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Interplay between the 
microalgae Micrasterias radians 
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HH091
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Based on previous research, related to detailed insight into mutualistic 

collaboration of microalga and its microbiome, we  established an artificial 

plant-bacteria system of the microalga Micrasterias radians MZCH 672 and 

the bacterial isolate Dyadobacter sp. HH091. The bacteria, affiliated with the 

phylum Bacteroidota, strongly stimulated growth of the microalga when it was 

added to axenic algal cultures. For further advances, we studied the isolate 

HH091 and its interaction with the microalga M. radians using transcriptome 

and extensive genome analyses. The genome of HH091 contains predicted 

polysaccharide utilizing gene clusters co-working with the type IX secretion 

system (T9SS) and conceivably involved in the algae-bacteria liaison. Here, 

we  focus on characterizing the mechanism of T9SS, implementing the 

attachment and invasion of microalga by Dyadobacter sp. HH091. Omics 

analysis exposed T9SS genes: gldK, gldL, gldM, gldN, sprA, sprE, sprF, sprT, 

porU and porV. Besides, gld genes not considered as the T9SS components 

but required for gliding motility and protein secretion (gldA, gldB, gldD, gldF, 

gldG, gldH, gldI, gldJ), were also identified at this analysis. A first model of 

T9SS apparatus of Dyadobacter was proposed in a course of this research. 

Using the combination of fluorescence labeling of Dyadobacter sp. HH091, 

we examined the bacterial colonisation and penetration into the cell wall of 

the algal host M. radians MZCH 672.
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Introduction

Algae and bacteria synergistically collaborate with each other, influence ecosystems, 
and represent various modes of interactions between organisms (Ramanan et al., 2016). 
The positive effect of bacteria on algal growth in the field of biotechnology, has changed the 
main concept of a mere contamination of algal cultures, considering bacteria as an 
important driver in this interaction (Lee et al., 2015; Shen and Benner, 2018). Strong 
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associations between microalgae and bacteria have resulted in the 
evolution of a complex network of these cross-kingdom 
interactions and narrow specialization of different organisms 
(Krohn et al., 2013; Krohn-Molt et al., 2017; Cirri and Pohnert, 
2019; Astafyeva et al., 2022).

Nowadays, it is recognized that the potential of the 
interactions between microalgae and microorganisms, determined 
by special applicability in aquaculture, aims to improve algal 
biomass production and to enrich this biomass with compounds 
of biotechnological interest such as lipids, carbohydrates, and 
pigments. The algal microenvironment may be altered by bacteria 
in ways that stimulate algal functions. The general bacterial 
attributes that may profit the interaction with microalgae, and 
which might affect their growth and photosynthetic activity, 
include adhesion, clumping factor, motility, chemotaxis, different 
secretion systems, quorum sensing and quenching systems, and 
synthesis of growth promoters (Luo and Moran, 2014; Brameyer 
et al., 2015; Shen and Benner, 2018; Astafyeva et al., 2022).

Previous research of microalgae-and photobioreactors-
associated biofilm bacteria, identified that the majority of the 
observed microorganisms were affiliated with α-Proteobacteriota, 
β-Proteobacteriota, and Bacteroidota (Mouget et al., 1995; Davies 
et al., 1998; Krohn et al., 2013; Whitman et al., 2018). Further 
investigations have characterized the biotic interaction of 
microalgae and bacteria using metagenomic, transcriptomic, and 
proteomic approaches. In this research the microbiomes of 
microalga have been sequenced, and various bacterial strains 
affiliated with the algae have been isolated to answer, if the 
associated microbiota is specific for the microalgae and which role 
individual bacterial taxa play (Krohn-Molt et al., 2017). Thereby 
it was observed that effector molecules known from plant–
microbe interactions as inducers for the innate immunity are 
already of relevance at this evolutionary early plant-microbiome 
level. Key genes involved in plant–microbe interactions were 
mostly affiliated with different mechanisms, including vitamin 
biosynthesis, transport and secretion systems, signal transduction, 
carbohydrate and lipid modification. The metatranscriptome 
analysis indicated that the transcriptionally most active bacteria, 
with respect to key genes commonly involved in plant–microbe 
interactions, in the microbiome of the Chlorella 
(Trebouxiophyceae), Scenedesmus (Chlorophyceae) and 
Micrasterias (Zygnematophyceae) belong to the phylum of the 
α-Proteobacteriota and Bacteroidota (Krohn-Molt et al., 2017).

Recent studies unveiled tight associations of microalga 
Scenedesmus quadricauda and bacteria using metatranscriptomic 
analysis, including physiological investigations, microscopy 
observations, photosynthetic activity measurements and flow 
cytometry. The crucial key features of overall plant-bacteria 
interaction covered different mechanisms with the involvement 
of transport and secretion systems (e.g., T6SS, T9SS), quorum 
quenching proteins (QQ), leucine-rich repeat proteins and 
enzymes (LRR) related to bacterial reactive oxygen species 
(ROS) tolerance, as well as the biosynthesis of vitamins (B1, B2, 
B5, B6 B7, B9 and B12). The metatranscriptome analysis 

demonstrated that within the microbiota of S. quadricauda the 
dominant species were affiliated with the genera of Variovorax, 
Porphyrobacter and Dyadobacter. Experimental and 
transcriptome-based evidences implied that within this 
multispecies interaction Dyadobacter was a key to alga growth 
and fitness, and is highly adopted to live in the phycosphere 
(Astafyeva et al., 2022).

Within this framework, we addressed the following questions 
in the current study. Which role do secretion systems play in these 
remarkable interactions? Is a direct cell-to-cell contact between 
the interaction partners required and what influence does 
bacterial QS have? To answer these questions, we used fluorescence 
labeling of bacteria and 4′-6-diamidino-2-phenylindole (DAPI) 
staining with confocal microscopy to determine the physical 
association of microalga cells with the Dyadobacter isolate HH091. 
Further, to get a deeper insight in this fascinating synthetic 
bacteria-microalgae model system, we  have characterized the 
interactions of the isolate Dyadobacter sp. HH091 (Astafyeva 
et al., 2022), with the microalga M. radians MZCH 672 using 
transcriptome and genome analyses. These data expand our 
understanding of species-species interactions and identify several 
genes involved in the molecular basis of bacteria-alga interactions 
that can serve as an established synthetic plant-bacteria system. 
Therefore, the genome and metabolic potential of the bacterium 
Dyadobacter sp. HH091 is of particular interest in understanding 
bacteria-algae interactions.

Materials and methods

Microorganisms used in this study and 
cultivation media

Micrasterias radians MZCH 672 was obtained from the 
Microalgae and Zygnematophyceae Collection Hamburg (MZCH) 
and cultivated in WHM medium (Stein, 1973) at 20 ± 1°C and 
100 ± 10 μmol photons m−2 s−1 with a 14/10-h light/dark period. 
To maintain the axenity of the algal culture, M. radians was treated 
with the antibiotic cocktail: penicillin G, streptomycin sulfate and 
gentamycin sulfate (100/25/25 mg/l) (Droop, 1967; Andersen, 
2005; Lee et al., 2015; Astafyeva et al., 2022).

Dyadobacter sp. HH091 was isolated previously from a 
laboratory culture of S. quadricauda MZCH 10104 (Krohn-Molt 
et al., 2017; Astafyeva et al. 2022). The isolate was routinely grown 
in 5 ml of tryptone yeast extract salts (TYES) broth (Reasoner and 
Geldreich, 1985; Holt, 1993), at 22°C for 3–4 days at 200 rpm.

Analysis of the flexirubin pigments in 
Dyadobacter sp. HH091

We experimentally validate the production of flexirubin 
by Dyadobacter sp. HH091 by exposing them to 50 μl 10 M 
KOH, which resulted in a change from yellow to orange/red 
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if flexirubin pigments were present, followed by a 
neutralization step with 42 μl 12 M HCl, which resulted in a 
return to yellow pigmentation.

Co-culturing procedure and conditions

Micrasterias radians MZCH 672 and Dyadobacter sp. HH091 
were co-cultured in WHM medium at 20 ± 1°C and 100 ± 10 μmol 
photons m−2  s−1 with a 14/10 h light/dark period over a time 
period of 12 days. Therefore, 1 ml of M. radians was treated with 
an antibiotic cocktail of penicillin G, streptomycin sulfate and 
gentamycin sulfate in 50 ml of WHM medium to remove all 
bacteria. The antibiotic treatment was performed for 1 day. 
Afterwards, the microalga was centrifuged (5,000 rpm, 10 min) 
and washed two times with 1 ml WHM medium and finally 
resuspended in 50 ml of medium, where it was grown for 20 days. 
At the start of the experiment, each flask contained 50 ml of 
WHM, M. radians (OD750nm = 0.007) and Dyadobacter sp. 
(OD600nm = 0.05).

Dyadobacter sp. HH091 transformation

The strain HH091 was transformed with modified 
plasmid pBBR1MCS-5-eGFP by electroporation according to 
standard methods, which resulted in bright green fluorescent 
colonies as observed by fluorescence microscopy (Sambrook 
and Russell, 2001). The plasmid contains the broad-host-
range vector pBBR1MCS-5, providing a gentamycin resistance 
and the expression of GFP. Gentamycin was applied at 100 μg/
ml, and the bacteria were grown as described previously 
(Droop, 1967; Andersen, 2005; Lee et  al., 2015; Astafyeva 
et al., 2022).

Confocal laser scanning microscopy

Dyadobacter sp. HH091 expressing eGFP was co-cultured 
with M. radians MZCH 672 and studied using a confocal laser 
scanning microscope (CLSM) Axio Observer.Z1/7 LSM 800 
(Carl Zeiss Microscopy GmbH, Jena, Germany), which also 
included Z-Stack microscope techniques. The analysis of the 
CLSM images were done with ZEN software (version 2.3; Carl 
Zeiss Microscopy GmbH). DAPI staining procedure was used 
in microscopy investigations as described previously 
(Astafyeva et al., 2022). Modifications included the treatment 
with TrueVIEW Autofluorescence Quenching Kit (Vector 
Labs, SP-8400), which was employed to enhance staining and 
to lower the autofluorescence of chlorophyll of the microalga. 
Background autofluorescence occurring in the 600–700 nm 
range, makes it impossible to detect the bacteria transformed 
with plasmids expressing fluorescent proteins. The TrueVIEW 
Quencher is an aqueous solution of a hydrophilic molecule, 

which binds to chlorophyll electrostatically and lowers the 
fluorescence (Karpishin, 2018).

Bacterial RNA isolation and sequencing

Dyadobacter sp. HH091 cells, separated by dialysing bags 
(Roth, Germany), were co-cultured with microalga for 1 week. 
Then bacterial cells were subsequently harvested, treated with 
RNAlater (Sigma, Germany) and frozen at −80°C. The 
samples were processed by Eurofins (Constance, Germany), 
where the RNA was isolated and assessed for QC. The RNA 
Integrity Number (RIN) for all samples was ≥8. Strand-
specific cDNA library preparation from polyA enriched RNA 
(150 bp mean read length) and RNA sequencing was 
performed using the genome sequencer Illumina HiSeq 
technology in NovaSeq 6000 S4 PE150 XP sequencing mode. 
For further analysis fastq-files were provided.

Bacterial RNA data analysis

RNA-seq analysis was performed using PATRIC, the 
Pathosystems Resource Integration Center.1 Trim Galore 0.6.5dev 
was used to remove adapters (Phred quality score below 20) 
(Krueger, 2012). RNA-Seq data was processed by the tuxedo 
strategy (Trapnell et al., 2012). All genes were selected with|log2 
(fold change)| ≥ 1,5. The differentially expressed genes (DEGs) 
dataset was collected and used for further analysis. The volcano 
plot of the distribution of all DEGs was generated using A Shiny 
app ggVolcanoR (Mullan et al., 2021).

Carbohydrate-active enzymes were screened through local 
Blastp search in the database of carbohydrate-active enzymes 
(CAZymes).2 The database compiles categories of enzymes that act 
on carbohydrates, e.g., glycoside hydro-lases (GHs), 
polysaccharide lyases (PLs), glycosyltransferases (GTs) (Levasseur 
et  al., 2013). Domain guided annotation based on conserved 
domains in Dyadobacter sp. HH091 was performed within the 
STRING database (Szklarczyk et al., 2021).

Sequences obtained and GenBank 
submissions

RNA sequences obtained for this study were submitted to the 
European Nucleotide Archive (ENA). They are publicly available 
under accession PRJEB54772. Assembly of the Dyadobacter sp. 
HH091 genome is available via IMG/MER3 using the IMG 
ID 2842103827.

1 www.patricbrc.org

2 www.cazy.org

3 https://img.jgi.doe.gov
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Results

Symbiont Dyadobacter sp. HH091 
attached to the surface of Micrasterias 
radians MZCH 672

Based on our previous research, we were intrigued to examine 
the bacterial colonisation of the microalga M. radians MZCH 672. 
CLSM was used to observe the interaction process between 
Dyadobacter sp. HH091 and M. radians. The co-culture of 
M. radians with Dyadobacter sp. expressing eGFP are shown in 
Figure  1. In addition, Z-Stack microscopy was employed to 
generate a more detailed and higher resolution image of the 
microalgal contact site with its symbiont. Our results showed, that 
symbiotic bacterial cells were found in close proximity of the alga 
after 1 day of incubation (Figure 1A). More nearby contacts were 
identified via CLSM between the host microalga and its symbiont 
on the third day of incubation (Figure 1B). At Figure 1A bacterial 
cells are found close to algal cells, while Figure 1B demonstrates 
the penetration of the symbiont into its host’s cell wall. These 
experiments revealed the presence of direct contacts between 
M. radians and symbiotic Dyadobacter sp. HH091 cells through 
their surrounding and tight interaction, promising the mutual 
exchange of various substances between the two partners.

We examined co-cultures of HH091 grown together with 
M. radians and compared its relative growth performance with the 
antibiotic-treated algal control cultures over a time period of 
20 days (Supplementary Figure S1). To identify the difference in 

the growth of algal cultures (with and without HH091) we used 
the optical density measurement (Supplementary Figure S1). In 
these tests first hints of visible difference were observed after 
3–4 days.

RNA seq identifies active genes for 
host-symbiont interaction pathways

Transcriptome analysis was applied to indicate highly active 
genes involved into bacteria-algal interaction. In total, we obtained 
43 million (mio) reads of bacteria data after trimming. The data 
are the result of three replicates with each replicate producing 
between 4 and 8 mio reads (Supplementary Table S1). The 
RNAseq data covered a significant portion of the bacterial genome 
and the affiliated pathways. During data preprocessing low quality 
transcripts were filtered, resulting in 1,530 genes to be studied 
(Supplementary Table S2). RNA-Seq analysis was performed using 
the Tuxedo strategy, the heatmap (Figure 2) was generated using 
the Expression Import Service of the Pathosystems Resource 
Integration Center, PATRIC, the absolute value of log2 Ratio > 1.5 
(Kim et al., 2013, 2015; McClure et al., 2013).

The expression levels of the DEGs response of Dyadobacter sp. 
HH091 in co-culture with M. radians are depicted in the heatmap 
(Figure 2). The heatmap reflects the expression of genes affiliated 
with overall mechanisms described in categories. The highest 
number of transcripts belongs to carbohydrate transport and 
metabolism, inorganic ion transport and metabolism, signal 

A B

FIGURE 1

Confocal microscope including Z-Stack images of Dyadobacter sp. HH091 expressing eGFP (yellow arrows) found in a close proximity to 
Micrasterias radians MZCH 672. Autofluorescence Quenching Kit was used to lower the autofluorescence of chlorophyll of the microalga. 
Structures: c chloroplast, n nuclear region, p pyrenoid. Scale bar = 2 μm in each micrograph. (A) First day of incubation. (B) Third day of incubation.

https://doi.org/10.3389/fmicb.2022.1006609
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Astafyeva et al. 10.3389/fmicb.2022.1006609

Frontiers in Microbiology 05 frontiersin.org

transduction and regulation mechanisms, and transporter, efflux 
pumps and secretion systems.

The distribution of gene expression between Dyadobacter sp. 
HH091 co-cultured with M. radians and control samples is 
represented by the volcano plot (Figure 3A). The volcano plot was 
constructed to compare the two groups using ggVolcanoR. A total 
of 1,530 differentially expressed genes (DEGs) were identified 
from the dataset (Figure 3A). Among them, 612 and 918 genes 
were up-regulated and downregulated, respectively, between two 
groups according to their log2FC and p-values. Function profile of 
the DEGs in Dyadobacter sp. HH091 is shown in Figure 3B. The 
studying of the transcriptome of the strain HH091 co-cultured 
with its microalgal host unveiled the multifaceted combination of 
mechanisms required for and/or affiliated with T9SS, as well as 
T9SS cargo proteins, Sus proteins (SusC and SusD), TonB-
dependent receptors, cAMP-binding proteins, oxidoreductases, 
aminotransferases, cytochrome c, numerous transcriptional 
regulators, including LuxR solos, and flexirubin biosynthesis. The 
highest number of up-regulated genes belongs to T9SS cargo 
proteins (42), transcriptional regulators (56), Sus proteins (SusC 

(10) and SusD (6)), permeases (14), and oxidoreductases (13). 
Most down-regulated genes are related to oxidoreductases (11), 
T9SS cargo proteins (24), SusC (10) and SusD proteins (14), T9SS 
components and Gld proteins (35), permeases (16), and 
transcriptional regulators (20). Intriguingly, flexirubin 
biosynthesis mechanism involved 13 up-regulated and 4 down-
regulated genes.

Transcriptome analysis indicated highly 
active genes of T9SS mechanism and 
flexirubin biosynthesis cluster

By a combination of comparative genome and transcriptome 
analyses we identified a cluster of genes presumably involved in 
flexirubin biosynthesis, which was performed using the STRING 
database (Szklarczyk et al., 2021). This cluster includes two genes, 
darA and darB, with likely roles in flexirubin synthesis, and other 
genes that could be involved in localization of flexirubin pigments 
(Supplementary Table S3). The flexirubin biosynthesis cluster of 
Dyadobacter sp. HH091 consists of the dar operon and a 
neighboring gene encoding LuxR solo (NarL/FixJ). NarL/FixJ 
shares 46% identity and 47% similarity with the LuxR solo PluR 
of Photorhabdus luminescens (Brameyer et  al., 2015). In 
P. luminescens PluR performs as a LuxR-type receptor serving for 
QS. Based on these observations we  proposed the model of 
flexirubin/dialkylresorcinol (DAR) biosynthesis in HH091, which 
consists of QS circuit genes possibly up-regulating several 
mechanisms like T9SS, gliding motility and protein secretion 
(Figure 4). These QS circuit genes are found to be adjacent to T9SS 
genes, genes affiliated with gliding motility and protein secretion 
(genes coding for gliding motility-associated-like proteins, T9SS 
type A sorting domain-containing proteins, chitin binding 
proteins, peptidoglycan-associated proteins, and PorT 
family protein).

Additional studying of homologs showed the presence of 
these genes in the representative genomes of the phylum 
Bacteriodota Flavobacterium johnsoniae, Flavobacterium 
psychrophilum (McBride et al., 2009) and Chitinophaga pinensis 
(Schöner et al., 2014), and among the members of the phylum 
Proteobacteriota Photorhabdus asymbiotica (Brameyer et  al., 
2015) and Pseudomonas aurantiaca (Nowak-Thompson et al., 
2003). Responsible for flexirubin biosynthesis, genes darA and 
darB are similar to F. johnsoniae, which were previously identified 
to be engaged in biosynthesis of 2-hexyl-5-propyl-alkylresorcinol 
(McBride et al., 2009). In addition to darA and darB, other genes 
in this cluster are predicted to encode enzymes involved in lipid 
synthesis and some of these enzymes likely have roles in 
flexirubin synthesis (Supplementary Table S3). This cluster 
includes numerous genes, such as acyl carrier protein, 
(3-oxoacyl)-acyl carrier protein synthase, acyl-CoA thioester 
hydrolase, histidine ammonia-lyase, 1-acyl-sn-glycerol-3-
phosphate acyltransferase, beta-ketoacyl synthases, and beta-
hydroxyacyl-(acyl carrier protein) dehydratase, including several 

FIGURE 2

Heatmap of expression levels of differentially expressed genes 
(DEGs) response of Dyadobacter sp. HH091 in co-culture with 
Micrasterias radians. RNA-Seq analysis was performed using the 
Tuxedo strategy, the heatmap was generated using the 
Expression Import Service of the Pathosystems Resource 
Integration Center, PATRIC, the absolute value of log2 Ratio > 1.5. 
Color key:  up-regulated genes,  down-regulated genes.
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ABC-2-type transporters known to be  entangled in the 
localization of flexirubin (McBride et al., 2009).

Experimental identification and validation of flexirubin 
confirmed its production by Dyadobacter sp. HH091 
(Supplementary Figure S2). Cells were photographed before 
treatment (I), after exposure to 50 μl of 10 M KOH (II), and after 
exposure to KOH followed by exposure to 42 μl 12 M HCl (III). 
Flexirubin-positive cells were yellow at neutral pH (I and III) and 
orange/red under alkaline conditions (II).

Proposed model of T9SS in Dyadobacter 
sp.

Highly active genes within this transcriptome belong to T9SS 
mechanism and gliding motility (Supplementary Table S4). 
Overall, 18 genes (gldA, gldB, gldD, gldF, gldG, gldH, gldI, gldJ, 
gldK, gldL, gldM, gldN, sprA, sprE, sprF, sprT, porU and porV), 
required for gliding motility and protein secretion, and/or 
involved in T9SS (Hunnicutt and Mcbride, 2000; McBride and 
Braun, 2004; Braun et al., 2005; Lauber et al., 2018; McBride, 2019; 
Hennell James et al., 2021; Trivedi et al. 2022; Veith et al., 2022), 
were identified among DEGs (Supplementary Table S2).

Besides that, a high number of transcripts was observed 
among genes responsible for polysaccharides utilization. That can 
also elucidate the up-regulation of genes coding for T9SS, while in 

commensal and environmental bacteroidotal species the T9SS is 
characteristically used to secrete enzymes that enable the 
organisms to utilize complex polysaccharides as a carbon source 
(Veith et al., 2013; Hennell et al., 2021).

Among up-regulated genes we identified different GHs and cell 
surface glycan-binding lipoproteins, known to be involved into plant 
and algal cell wall degradation mechanisms (Giovannoni et al., 2020). 
That included cellulose-degrading endoglucanases, hemicellulose-
degrading xylosidases, pectin degradation proteins, starch-degrading 
enzymes, β-glucuronyl hydrolases, SusC and SusD family cell surface 
glycan-binding lipoproteins (Supplementary Table S2).

Being concentrated on the components of T9SS, we identified 
highly active genes by transcriptome analysis of the strain HH091 
co-cultured with its microalgal host. Domain guided annotation 
is based on conserved domains detected by STRING analysis of 
Dyadobacter sp. HH091 primary sequences against the genome of 
Flavobacterium spp. (Supplementary Table S4). Based on this 
analysis and previous researches (McBride and Zhu, 2013; Veith 
et al., 2013; Astafyeva et al., 2022), we proposed a model of T9SS 
including gliding motility proteins in Dyadobacter sp. HH091 
(Figure 5). Intriguingly, genes, transcribing for the Gld motor 
proteins, were mostly down-regulated (gldKLMN), while genes 
coding for gliding motility-associated ABC transporter 
ATP-binding proteins were up-regulated. The transcriptome 
analysis suggests an explanation for this finding, because the 
symbiont possibly uses the T9SS not only for gliding motility, but 

A

B

FIGURE 3

DEGs in Dyadobacter sp. HH091 co-cultured with M. radians MZCH 672 compared with control dataset. (A) Volcano plot is highlighting the DEGs 
in Dyadobacter sp. x-axis: log2, large-scale fold changes; y-axis: –log10 of the value of p showing the statistical significance. Each point 
corresponds to one gene. The points above the vertical and horizontal dotted lines represent log2FC ≥ 0.58 and value of p < 0.05. A volcano plot 
was generated using A Shiny app ggVolcanoR. (B) Function profile of differentially expressed genes (DEGs) in Dyadobacter sp. HH091 is presenting 
the groups of highly active genes. Total number of genes are shown in brackets. Color key:  up-regulated genes,  down-regulated genes.
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also for the secretion of other proteins. Recent results by McBride 
and Saiki showed that nonmotile bacteroidotal members, such as 
P. gingivalis, B. fragilis, B. thetaiotaomicron, B. vulgatus, 
P. distasonis, and Salinibacter ruber, have homologs of genes, that 
have functions essential for protein secretion, but not for motility 
(Saiki and Konishi, 2007; McBride et al., 2009). Figure 5 represents 
a model of the T9SS including proteins required for gliding 
motility and/or protein secretion of Dyadobacter sp. HH091. This 
model includes the T9SS category (GldK, GldL, GldM, GldN, 
SprA, SprE, SprF, SprT, PorU, PorV), multiple PorXY-SigP 
signalling system components, and further Gld proteins (GldA, 
GldB, GldD, GldF, GldG, GldH, GldI, GldJ).

Most of the gld and T9SS genes are found to be adjacent to 
genes coding for proteins, involved into biosynthesis of 
glycosyltransferases, cell surface proteins, lipoprotein export 
proteins, as well as antibacterials, adhesion factors, 
microcolonization development, and EPS production. 
Interestingly, the up-regulated adjacent genes are also affiliated 
with cargo proteins of the T9SS. T9SS cargoes possess a conserved 
C-terminal domain (CTD) and an N-terminal signal peptide, and 
carry a CTD as a secretion signal, which is cleaved and replaced 
with anionic lipopolysaccharide by transpeptidation for 

extracellular anchorage to the outer membrane (OM) (Kulkarni 
et al., 2017; Mizgalska et al., 2021, 22; Gorasia et al., 2022). In this 
research, DEGs covered 42 up-regulated and 24 down-regulated 
genes affiliated with T9SS cargo proteins (Supplementary Table S5).

Along this detailed dataset investigation, the high activity of 
genes related to secretion systems and other entangled 
mechanisms underline the ability of Dyadobacter to perform the 
interaction with microalga and enable its dominance in many 
diverse environments.

Discussion

The most comprehensive and fundamental understanding of 
microbial metabolic pathways in a multispecies system, as well as 
symbiotic and competitive interactions, is required to provide 
scientific and theoretical bases for the interaction mechanisms 
between microalgae and other microorganisms. The presented 
results promote not only the development of effective methods for 
simultaneous cultivation of algae, they also encourage the 
increasing the efficiency of microalgal biomass growth and 
associated production of valuable compounds.

A

B

FIGURE 4

Proposed model of flexirubin or dialkylresorcinol (DARs) biosynthesis in Dyadobacter sp. HH091. In the proposed model, Dyadobacter sp. HH091 
communicates via DARs and represents a novel quorum sensing (QS) circuit (Brameyer et al., 2015). It consists of the dar operon and a 
neighboring gene encoding a luxR solo (narL/fixJ). NarL/FixJ shares 46% identity and 47% similarity with the LuxR solo PluR of P. luminescens (IMG 
2597490348), LuxR-type receptor serving for QS. The proposed QS circuit genes, adjacent to T9SS genes, genes affiliated with gliding motility and 
protein secretion, possibly upregulates several mechanisms, including T9SS, gliding motility and protein secretion. (A) Expression levels of DEGs 
involved into flexirubin biosynthesis: dar and flx clusters, and transport systems (ATP binding cassettes (ABC) and hypothetical proteins). Color key: 

 up-regulated genes,  down-regulated genes. (B) Expression levels of differentially expressed genes (DEGs) involved into flexirubin 
biosynthesis: dar and flx clusters, and transport systems (ATP binding cassettes (ABC)-transporters and hypothetical proteins).
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Flexirubin biosynthesis conceivably 
involved into microalgae-bacteria 
interaction

Our transcriptome analysis of Dyadobacter sp. HH091 
co-cultured with microalga M. radians revealed highly active genes 
affiliated with the cluster of flexirubin biosynthesis. This cluster 
includes darA and darB genes, homologs of F. johnsoniae UW101 
(McBride et al., 2009) and C. pinensis (Schöner et al., 2014).

Flexirubin is a pigment consisting of a ω-(4-hydroxyphenyl)-
polyene carboxylic acid chromophore, esterified with a 
2,5-dialkylresorcinol (DAR), also known as novel and widespread 
bacterial signalling molecule (Nowak-Thompson et al., 2003; Abt 
et al., 2011; Schöner et al., 2014). Genes coding for the biosynthesis 
of these pigments are found in many bacteroidotal genomes, 
including Flavobacterium psychrophilum, Flavobacterium 
johnsoniae (McBride et al., 2009), Leadbetterella byssophila (Abt 
et  al., 2011), Chryseobacterium artocarpi (Venil et  al., 2016), 
Chryseobacterium rhizoplanae sp. nov. (Kämpfer et  al., 2015), 
Flavobacterium maris sp. nov. (Romanenko et  al., 2015), and 
Flavobacterium tilapiae sp. nov. (Chen et al., 2013). Homologs of 
darA, a dialkylresorcinol condensing enzyme, and darB, a 
3-oxoacyl-[acyl-carrier-protein] synthase III protein, were 
previously identified using bioinformatics tools within the genome 
analysis of our model organism Dyadobacter sp. HH091 
(Astafyeva et al., 2022).

Another interesting point, is that on the plant-bacteria 
interaction model, flexirubin also performs as free radical 
scavenging antioxidant protecting from the attack of free 
radicals (Combes and Finet, 1997; Schöner et al., 2015). The 
antioxidant potential via hydrogen donating ability of 
flexirubin has been shown through the assessment using 
different assays such as radical scavenging activities, lipid 
peroxide inhibition and ferrous chelating ability (Mogadem 
et al., 2021). Several studies show that microalgae produce 
reactive oxygen species (ROS) to get an advantage in the 
competition for resources against other algae, be  a way to 
prevent fouling bacteria, and act as a signalling mechanism 
between cells (Marshall et al., 2005). Furthermore, ROS, such 
as superoxide (O2

−), hydrogen peroxide (H2O2), and hydroxyl 
radical (•OH), are thought to be produced as antibacterial 
agents and involved in oxidation or reduction of necessary or 
toxic metals (Palenik et al., 1987). Former investigation of 
microalga Micrasterias spp., demonstrated that ROS are 
constantly generated as by-products of general metabolic 
cellular pathways and can be over-produced in response to 
stress (Darehshouri and Lütz-Meindl, 2010; Lütz-Meindl, 
2016; Felhofer et  al., 2021). Our results indicate, that 
Dyadobacter sp. HH091 uses flexirubin hybrid pigments to 
protect itself from ROS produced by microalga, which 
explains this interaction, making it possible for microalgal 
symbiont to have a tight contact with its host.

FIGURE 5

Proposed model of T9SS in Dyadobacter sp. HH091, serving as the secretion system of cargo-proteins. PorXY-SigP signalling system upregulates 
several components: T9SS category (GldK, GldL, GldM, GldN, SprA, SprE, SprF, SprT, PorU, PorV), and further Gld proteins (GldA, GldB, GldD, GldF, 
GldG, GldH, GldI, GldJ). C-terminal domain (CTD), N-terminal signal peptide (N-terminal), outer membrane (OM), inner membrane (IM).
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T9SS tangled in the symbiotic 
interactions of Dyadobacter with 
microalgae

The presence of different secretion systems suggests that 
Dyadobacter sp. HH091 and microalgae possess a signal exchange 
system allowing establishment and maintenance of a symbiosis 
that includes adhesion factors, microcolonization development, 
EPS production, and biofilm formation factors, which are 
important for the institution of a successful symbiosis. Previously, 
a comprehensive set of cell surface-associated proteins required 
for host cell invasion was described for other bacterial model 
organisms (Foster et  al., 2014; Kusch and Engelmann, 2014; 
Hecker et al., 2018). All of these mechanisms express particular 
cocktails of factors that facilitate niche adaptation that include 
cell-host attachment, microcolonization and biofilm formation. 
Genes coding for the cell surface-associated proteins and secretion 
systems are mainly up-regulated in Dyadobacter sp. HH091, 
expecting them to be crucial for the microcolonization process 
because they establish interaction with the host. Cell-host 
interaction and adhesion factors, as well as microcolonization 
development, and biofilm formation succeed to a closely 
interaction and an exchange of growth-promoting substances 
between the symbiont and microalga.

Surface exposed proteins that are covalently or 
non-covalently bound to the cell surface and proteins are 
secreted into the extracellular matrix using different secretion 
mechanisms (Dreisbach et al., 2010; Ythier et al., 2012; Solis 
et  al., 2014; Hecker et  al., 2018). Secreted proteins 
accommodate the majority of virulence factors, enzymes 
required for nutrient acquisition or cell spreading, immune 
evasion proteins that can bypass the immune system or 
interfere with components of the complement system and 
many others. Overall, secretion systems are known to 
transport effector proteins into the cytosol of eukaryotic cells 
that allows the direct communication and modification of the 
host cells, additionally suppressing any activity of competitive 
microorganisms (Wooldridge, 2009). Dyadobacter sp. HH091 
has many unique features together with the complex of 
different secretion systems, which are available to arbitrate 
secretion of proteins across the outer membrane, including 
T9SS, a complex translocon found only in some species of the 
Bacteroidota phylum (Lasica et  al., 2017; Astafyeva 
et al., 2022).

A complex translocon of T9SS, including gld and spr genes, 
and porXY-sigP signalling system components, are proposed to 
serve as the secretion system of cargo-proteins. The T9SS cargo 
proteins have a conserved C-terminal domain (CTD) that enables 
them pass via T9SS and an N-terminal signal peptide that guides 
T9SS cargo proteins through the Sec system (Veith et al., 2013; 
Kulkarni et al., 2017). The CTD signal has been identified to be of 
two types, type A and type B (Kulkarni et al., 2017; Gorasia et al., 
2020). Subsequent to the early Dyadobacter genome studies 
(Astafyeva et al., 2022), high activity of T9SS cargo proteins has 

been observed at this transcriptome analysis as well. It resulted in 
48 up-regulated and 24 down-regulated genes, affiliated with T9SS 
cargo proteins of both types (Supplementary Table S5).

gldA, gldF and gldG encode components of an ATP-binding 
cassette (ABC) transporter that is required for motility and/or for 
the protein secretion (Agarwal et al., 1997; Hunnicutt et al., 2002). 
Genes encoding lipoproteins required for gliding (gldB, gldD, 
gldH, gldI, and gldJ) have also been identified (Hunnicutt and 
Mcbride, 2000; Hunnicutt and McBride, 2001; McBride and 
Braun, 2004; Braun and McBride, 2005). GldK, GldL, GldM, and 
GldN are each required for efficient motility and chitin utilization, 
indicating that Gld proteins may function in both gliding and 
chitin utilization (Braun et al., 2005). SprA is required for secretion 
of SprB and RemA and utilization of chitin (Nelson et al., 2007). 
In F. johnsoniae, SprA has been identified as the major translocon 
protein of T9SS, and it is hypothesized that SprA of Dyadobacter 
sp. HH091 can also have the same function (Lauber et al., 2018). 
Down-regulated gene coding for SprF is known to be essential for 
the secretion of SprB to the cell surface, but is not required for the 
secretion of extracellular chitinase (Rhodes et al., 2011). That also 
gives a hint that the symbiont possibly utilizes T9SS for the 
secretion of other proteins and not only involved in 
gliding motility.

Polysaccharide utilization is a crucial 
aspect of microalgae-bacteria 
interaction

T9SS is known to be tangled in the secretion of polysaccharide 
utilization proteins (Braun et al., 2005; Kharade and McBride, 
2014). Previously, it was shown that the major chitinase (ChiA) in 
F. johnsoniae is fully secreted from the cell in soluble form by T9SS 
and is essential for chitin degradation (McBride and Zhu, 2013; 
Kharade and McBride, 2014; Larsbrink et al., 2016).

Based on genome and transcriptome analyses, presumably, 
Dyadobacter sp. HH091 has a complex of carbohydrate utilization 
domains for digestion of microalgae cell wall hemicelluloses, such 
as cellulose, xylan or mannan fibrils, and extensive matrix 
polysaccharides. Numerous carbohydrate-active enzymes 
predicted to encode GHs and esterases that could be involved in 
the degradation of microalgal cell wall hemicelluloses were highly 
active within transcriptome datasets (Supplementary Table S2). In 
addition, candidates like xylanases, β-xylosidases, 
arabinofuranosidases, and beta-glucuronidases involved in xylan 
digestion, β-mannosidases involved in mannan digestion, and 
candidate β-glycosidases and endoglucanase that could 
be involved in xyloglucan digestion were also identified.

Data obtained from transcriptome analysis allows to better 
understand the nature of the involvement of bacterial 
polysaccharide utilization genes into bacteria-algae liaison. In 
our previous study, we  observed that the genome of given 
symbiont possesses a wide assortment of CAZymes predicted 
to breach algal cell wall (Astafyeva et  al., 2022). Deep 
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investigation of transcriptome datasets unveiled the presence 
of these genes among DEGs. We observed that a significant 
number of genes (82) identified belonging to functions vital for 
carbohydrate transport and metabolism, including different 
GHs families, which are known to be  involved into plant 
polysaccharides degradation (Kumar et al., 2017). For example, 
many up-regulated transcripts are affiliated with genes 
responsible for biosynthesis of GH5, GH13, GH25, GH30 and 
GH43 families enzymes, which function as effectors with roles 
in the degradation of plant polysaccharides (Rovenich et al., 
2016; Snelders et  al., 2018). These enzymes are known for 
acting as cellulose-degrading (Chang et  al., 2016), starch-
degrading (DeBoy et al., 2008), and catalysing hemicellulose 
and removing xyloses from xyloglucan (Glass et  al., 2013; 
Bradley et al., 2022). Additionally, it was uncovered that genes 
affiliated with the synthesis of GH88 CAZyme, utilizing 
polysaccharide lyase activity to degrade pectins (Cantarel et al., 
2009), was also up-regulated. Another highly active genes, 
coding for xylose isomerases, belong to CAZyme family GH43 
that generally display specificity for arabinose-containing 
substrates. These gene combination reflects the competence of 
the symbiont to utilize starch and the complex of arabinan 
side-chains of pectin-rich cell walls as important nutrients (Ha 
et al., 2005; DeBoy et al., 2008).

Overall, our transcriptome analysis clearly showed, that 
bacteria can profit through the degradation of algal 
polysaccharides, while microalgae are being supplied with the 
repertoire of growth-promoting substances. The results of this 
research will serve as an efficient tool in further investigations of 
symbiotic microalgal–bacteria interactions. The remarkable 
benefit of a co-cultivation of microalgae and bacteria will have 
commercial and environmental positive impacts into the 
microalgal cultivation in the future.
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Growth measurement (OD 750nm) of Micrasterias radians MZCH 672 in 
co-culture with the strain Dyadobacter sp. HH091. Increased growth rate 
(OD 750nm) can be observed in the co-culture with HH091 compared to 
the antibiotic-treated M. radians culture.
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Identification and validation of flexirubin pigments. Analysis of 
Dyadobacter sp. HH091, Maribacter dokdonemsis (yellow-pigment 
control, no flexirubin identified, Yoon et al., 2005), and Escherichia coli 
DH5α (negative control) strains for the presence of flexirubin pigments. 
Cells were photographed before treatment (I), after exposure to 50 µL of 
10 M KOH (II), and after exposure to KOH followed by exposure to 42µL 
12 M HCl (III). Flexirubin-positive cells were yellow at neutral pH (I and III) 
and orange/red under alkaline conditions (II).
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Differentially expressed genes (DEGs) of transcriptome dataset of 
Dyadobacter sp. HH091 co-cultured with M. radians.
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Differently expressed genes (DEGs) coding for the T9SS cargo proteins.
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