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1Nanshan Center for Disease Control and Prevention, Shenzhen, China, 2State Key Laboratory of

Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and

Treatment of Infectious Diseases, National Institute for Communicable Disease Control and

Prevention, Chinese Center for Disease Control and Prevention, Beijing, China

Arcobacter spp. is a globally emerging zoonotic and foodborne pathogen.

However, little is known about its prevalence and antimicrobial resistance

in China. To investigate the prevalence of Arcobacter spp. isolated from

various sources, 396 samples were collected from human feces, chicken

cecum, and food specimens including chicken meat, beef, pork, lettuce, and

seafood. Arcobacter spp. was isolated by the membrane filtration method.

For 92 strains, the agar dilution method and next-generation sequencing

were used to investigate their antimicrobial resistance and to obtain whole

genome data, respectively. The virulence factor database (VFDB) was queried

to identify virulence genes. ResFinder and the Comprehensive Antibiotic

Resistance Database (CARD) were used to predict resistance genes. A

phylogenetic tree was constructed using themaximum likelihood (ML)method

with core single-nucleotide polymorphisms (SNPs). We found that 27.5%

of the samples (n = 109) were positive for Arcobacter spp., comprising

Arcobacter butzleri (53.0%), Arcobacter cryaerophilus (39.6%), and Arcobacter

skirrowii (7.4%). Chicken meat had the highest prevalence (81.2%), followed

by seafood (51.9%), pork (43.3%), beef (36.7%), lettuce (35.5%), chicken

cecum (8%), and human fecal samples (0%, 0/159). Antimicrobial susceptibility

tests revealed that 51 A. butzleri and 40 A. cryaerophilus strains were

resistant to streptomycin (98.1, 70%), clindamycin (94.1, 90%), tetracycline

(64.7, 52.5%), azithromycin (43.1%, 15%), nalidixic acid (33.4, 35%), and

ciprofloxacin (31.3, 35%) but were susceptible to erythromycin, gentamicin,

chloramphenicol, telithromycin, and clindamycin (≤10%). A. skirrowii was

sensitive to all experimental antibiotics. The virulence factors tlyA, mviN,

cj1349, ciaB, and pldA were carried by all Arcobacter spp. strains at 100%,

and the following percentages were cadF (95.7%), iroE (23.9%), hecB (2.2%),

hecA, and irgA (1.1%). Only one A. butzleri strain (F061-2G) carried a macrolide

resistance gene (ereA). One A. butzleri and one A. cryaerophilus harbored

resistance island gene clusters, which were isolated from pork and chicken.

Phylogenetic tree analysis revealed that A. butzleri, A. cryaerophilus, and

A. skirrowii were separated from each other. To our knowledge, this is the first
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report of the isolation ofArcobacter spp. from vegetables and seafood inChina.

The resistance island gene cluster found in pork and chicken meat and the

presence of virulence factors could be a potential risk to human health.

KEYWORDS

Arcobacter, whole genome sequencing, antibiotic resistance, phylogenomic analysis,

zoonotic pathogen

Introduction

Arcobacter is a globally emerging foodborne pathogen

causing diarrhea, enteritis, and bacteremia in humans and

diarrhea, mastitis, and abortion in animals (Ramees et al., 2017;

Zambri et al., 2019; Chieffi et al., 2020; Khodamoradi and Abiri,

2020). Humans are mainly infected with Arcobacter via the

consumption of contaminated food and water (Collado and

Figueras, 2011; Šilha et al., 2019). The main strains causing

diseases in humans are A. butzleri, A. cryaerophilus, and A.

skirrowii (Van den Abeele et al., 2014; Ferreira et al., 2019).

Arcobacter-infected poultry is considered the major source

of infection (Jribi et al., 2020; Khodamoradi and Abiri, 2020).

The prevalence of Arcobacter in broiler chickens was reported as

26.0% (26/100) in Iran (Khodamoradi and Abiri, 2020), 55.7%

(54/97) in the south of Chile (Vidal-Veuthey et al., 2021), and

73.33% (44/60) in Beijing, China (Wang et al., 2016). Moreover,

Arcobacter is also found in beef, pork, vegetables, and seafood

(Mottola et al., 2016, 2021; Córdoba-Calderón et al., 2017; Kim

et al., 2019; Zhang et al., 2019; Jasim et al., 2021), which represent

possible transmission sources to humans. However, there have

been a few reports regarding Arcobacter isolated from various

sources in China.

Although most Arcobacter infections are self-limited,

antibiotic treatment is required for severe clinical infections

(Ferreira et al., 2019). This treatment usually includes

quinolones, tetracyclines, macrolides, and β-lactamase (Figueras

et al., 2014). However, high resistance rates of Arcobacter

isolates to quinolones and macrolides have been reported

(Ferreira et al., 2016; Dekker et al., 2019; Jribi et al., 2020).

Currently, our knowledge is limited concerning the

pathogenic mechanisms and virulence features of Arcobacter

strains (Oliveira et al., 2018; Parisi et al., 2019; Šilha et al., 2019).

It was found that 10 potential virulence genes (iroE, irgA, tlyA,

pldA, mviN, hecB, hecA, ciaB, cj1349, and cadF) were considered

important for the virulence of this pathogen (Miller et al., 2007;

Rathlavath et al., 2017; Kietsiri et al., 2021). Different virulence

genes have different effects on disease (Kietsiri et al., 2021). The

existence of virulence factors in Arcobacter spp. isolated from

food could threaten human health.

This study aimed to determine the prevalence of Arcobacter

spp. in various sources in Shenzhen, China, and to identify the

virulence and antibiotic resistance profiles of Arcobacter spp.

using whole genome sequencing (WGS). Furthermore, we aimed

to determine the minimum inhibitory concentrations (MICs)

of 11 common antibiotics to identify the most appropriate and

effective treatment for Arcobacter infections.

Methods

Sample collection

Between June and September 2019, 159 fecal samples were

collected from adult patients with diarrhea at the top three

local hospitals. In this study, informed consent was obtained

from each adult patient with diarrhea. Patients >16 years of

age and who experienced acute diarrhea three times or more

in the previous 24 h were included. Meanwhile, a collection

of 237 samples from chicken meat (n = 69), beef (n = 30),

pork (n = 30), lettuce (n = 31), and seafood (n = 27) were

purchased from two retail markets in the Nanshan center;

chicken cecum samples (n = 50) were collected from a poultry

wholesale market.

Fecal samples (∼0.5 g each) were collected into the Cary-

Blair medium, and food samples (∼250 g each) were placed in

a sterile plastic bag, and all samples were transported to the

laboratory at 4◦C within 4 h for bacterial isolation.

Bacterial culture, isolation, and
identification

Arcobacter was isolated by an Arcobacter isolation kit using

the enrichment and membrane filter method (ZC-ARCO-001,

Qingdao Sinova Biotechnology Co., Ltd., Qingdao, China) for

stool samples and a direct filtration method for food samples.

Briefly, stool specimens were transferred into a 4-ml enrichment

buffer, which was provided in the kit. The principal component

of the enrichment buffer was the modified Preston broth

containing vancomycin, trimethoprim, and amphotericin B,

as described in the manual book. The enriched suspension

from stool samples was incubated for 24–48 h at 37◦C in a

microaerophilic atmosphere consisting of 5% O2, 10% CO2,

and 85% N2. Subsequently, 300 µl of cultured enrichment
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suspension was spotted on Karmali and Columbia agar with

a 0.45-µm cellulose membrane filter. At the same time, food

samples were fully washed with buffered peptone water (100ml

per 250-g sample), which was concentrated by centrifugation

at a low speed of 1,500 g for 15min. Then, 300–500ml of

concentrated suspension was spotted on Karmali and Columbia

agar with a 0.45-µm cellulose membrane filter. After air-drying

for 40min in a biological safety cabinet, the filter membrane was

removed and the plates were incubated in an aerobic atmosphere

at 30◦C for 48 h.

After incubation, small, round, and whitish colonies 2mm

in diameter were plated and confirmed by Gram staining,

matrix-assisted laser desorption/ionization time-of-flight mass

spectrometry, and real-time polymerase chain reaction (PCR).

Mass spectrometry was performed using Flexcontrol software,

and the results were interpreted with IVD MALDI Biotyper

2.3 software (Bruker Daltonik GmbH, Bremen, Germany). The

criteria for determining the genus and species of bacteria were

as follows: 2.300–3.000 points indicated reliable identification

to the species level and 2.000–2.299 points indicated reliable

identification to the genus level and possible identification to

the species level. In this study, scores≥2.000 were considered

credible. For PCR identification, a loop was used to collect

suspected pure culture colonies, which were resuspended in 200

µl of ultrapure water, boiled for 10min, and centrifuged for

10min at 8,000×g. Subsequently, the supernatant was removed

for PCR species identification by a realtime PCR kit (MABSKY

BIO-TECH CO., LTD, Shenzhen, China). PCR amplification

conditions were as follows: initial denaturation at 94◦C for

5min, followed by 45 cycles of 94◦C for 15 s and 60◦C for 1 min.

Antimicrobial susceptibility testing

Antimicrobial susceptibility testing was performed

using an agar dilution method-based kit (ZC-CAMPY-013,

Zhongchuang Biotechnology Ltd. Corp., Qingdao, China). The

test was performed two times in parallel. Mueller-Hinton agar

containing 11 different antibiotics was coated onto wells in a

96-well-plate to obtain the MIC of 92 Arcobacter strains. The

cutoff criteria for each antibiotic were based on the National

Antimicrobial Resistance Monitoring System (NARMS-2015:

https://www.cdc.gov/narms/pdf/2015-NARMS-Annual-Report-

cleared_508.pdf) for Campylobacter jejuni and included

clindamycin (≥ 1 µg ml−1), telithromycin (≥ 8 µg ml−1),

tetracycline (≥ 2 µg ml−1), florfenicol (≥ 8 µg ml−1),

gentamycin (≥ 4 µg ml−1), ciprofloxacin (≥ 1 µg ml−1),

nalidixic acid (≥ 32 µg ml−1), azithromycin (≥ 0.5 µg

ml−1), and erythromycin (≥ 8 µg ml−1), combined with MIC

EUCAST (https://mic.eucast.org/search/?search%5Bmethod%5

D=mic&search%5Bantibiotic%5D=-1&search%5Bspecies%5D=

100&search%5Bdisk_content%5D=-1&search%5Blimit%5D=50

:) streptomycin (≥ 4 µg ml−1) and chloramphenicol (≥ 32 µg

ml−1). The quality control bacterial strain was C. jejuni ATCC

33560. In addition, we defined multidrug resistance (MDR) as

resistance to ≥ 3 classes of antibiotics.

Extraction of deoxyribonucleic acid and
WGS

Deoxyribonucleic acid (DNA) was extracted from

Arcobacter isolates. One or two Arcobacter plates from blood

agar plates (Huaikai biology, Guangzhou, China) were needed

to obtain sufficient material for DNA preparation. Colonies

were harvested using fiber swabs and resuspended in 1ml of

phosphate-buffered saline (PBS). The tubes were centrifuged at

16,000 × g for 6 min, and the supernatant was discarded. The

resulting pellet was further processed for DNA recovery using

the bacterial genomic DNA Extraction kit (T132, Tianlong,

Shanxi, China) according to the manufacturer’s instructions.

The concentration of the double-stranded DNA (dsDNA) was

examined using a Microplate spectrophotometer (Epoch, Berten

Instruments Co., Ltd., Montigny-le-Bretonneux, France).

Next-generation sequencing was performed using the

Illumina NovaSeq PE150 (Illumina, San Diego, CA, USA)

by Novo Source Technology Co., Ltd., (Beijing, China) and

BGI Genomics Co., Ltd., (Beijing, China). To sequence the

genomes, a 270-bp paired-end library was constructed and

then 150-bp reads were generated. FastQC v0.11.8 (http://

www.bioinformatics.babraham.ac.uk/projects/fastqc/) and fastp

v0.20.0 (https://github.com/OpenGene/fastp) software tools

were applied to evaluate and improve the quality of the raw

sequence data, respectively. Low-quality reads were removed in

case of the quality scores of ≥3 consecutive bases ≤ Q30. The

clean reads were assembled using SOAPdenovo v2.04 (http://

soap.genomics.org.cn/soapdenovo.html) and spades v3.13.1

software (Prjibelski et al., 2020). Finally, the assembled

sequences were subjected to gene prediction and functional

annotation using the Prokka pipeline (Seemann, 2014) and

glimmer software (http://ccb.jhu.edu/software/glimmer/index.

shtml). The Kyoto Encyclopedia of Genes andGenomes (KEGG)

and Clusters of Orthologous Groups (COG) databases were used

for functional classification.

Bioinformatic analyses

The presence of virulence genes was assessed by submitting

the assembled genomes to the virulence factor database

(VFDB) (http://www.mgc.ac.cn/cgi-bin/VFs/v5/main.cgi?

func=VFanalyzer). ResFinder (http://cge.cbs.dtu.dk/services/

ResFinder/), and Abricate software (https://github.com/

tseemann/abricate), and the Comprehensive Antibiotic

Resistance Database (CARD) (https://card.mcmaster.ca/?q=

CARD/ontology/35506) were used to predict resistance genes,
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with a cutoff comprising an E-value of at least 1e−10. Cutoffs for

identification and query coverage values were >80 and >60%,

respectively. Individual missense mutations in gyrA conferring

ciprofloxacin resistance were detected using BLASTn. Databases

including KEGG, COG, SwissProt, and PHI, were used to

functionally annotate and classify protein sequences. We

extracted the nucleotide sequences of all annotated resistance

genes from the genomes, and the genoPlotR package was used

to visualize related gene clusters. Based on a previous study

(Parisi et al., 2019), 10 common virulence factors (iroE, irgA,

tlyA, pldA, mviN, hecB, hecA, ciaB, cj1349, ciaB, and cadF) were

analyzed using the BLASTn method.

Phylogenetic tree analysis was performed on 177 Arcobacter

strains, including 85 Arcobacter strain sequences (45 A.

butzleri, 26 A. cryaerophilus, and 14A. skirrowii), which were

downloaded from the GenBank database and 92 strains obtained

in this study. Core single-nucleotide polymorphisms (SNPs)

were called using Snippy 4.3.6 software (https://github.com/

tseemann/snippy) with default parameters and ICDCAB83 as

the reference genome. Gubbins software (Croucher et al.,

2015) was used as a recombination-removal tool to gain pure

SNPs without recombination. Phylogeny reconstruction was

performed using the maximum likelihood (ML) method in

MEGA 7 software (Kumar et al., 2016) with 1,000 bootstraps.

Data analysis

SPSS 26.0 (IBM Corp., Armonk, NY, USA) was used for

statistical analysis, and the chi-squared test (χ2) was used to

compare count data between groups. A statistical probability of

<0.05 (p < 0.05) indicated a statistically significant difference.

Results

The prevalence of Arcobacter spp.
isolated from patients with diarrhea,
poultry, beef, pork, vegetables, and
seafood

Out of 159 human fecal samples, no Arcobacter strains were

isolated. In total, 109 Arcobacter strains were separated from

chicken meat, chicken cecum, beef, pork, lettuce, and seafood

(Figure 1). A. butzleri was the most prevalent species (33.3%,

79/237), followed by A. cryaerophilus (24.9%, 59/237) and A.

skirrowii (4.6%, 11/237). In 37 of the samples, two or three

species of Arcobacter were isolated. Moreover, the prevalence

percentage of Arcobacters spp. in chicken meat, seafood, pork,

beef, lettuce, and chicken cecum was 81.2% (56/69), 51.9%

(14/27), 43.3% (13/30), 36.7% (11/30), 35.5% (11/31), and 8%

(4/50), respectively (Figure 1). Significantly, Arcobacter spp.

isolated from chicken cecum (8%, 4/50) had a lower prevalence

than those isolated from poultry meat (81.2%, 56/69) (χ2
=

10.632, p= 0.001).

Whole genome sequencing

A total of 92 strains (51 A. butzleri isolated from 26

chicken, eight beef, seven pork, seven lettuce, and three seafood

samples; 40 A. cryaerophilus isolated from 29 chicken, three

beef, two pork, two lettuce, and four seafood samples; and

one A. skirrowii isolated from seafood) were characterized by

WGS. WGS of Arcobacter isolates were registered in GenBank

with accession numbers SAMN30871879 to SAMN30871970.

Assemblies consisted of 10–132 contigs. The sequence length

was predicted to be between 1,827,334 and 2,453,640 concordant

bases. The estimated sizes of the genomes of the 92 strains varied

from 1.82 to 2.34Mb. The guanine-cytosine (GC) content was

determined to be 27.78% for A. skirrowii, 27.15–27.47% for A.

cryaerophilus, and 26.65–27.02% for A. butzleri.

Virulence genes and secretion systems

Genome sequencing in VFDB showed that allA. butzleri and

A. cryaerophilus isolates had the following virulence factor genes:

tlyA, mviN, cj1349, ciaB, and pldA, followed by cadF (95.7%),

iroE (23.9%), hecB (2.2%), hecA, and irgA (1.1%) (Figure 2).

Moreover, there was no difference in the distribution between A.

butzleri and A. cryaerophilus. Almost no A. cryaerophilus strains

carried the IrgA, hecA, and hecB genes. None of the strains had

a secretion system. A. skirrowii contained the virulence factor

genes tlyA,mviN, cj1349, ciaB, and pldA.

Genetic prediction of antibiotic
resistance and concordance with
resistance phenotypes

All 51 strains of A. butzleri contained β-lactam antibiotic

resistance genes (blaOXA464or blaOXA491), among which 27

strains contained complete genes and the remaining 24 strains

contained incomplete genes. Five strains (F034-1G, F050-4G,

F061-2G, F101-1G, and F114.2G) contained three tetracycline

resistance genes (tet (L), tet (H), and tet (M)). F061-2G contained

a macrolide resistance gene (ere (A)). F050-4G, which was

isolated from pork, contained aminoglycoside resistance genes

(APH (3 ’) -IIIa and ant (6) -Ia), streptomycin resistance genes

(SAT-4), and tetracycline resistance genes (tet (M)). These genes

might exist as gene clusters in bacteria. The gene cluster size was

6,072 bp, with a GC content of 37.17%, and comprised five genes,

including four resistance genes (Figure 3).

Seventeen A. cryaerophilus strains contained β-lactam

resistance genes, and three of them (F015-3G, F035-7G, and
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FIGURE 1

The prevalence rates of Arcobacter spp. isolated from di�erent sources. The x-axis represents the sources. The y-axis represents the prevalence

percentage. The color of the columns corresponds to the organisms.

FIGURE 2

The presence of virulence-associated genes in Arcobacter spp. The x-axis represents the virulence genes. The y-axis represents their

percentage of isolates. The color of the columns corresponds to the organisms.

F132-4G) contained tetracycline resistance genes, tet (Y), tet (H),

and tet (M). Strain F015-3G isolated from chicken contained

one MDR gene island flanked by the insertion sequence IS4

(Figure 3). The size of this MDR gene island was 9,409 bp

in length and had a GC content of 33.45%. Seven resistance

genes, including three aminoglycosides resistance genes, one
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FIGURE 3

Gene cluster composition in one A. butzleri (F050-4G) and one A. cryaerophilus (F015-3G) isolate. Di�erent colors represent di�erent genes or

categories of the resistance gene. The length and direction of the arrows indicate the size and direction of genes.

tetracycline resistance gene, one streptomycin resistance gene,

and two insertion sequences (IS1380), were harbored on

this island (Figure 3). This resistance island of F015-3G was

similar to that carried by Campylobacter coli SH96 (Sequence

ID:MT107516.1).

One strain of A. skirrowii (F198-3G) did not contain

resistance genes. Among 51A. butzleri isolates from five sources,

streptomycin had the highest resistance rate (98.1%), followed

by clindamycin (94.1%), tetracycline (64.7%), azithromycin

(43.1%), nalidixic acid (33.4%), and ciprofloxacin (31.3%);

others were <10% (Table 1). Among 40 A. cryaerophilus isolates

from five sources, clindamycin resistance was the highest

(90%), followed by streptomycin (70%), tetracycline (52.5%),

nalidixic acid, and ciprofloxacin (35%); others were <8%

(Table 2). In terms of MDR, 33 A. butzleri strains and 23 A.

cryaerophilus strains were resistant to three or more classes

of antibiotics.

Five A. butzleri isolates, including tetracycline resistance

genes (tet (L), tet (H), and tet (M)), were phenotypically

resistant to tetracycline. Thirteen A. butzleri isolates with

gyrA (C254T) mutation were phenotypically resistant

to ciprofloxacin. One of the A. butzleri isolates carried

the ere(A) gene, which is associated with erythromycin

resistance (MIC value ≥ 64µg/ml). One A. butzleri

isolate (F050-4G) isolated from pork had gyrA (C254T)

mutation, contained a streptomycin resistance gene (Sat-4),

a tetracycline resistance gene (tet (M)) and aminoglycoside

resistance genes (APH (3 ’) -IIIa and ant (6) -Ia), and was

phenotypically resistant to ciprofloxacin, streptomycin,

and tetracycline.

Three A. cryaerophilus isolates containing tetracycline

resistance genes (tet (L), tet (H), and tet (M)) were phenotypically

resistant to tetracycline. Fourteen A. cryaerophilus isolates with

a gyrA (C254T) mutation were phenotypically resistant to

ciprofloxacin. One A. cryaerophilus isolate (F015-3G) isolated

from chicken had a gyrA (C254T) mutation, contained a

streptomycin resistance gene (Sat-4), a tetracycline resistance

gene (tet (M)), and aminoglycoside resistance genes (APH (3 ’)

-IIIa and ant (6) -Ia), and showed resistance to ciprofloxacin,

streptomycin, and tetracycline.

Phylogenetic reconstruction

Phylogenetic tree analysis revealed that the 177 strains

were mainly divided into three groups (A. butzleri, A.

cryaerophilus, and A. skirrowii). There was no obvious

aggregation phenomenon in each group according to the source

of the host or the sampling site, indicating thatArcobacter strains

showed high genetic diversity (Figure 4).

Discussion

Arcobacter spp. is globally recognized as one of the causes of

acute gastroenteritis (Zhang et al., 2019; Brückner et al., 2020).

The main transmission source of Arcobacter spp. in humans is

via the consumption of contaminated water and food (Collado

and Figueras, 2011; Zambri et al., 2019). This study provides

updated information on the incidence, genetic diversity, and

antimicrobial susceptibility of Arcobacter spp. Samples were

collected from various sources in Shenzhen, China.

Our results showed that the prevalence of Arcobacter spp.

ranged from high to low in chickenmeat (81.2%, 56/69), seafood

(51.9%, 14/27), pork (43.3%, 13/30), beef (36.7%, 11/30), lettuce

(35.5%,11/31), chicken cecum (8.0%, 4/50), and human feces

(0.0%,0/159). The prevalence of Arcobacter spp. in human feces

ranged from 0.2 to 3.6% in studies conducted in Germany, Chile,

Portugal, India, and Turkey (Patyal et al., 2011; Kayman et al.,

2012; Ferreira et al., 2014; Fernandez et al., 2015; Brückner

et al., 2020), which was somewhat consistent with our result

that Arcobacter spp. was not isolated from any of the 159

fecal samples. In contrast to our findings, the prevalence of

Arcobacter isolated from chicken meat was higher than the

prevalence found in Iran (26%) (Khodamoradi and Abiri, 2020),

Germany (26.8%) (Lehmann et al., 2015), and Tunisia (13.42%)

(Jribi et al., 2020), but similar to that found in Beijing (73.33%)

(Wang et al., 2016). Jasim et al. (2021) reported that (120/1,293)

the prevalence of positive beef samples in Iraq was 9.25%,

which was lower than that in the present study. Mottola et al.

(2021) reported that its prevalence in ready-to-eat vegetables

was 14.5% (16/110), which was lower than that in the present
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TABLE 1 Minimum inhibitory concentrations (MICs) of antimicrobial agents toward 51 A. butzleri isolates.

CLSI antimicrobial

class†
Antimicrobial

agent

Percentage of all isolates with MIC(µg/ml)

<0.25 <0.5 0.5 1 2 4 8 16 ≥ 32 ≥ 64

Aminoglycosides Gentamicin 11.8 58.8 27.5 2.0

Streptomycin 2.0 54.9 39.2 2.0 2.0

Ketolide Telithromycin 7.8 17.6 21.6 37.3 7.8 5.9 2.0

Macrolides Azithromycin 56.9 5.9 7.8 9.8 13.7 3.9 2.0

Erythromycin 23.5 27.5 35.3 7.8 3.9 2.0

Quinolones Ciprofloxacin 68.6 2.0 3.9 9.8 7.8 3.9 3.9

Nalidixic acid 23.5 33.3 9.8 5.9 27.5

Lincosamides Clindamycin 5.9 49.0 35.3 7.8 2.0

Phenicols Florfenicol 3.9 47.1 39.2 7.8 2.0

Chloramphenicol 2.0 17.6 58.8 17.6 3.9

Tetracyclines Tetracycline 35.3 27.5 23.5 9.8 3.9

†Clinical and laboratory standards institute.

Gray shadings represent the percentage of resistance isolates.

TABLE 2 MICs of antimicrobial agents to 40 A. cryaerophilus isolates.

CLSI antimicrobial

class†
Antimicrobial

agent

Percentage of all isolates with MIC(µg/ml)

<0.25 <0.5 0.50 1 2 4 8 16 ≥ 32 > 64

Aminoglycosides Gentamicin 40.0 32.5 25.0 2.5

Streptomycin 2.5 27.5 35.0 27.5 2.5 5.0

Ketolide Telithromycin 25.0 2.5 10.0 30.0 27.5 5.0

Macrolides Azithromycin 85.0 2.5 5.0 5.0 2.5

Erythromycin 42.5 32.5 22.5 2.5

Quinolones Ciprofloxacin 65.0 2.5 5.0 17.5 10.0

Nalidixic acid 15.0 40.0 10.0 2.5 32.5

Lincosamides Clindamycin 5.0 5.0 30.0 50.0 7.5 2.5

Phenicols Florfenicol 7.5 45.0 40.0 7.5

Chloramphenicol 2.5 30.0 60.0 5.0 2.5

Tetracyclines Tetracycline 12.5 35.0 25.0 22.5 5.0

†Clinical and laboratory standards institute.

Gray shadings represent the percentage of resistance isolates.

study. Zhang et al. (2019) reported that the contamination rate

for seafood was 17.6% (56/318), which was lower than that

reported here.

Furthermore, our results showed a lower prevalence of

Arcobacter spp. in the chicken cecum (8%, 4/50) than in

chicken meat (81.2%, 56/69) (χ2
= 62.073, p = 0.000), which

was possibly due to cross-contamination of meat in both the

slaughter and retail market environments.

Barboza et al. (2017) reported that the prevalence of

chicken cecal content was 5.26% (8/152). Schönknecht et al.

(2020) reported that the prevalence of Arcobacter spp. in

the chicken cecum was 3% (1/29), which was lower than

other intestinal contents. Cecal contents might not be the

main Arcobacter reservoir inside chickens. The prevalence

of Arcobacter spp. isolated from various sources in this

study might change with seasons and climate. We will

continue to conduct relevant pathogen monitoring research in

the future.

In the current study, almost all strains of Arcobacter spp.

have β-lactam antibiotic resistance genes. It has been speculated

that Arcobacter spp. may be resistant to β-lactamase. Several

studies reported that β-lactam resistance may be caused by the

presence of three putative β-lactamases (AB0578, AB1306, and

AB1486) identified in the RM4018 genome, which are enhanced

by the occurrence of the lrgAB operon (ab0179 and ab0180) and

may regulate tolerance to penicillin in Staphylococcus (Bayles,

2000; Groicher et al., 2000; Miller et al., 2007). However, we did

not perform an experiment showing the phenotypic resistance
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FIGURE 4

Maximum likelihood (ML) tree of the core genome alignments of strains isolated from various sources and countries with 1,000 bootstraps.

Di�erent colors and shapes indicate various sources. From the inner circle to the outer circle, strains, Type, Isolation Country, and Isolation

Source are listed.

of Arcobacter spp. to β-lactam antibiotics. Therefore, further

investigation on the resistance phenotype and mechanism of β-

lactam antibiotics is needed. For severe clinical diseases caused

by Arcobacter spp., fluoroquinolones, tetracyclines, macrolides,

and aminoglycosides are recommended for treatment (Ferreira

et al., 2016). A meta-analysis of Arcobacter spp. antibiotic

resistance in 2019 (Ferreira et al., 2019) reported that

fluoroquinolone resistance ranged from 4.3 to 14.0%, whereas

it was 0.8–7.1% for tetracyclines, 10.7–39.8% for macrolides, and

1.8–12.9% for aminoglycosides. In this study, the resistance rates

of A. butzleri and A. cryaerophilus to nalidixic acid (33.4%, 35%),

ciprofloxacin (31.3%, 35%), and tetracycline (64.7%, 52.5%)

were much higher than previously reported (Ferreira et al.,

2019). However, Jribi et al. (2020) reported a high level of

resistance to tetracycline (100%) inArcobacter spp. isolated from

poultry in Tunisia.

The resistance rates of 51 A. butzleri isolates to

erythromycin, azithromycin, and telithromycin were 5.9,

43.1, and 7.9%, respectively. All A. cryaerophilus isolates were

completely sensitive to erythromycin. The resistance rate of

Arcobacter spp. to erythromycin is consistent with a previous

study (3.6%, 3/84) (Kietsiri et al., 2021). Moreover, streptomycin

resistance rates for A. butzleri and A. cryaerophilus were 41.2

and 32.5%, respectively, which were higher than those reported

in a previous study (Ferreira et al., 2016, 2019). Therefore,

further attention should be paid to streptomycin resistance.

One strain each of A. butzleri (F050-4G) and A.

cryaerophilus (F015-3G) contained resistance island gene

clusters, which contained multiple antibiotic resistance genes

and were located near the transposon. The resistance island

in A. cryaerophilus (F015-3G) was inserted into IS4. The GC

content of the two resistance islands was significantly higher

than that of the genome of Arcobacter spp. We suspected that

the resistance island might have been obtained by the horizontal

gene transfer. Several studies reported that the use of antibiotics

in animals might cause MDR and then transfer to humans

(Chang et al., 2015; Dekker et al., 2019).

Several studies (Webb et al., 2018; Hodges et al., 2021)

showed that the base mutation in the gyrA gene was associated

with a higher level of resistance to ciprofloxacin. In our study,

13 A. butzleri and 14 A. cryaerophilus isolates with gyrA (C254T)

mutation were 100% phenotypically resistant to ciprofloxacin.

Moreover, the genes aph (3 ’) -IIIa and ant (6) –Ia were reported

to correlate with resistance to kanamycin and streptomycin,

respectively (Ntilde et al., 2018; Cho et al., 2020), and in

our study, two isolates carried the ant (6) –Ia gene and were

phenotypically resistant to streptomycin. In addition, isolates

that carried tetracycline resistance genes were phenotypically

resistant to tetracycline, whereas the occurrence of ere(A)

gene was associated with erythromycin resistance, which was

consistent with previous studies (Gao et al., 2015; Zhao et al.,

2016; Webb et al., 2018).
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The number of antibiotic resistance genes varied greatly

between the isolates. Some isolates harbored multiple antibiotic

resistance genes, and specific resistance genes were detected

in the corresponding antibiotic resistance isolates. Strains

containing resistance genes were resistant to the corresponding

antibiotics or had higher MIC values. A C254T mutation was

found in some strains, resulting in a Thr to Ile substitution at

position 85 of the deduced protein sequence. This substitution

in A. butzleri and A. cryaerophilus isolates could be responsible

for the observed fluoroquinolone resistance. A C254T mutation

in gyrA, which resulted in a Thr to Ile substitution in gyrA were

found in all ciprofloxacin resistance strains. This substitution in

A. butzleri and A. cryaerophilus isolates could be responsible for

the observed fluoroquinolone resistance.

Arcobacter skirrowii, A. cryaerophilus, and A. butzleri

isolated from food and originating from animals commonly

carry tlyA, pldA, mviN, ciaB, cj1349, and cadF (Douidah

et al., 2012; Khoshbakht et al., 2014; Parisi et al., 2019;

Khodamoradi and Abiri, 2020). Rathlavath et al. (2017)

reported that the majority of A. butzleri isolated from

seafood and the coastal environment contained six common

virulence genes [cadF (89.7%), cj1349 (97.2%), ciaB (95.9%),

mviN (100%), pldA (91.1%), and tlyA (91.8%)] but relatively

lower amounts of hecA (10.8%), hecB (19%), iroE (12.9%),

and irgA (17.6%). Similarly, our study found that more

than 90% Arcobacter contained these six common virulence

factors. It was found that different virulence genes had

different functions, e.g., tlyA encoding hemolysin and pldA

encoding the outer membrane phospholipase A are involved

in erythrocyte lysis; mviN is required for the biosynthesis

of peptidoglycan; ciaB is required for the biosynthesis of

peptidoglycan; and both cadF and cj1349 encode fibronectin-

binding protein (Parisi et al., 2019). A. butzleri and A.

cryaerophilus showed no differences in the distribution of

these virulence factors, which was in contrast to the results

of a previous study (Sekhar et al., 2017) in which A. butzleri

was observed to carry more of these virulence factors than

A. cryaerophilus.

In addition to poultry, vegetables and seafood are also

important transmission routes for Arcobacter infection in

humans. The resistance island gene cluster found in pork and

chicken meat and the carriage of virulence factors could be a

potential health risk to human health.
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