can damage 
biological macromolecules such as proteins and nucleic acids and 
produce large amounts of MDA, eventually leading to tissue 
damage and disease development. At this time, SOD, GSH-Px, and 
CAT are produced accordingly in the body to remove redundant 
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ROS and maintain the body’s health (Cao et al., 2021). Some studies 
have shown that probiotic fermentation could increase the content 
of small peptides, which are substances with antioxidant properties 
and can improve antioxidant capacity and free radical scavenging 
capacity, thus affecting the serum antioxidant capacity of finishing 
pigs. In conclusion, the fermentation of yellow wine lees can 
increase immunity and serum antioxidant capacity in finishing pigs.

Spearman’s correlation analysis further showed that Lactobacillus 
was significantly associated with immunity, meat quality, and SCFAs 
in greater numbers. Specifically, the Lactobacillus in fermented yellow 
wine lees promote butyric acid production (Berni Canani et al., 2016; 
Lin et al., 2020) and regulate butyric acid metabolism to improve 
immunity (Hao et al., 2021). It has been shown that the flora can 
alleviate intestinal inflammation by upregulating IL-22 production 
through the breakdown of dietary fiber to produce butyrate by 
activating HIF-1α (Yang et al., 2020). Consistent with this finding, 
butyrate levels were increased in this experiment, while inflammatory 
cytokine were downregulated. A growing body of evidence suggests 
that dietary fiber improves immune performance by regulating 
butyrate secretion to reduce the secretion of inflammatory cytokine 
and increase the secretion of anti-inflammatory cytokine (Liu et al., 
2021). Several papers have confirmed the benefits of propionate and 
butyrate on ADFI or ADG in pigs (Lu et al., 2012), which is consistent 
with our findings. Contrary to our results, oral administration of 
butyrate reduced feed intake and decreased ADG in mice (Li et al., 
2018), and this difference may be due to differences in animal models 
and health status. Intramuscular fat, meat color score, and a* are 
common indicators to evaluate carcass traits. In agreement with our 
results, butyrate supplementation was beneficial in improving body 
lipid content (Mátis et al., 2019) and carcass traits in fattened pigs 
(Sun et al., 2020). Spearman correlation analysis suggests that dietary 
fiber from fermented yellow wine lees may improve immune 
function, meat quality, and body health of fattened pigs through 
butyrate metabolism.

In short, the FYWL diet shapes the microbiota associated in 
the colon. These microorganisms, in turn, have a positive impact 
on the antioxidant, immune and meat quality of the organism.

Conclusion

In conclusion, this study demonstrated that co-FFs of 
B. subtilis and Enterococcus faecalis improved the growth 
performance, nutrient digestibility, serum antioxidant capacity, 
immune status and meat quality of finishing pigs. These beneficial 
results may be regulated by the phylum Fibrobacter, Lactobacillus 
and SCFAs. This provides a theoretical basis for the application of 
FF on finishing pigs.
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