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The study of the biological response of microbial cells interacting with 

natural and synthetic interfaces has acquired a new dimension with the 

development and constant progress of advanced omics technologies. New 

methods allow the isolation and analysis of nucleic acids, proteins and 

metabolites from complex samples, of interest in diverse research areas, such 

as materials sciences, biomedical sciences, forensic sciences, biotechnology 

and archeology, among others. The study of the bacterial recognition and 

response to surface contact or the diagnosis and evolution of ancient 

pathogens contained in archeological tissues require, in many cases, the 

availability of specialized methods and tools. The current review describes 

advances in in vitro and in silico approaches to tackle existing challenges (e.g., 

low-quality sample, low amount, presence of inhibitors, chelators, etc.) in 

the isolation of high-quality samples and in the analysis of microbial cells at 

genomic, transcriptomic, proteomic and metabolomic levels, when present in 

complex interfaces. From the experimental point of view, tailored manual and 

automatized methodologies, commercial and in-house developed protocols, 

are described. The computational level focuses on the discussion of novel 

tools and approaches designed to solve associated issues, such as sample 

contamination, low quality reads, low coverage, etc. Finally, approaches 

to obtain a systems level understanding of these complex interactions by 

integrating multi omics datasets are presented.
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Introduction

Cell interaction with biotic and abiotic surfaces involves 
complex processes including locating, approaching, and sensing 
the proximity of the surface. On occasion, the interaction may 
be initiated through random deposition, as exemplified by viruses 
that are not actively performing any type of biological processes 
beyond cell infection. Yet for cells other than viruses this 
interaction is actively sought as a number of advantages are 
present when comparing surface attached growth and planktonic 
lifestyle, and these include among others an improved access to 
nutrients and better chances for survival (Tuson and Weibel, 
2013). Plant surfaces interacting with bacteria are an example of a 
type of interaction between microbiome and a biotic material 
(part of a host) that provides benefits for both players (Pieterse 
et  al., 2016). Therefore, interaction with surfaces provides 
evolutionary advantage as it increases the odds of survival for the 
microbial species in the long run.

Microorganisms are often found spatially and functionally 
organized in 3D aggregated structures, which can be suspended 
in the liquid as flocs and granule-like aggregates, or they can 
be attached to a surface in the form of biofilms and mats (Stolz, 
2000). Biofilms are one and a recalcitrant expression of microbial 
adaptation and survival to desiccation, stress, or harsh 
environments. Biological evolutionary pressures have selected the 
development of this and other complex biological systems as a 
microenvironment where the “self ” has in certain ways been lost 
for the community purpose of survival and optimization of 
resources (Hug and Co, 2018).

When considering man-made surfaces, microbial-surface 
interactions can start even before cell attachment. Upon exposure 
to the environment, the raw surface gets covered by organic 
materials forming a conditioning film (Berne et al., 2018). This 
makes the surface more familiar to microbes allowing a better 
interaction, adhesion, or active attachment. It has been 
demonstrated that not all bacteria are part of the group of primary 
colonizers, but can only attach once certain other bacterial species 
have established themselves in the community, as reviewed in 
Little and Wagner, (1997). The initial community starts to grow in 
size and complexity through time producing ever more complex 
surface structures, i.e., physically (different 3D shapes), 
physiologically (increased metabolic activity), and compositionally 
(higher phylogenetic diversity). The conceptual model of biofilm 
formation has been debated for decades (Monds and O’Toole, 
2009), and only now the methodology is allowing us to tap deep 
into the chemical and physical interactions that cells have with 
different surfaces and with one another as the biofilm is maturing. 
Colonization is started by individual planktonic cells that land or 
deposit over a given surface, leading to the colonization stage in 
the biofilm forming process (Li et al., 2020). Biochemical pathways 
associated with the biofilm lifestyle are triggered including 
alteration of the membrane lipid profile (Favre et al., 2018; Tang 
et al., 2021). These modifications are probably owed to the need of 
a continuous flow of information between the biofilm components, 

and a lower requirement for defense against the outer environment 
than during a planktonic lifestyle. Some other specific traits in the 
biofilm lifestyle indicate that bacteria use siderophores (secondary 
metabolites) to capture preferentially available iron (Guo et al., 
2021). Overall, at a mature stage, these structures present a variety 
of microniches and environments subject to stresses that induce 
the development of responsive and adaptive mechanisms (Chavez-
Dozal et al., 2015).

Cellular attachment events are of particular interest as in 
many cases, microbial surface colonization results in unwanted 
outcomes (Flemming et  al., 2016). For instance, biofouling 
negatively affects the flow of liquids in pipes (Polman et al., 2013, 
2020), leading to the damage of surfaces (Coetser and Cloete, 
2005). Therefore, cell-surface interactions can pose economic 
losses of a considerable entity when expensive antifouling 
treatments have to be applied (Flemming, 2020). Other issues 
include the colonization of biotic tissues and hospital surfaces or 
devices causing medical complications (Harding and Reynolds, 
2014; Russotto et  al., 2015; Li et  al., 2020). Detrimental 
microorganisms can thrive in a myriad of clinical surfaces 
(Cobrado et al., 2017), posing a serious risk to become a reservoir 
of hospital acquired infections (Boyce, 2016; Gostine et al., 2020). 
More specifically, the colonization of medical devices that break 
the physical boundaries between the external environment and 
the internal human body space, leads to severe and life-threatening 
consequences for patients at Intensive Care Units (Vickery et al., 
2012; Vitális et al., 2020; Zhang et al., 2021). Presence of certain 
strains is not only critical in the regular clinical practice, but has 
been appointed as a very important aspect to monitor and control 
in upcoming space exploration (Mahnert et al., 2021), or crewed 
Moon or Mars missions where dysbiosis could be enhanced by the 
absence of compensating microbiomes. Metabolic transformations 
due to the newly established community or physiological 
processes from single cells can generate toxic products in drinking 
water, food and chemical production lines (Bachmann and 
Edyvean, 2005; Dupre et al., 2019), but also affect the viability of 
cultural heritage (Cennamo et al., 2016; Marvasi et al., 2019). The 
year 2020 has shown how exposed and vulnerable we are as a 
globalized species, where infectious agents can cross the globe in 
a matter of hours. The spread of those agents can be facilitated by 
deposition at high-touch surfaces (Cassidy et al., 2020). Finally, 
cell-surface interactions in a mature biofilm show increased 
recalcitrance to cleaning or toward antimicrobial treatments. 
This resistance is achieved by genetic mechanisms in combination 
with specific structural properties of the biofilm such as 
diminished antibiotic penetration due to the extracellular matrix 
(Gilbert et al., 1997).

For all the above, an improved understanding of the 
succession of phenotypes taking place when cells interact with 
surfaces is of paramount importance. Detection of microbial 
population shifts, genes, transcripts, proteins, or metabolites 
indicating a seeding phase (Monge et al., 2021) is essential for 
managing strategies, to evaluate establishment risks, and to judge 
the possibility of success of interventions. Control of microbial 
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interactions with surfaces is also relevant for biotechnological 
purposes. For instance, microorganisms can be used as a tool for 
the detoxification of pollutants present in industrial wastewater, 
for a more efficient and controllable production of biomolecules 
of industrial interest, or the production of added-value surfaces 
(e.g., a nanomaterial with a defined beneficial biological layer of 
microorganisms that prevents the establishment of pathogenic or 
unwanted strains) (Deev et al., 2021).

Molecular biology methods enable investigation on how the 
cell senses and responds to surfaces, both on the community and 
on the single-cell levels. Genomics, transcriptomics, proteomics 
and metabolomics, collectively called “omics” technologies (Beale 
et al., 2016), cover the full range of aspects and inform on changes 
on microbial molecular phenotypes induced by the contact with 
the surface (Seneviratne et al., 2020).

These methodologies, still under development, are already 
providing answers to specific questions related among others to: 
(i) mechanisms for active microbial attachment, (ii) composition 
of surface interacting microbial communities, (iii) specific 
molecular phenotypes exhibited prior and during interaction with 
the surface, (iv) surface modifications that decrease potential 
biofilm formation, and (v) surface modifications to selectively 
promote cellular attachment.

Notwithstanding, several main challenges need to 
be addressed to advance the study of cell-surface interaction. Time 
distribution: it is crucial to understand the time span and 
resolution with which to study such a continuous process 
characterized by a succession of molecular phenotypes. Spatial 
distribution: spatial gradients as a result of biofilm formation this 
result in differential environments with chemical features that may 
represent a burden in the isolation of certain materials due to 
impaired penetration of reagents. Low quantity of material: 
surfaces are usually covered only by a low quantity of viable cells, 
specially at early stages of biofilm development. Complexity of the 
extracellular matrix: DNA, proteins, and other cellular metabolites 
can irreversibly bind to the extracellular matrix, which is piling up 
on the exposed surfaces and is entrapping the cells. This matrix 
often represents a problem for successful isolation of biological 
material. Data analysis: computational methods tailored to the 
specific data type are required.

Considering the presented challenges, this review highlights 
the current wet and dry (in silico) methodologies in the four main 
omics approaches: genomics, transcriptomics, proteomics, and 
metabolomics (Figure 1).

We first present a methodological perspective, attending to 
the intrinsic difficulties encountered at each omics level from 
sample recovery to the use of solvents to selectively capture 
molecules of interest. We also reflect on the potential of recent 
advances in omics data acquisition, such as long read sequencing 
technology, for the study of complex communities. From a data 
analysis perspective, we comment on pipelines to analyze and 
interpret the obtained data. Lastly, we  discuss systems level 
approaches that integrate multiple datasets and data types to arrive 
at a holistic understanding of the system.

Generation and analysis of 
genomics data for the study of 
microorganisms in complex 
matrices

Genome encoded functional analysis can accurately 
characterize the functions and the interaction among microbes 
and with their environment. Moreover, DNA sequence analysis in 
complex metagenomic samples informs on the precise 
composition of the community and the possible roles of its 
members. Sequencing of ubiquitous marker genes such as those 
associated with the small subunit of ribosomal RNA, 16S for 
prokaryotes, 18S for eukaryotes or internal transcribed spacers 
(ITS) for fungi, or the cytochrome c-oxidase (EC 1.9. 3.1), is an 
efficient approach for community profiling that has been applied 
to explore a broad range of environments, such as the human 
microbiome, marine communities, or other environmental 
samples including soil (Bharti and Grimm, 2021). Genomics is 
especially well suited for studies where the samples of interest are 
sensitive, such as ancient cultural heritage items (González and 
Sáiz-Jiménez, 2005; Imperi et al., 2007; Bharti and Grimm, 2021), 
although other minimally invasive approaches have been 
developed for these cases (Marvasi et  al., 2019). Decorative 
elements developed in pre-industrial ages represent a great 
environment for microbial growth due to its composition that can 
include animal fatty acids and protein substrates (Cennamo 
et al., 2016).

Sample preparation

The biomass recovery step is a major concern when working 
with cells growing over a surface. In biofilms, the complex 
extracellular matrix requires methods for detachment of cells, 
otherwise the extraction methods will yield less nucleic acids. 
A study aimed to understand the dynamics of biofilm dispersal 
(de Vries et al., 2021), used an approach of detachment and 
dissolution of the biofilm structure grown on filter membranes 
by strong bead-beating at 50,000 rpm during a short period of 
time having used sterile milli-Q water as a solvent. Authors 
succeeded in achieving efficient detachment of cells from their 
matrix. Disruption of cells is of paramount importance when 
working with low-biomass samples, and efficient lysis is carried 
out as with stronger mechanical methods by adding ceramic 
beads in the tubes used by the instrument (Rychert et al., 2021). 
Recovery of biofouling communities is also a complex 
procedure as shown by Kim et al. (2021). Their process includes 
a step to remove invertebrates and macroalgae from the exposed 
metal surface, microbial communities are then washed and 
recovered by rubber spatula scraping. A filtration step (3 μm 
pore) was intended for removal of organic particles, coupled 
with another step of filtration (0.2 μm pore) for microbial 
biomass collection prior to DNA isolation using standard 
commercial kits.
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These approaches illustrate the necessary phases for DNA 
isolation and extraction from samples originating from complex 
environments or matrices, and how it is challenged by the 
presence of proteins, metal ions, and other impurities. In that 
regard, lysozyme and proteinase pre-lysis treatments have been 
used to target extracellular contaminants, as in the study of 
L. monocytogenes isolates obtained from meat factories surfaces 
(Nastasijevic et al., 2017). Moreover, samples with low microbial 
biomass can be even more sensitive to these impurities. Complex 
polysaccharides, such as those found on the extracellular matrix, 
are known to inhibit PCR (Schrader et al., 2012). Some approaches 
in biofilm research have applied steps of enzymatic digestion 
aimed to diminish potential matrix contaminants (Leventhal et al., 
2018). Contaminants and impurities impair enzymatic 
amplification, which can cause major biases that are particularly 

relevant when analyzing metagenomics samples (Angelakis et al., 
2016). Similarly, metal ions affect DNA extraction through 
inhibitory effects, which is especially important in archeological 
and/or forensic samples where calcium-induced inhibition plays 
a major role (Kuffel et al., 2021). Specific protocols have been 
developed for these samples, relying on the use of chelators for 
mineral removal (Balayan et  al., 2015), or biofilm dedicated 
commercial kits for DNA isolation (Paix et al., 2020).

On some occasions, low biomass recovery is imposed by the 
intrinsic limitations of the studied surface, namely when 
approaching heritage artifacts or monuments under special 
protection for which a maximal sampling quantity might 
be  allowed. Recovery methods include sterile-swabbing 
(non-invasive nature) and use of tape (of a micro-invasive nature) 
according to the recent methodological development by Genova 

FIGURE 1

Workflow of major steps in omics analysis of microorganismal samples. Initial specimens can be obtained from biotic (e.g., plants, animals) or 
abiotic (e.g., medical devices, food, pipes, water) ecosystems. In these sources microorganismal samples can be present as planktonic and biofilm 
growing communities of a single or multiple species. From the microorganismal samples single or multiple omics experiments can be conducted 
by extracting singly or simultaneously genomic DNA, messenger RNA, proteins or chemical small molecules (metabolites). Genomics and 
transcriptomics experiments have third generation sequencers as end point analytical instruments to produce data while proteomics and 
metabolomics use mass spectrometry as end technology. Metabolomics also takes advantage of nuclear magnetic resonance (NMR) 
measurements. The huge amount of data can then be analyzed in a separate or integrative approach. Data analysis approaches based on statistics, 
complexity reduction, classification and prediction via machine learning tools are used to interpret the rich amount of data obtained and answer 
and generate new hypotheses. Created with BioRender.com.

https://doi.org/10.3389/fmicb.2022.1006946
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://biorender.com/


González-Plaza et al. 10.3389/fmicb.2022.1006946

Frontiers in Microbiology 05 frontiersin.org

and collaborators (Genova et al., 2020), while other authors use 
sterile spatula for the removal of the first layer and collection of a 
section underneath (Ding et  al., 2021). Minimally invasive 
methods are also important when considering other surfaces of 
biological origin as skeletal remains. These are key for analyzing 
among others ancient pathogen global dynamics or reconstructing 
the microbiomes (Farrer et al., 2021). In that context the issue is 
to recover high quality DNA while eliminating contaminating 
genetic material inputs. The removal of confounding genetic 
material can be achieved by surface decontamination (Meffray 
et al., 2019). For studies where sample amount was not as critical, 
swabbing can be applied as a suitable recovery method (Marotz 
et al., 2018).

A key aspect to consider, especially for low biomass samples, 
is the potential contamination with external DNA not related with 
the sample of interest (Eisenhofer et al., 2019). These contaminants 
could arise even from the commercial reagents used at isolation, 
and bias the reads obtained (Weyrich et  al., 2019), thereby 
preventing rigorous analysis.

Overview on methods for extraction
An extensive and recent review on methods for nucleic acid 

extraction can be  found in Emaus et  al. (2020). Traditional 
liquid–liquid extraction methods often require large volumes of 
solvents as exemplified in a study to develop effective 
decontamination procedures when recovering dental microbial 
DNA in ancient human remains (Farrer et  al., 2021). Thus, 
current developments revolve around the use of microfluidic 
devices allowing the use of volumes in the 10−6–10−3 l range 
(Vicente et al., 2020) and the subsequent exploration of a broad 
range of solvents such as magnetic ionic liquids that can 
be  manipulated with external magnetic fields when used in 
complex matrices (Clark et  al., 2015). Solid phase extraction 
methods limit the use of liquid solvents through replacement 
with sorbent solids (Price et al., 2009). Magnetic Solid-Phase 
Extraction combines a magnetic core to facilitate separation and 
this technique has been extended by the use of functionalized 
nanomaterials (Manousi et  al., 2020). Graphene oxide 
nanocomposites are widely used, and DNA isolation techniques 
using these have been specifically developed for poor quality 
samples (Liu et al., 2019).

Extracellular DNA
Analysis of DNA in bacterial biofilms faces the presence 

of extracellular DNA in the extracellular matrix (Flemming 
et  al., 2016). This external moiety of nucleic acids in the 
matrix might originate either from cell lysis or active lysis, and 
double or single stranded DNA fragments are found 
(Monticolo et al., 2020). DNA from lysed cells can be actively 
used as a nutrient and a number of bacterial species actively 
secrete extracellular nucleases to access these resources 
(Jakubovics et  al., 2013). Actively secreted DNA through 
specialized mechanisms was already proved to be essential for 
biofilm formation 20 years ago (Whitchurch et al., 2002), and 

has been associated to many of the mechanical properties of 
biofilms (Gloag et al., 2020). Some authors have suggested that 
electrostatic interactions between eDNA (negatively charged) 
and secreted proteins (positively charged) contribute to the 
structural integrity of the extracellular matrix (Dengler et al., 
2015; Kavanaugh et al., 2019). Mechanisms for bacterial DNA 
secretion are linked to quorum sensing systems, so that this 
process is tightly regulated during biofilm development 
(Ibáñez de Aldecoa et al., 2017).

Different views on microbiome composition might arise 
depending on the DNA source (intracellular or extracellular). A 
metagenomic analysis in deadwood (Probst et al., 2021) showed 
that community composition regarding most abundant organisms 
remained unaltered, however, the identity and relative abundance 
of less abundant variants was greatly affected by the origin of the 
DNA. Thus, methods for sequential extraction from extra- or 
intracellular compartments are required for each specific 
environment (Nagler et al., 2018), although the general principle 
is to extract extracellular DNA while preventing cell lysis, and for 
this task enzymatic methods are preferred over chemical ones (Wu 
and Xi, 2009).

Systematic optimization of extraction methods
DNA extraction for the study of microbial surface 

interactions in complex interfaces often requires the 
development of specific methods. Extraction methods need to 
be optimized for the problem at hand especially as they can 
greatly affect low biomass samples for microbiome analysis 
(Zoetendal et al., 2001), and negative controls are essential to 
deconvolute the effect of contaminations (Lauder et al., 2016). 
Pérez-Brocal et al. (2020) tested five DNA extraction protocols 
to analyze microbial communities using sequencing of 16S 
RNA (bacteria) and ITS (fungi) genes. A bead-beating step 
was seen to increase apparent abundance of Gram-positive 
bacteria such as Firmicutes and Actinobacteria with extensive 
peptidoglycan in their cell walls. Similarly, fungal families 
Malasseziacee and Aspergillaceae were more abundant in the 
corresponding samples. The use of negative controls allowed 
Pérez-Brocal et al. (2020) to avoid reporting taxa strongly and 
significantly overlapping with the negative controls. 
Optimization of methods and protocols often requires 
evaluation of numerous factors that might impact 
performance, and tools for statistical design of experiments 
can assist this process by minimizing the number of required 
experiments. Booncharoen et al. (2021) evaluated factors that 
can influence DNA extraction from bones such as the 
concentration of the chelator (EDTA), pH, incubation time 
and temperature, and volume of the solution. To fully explore 
the combined effect of all these factors, they used the Plackett-
Burmann statistical method to design the experimental 
approach and the number of experiments for protocol 
optimization was reduced from 32 to 13, and enabled them to 
identify EDTA concentration as the major factor of success for 
the protocol (Booncharoen et al., 2021).
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Sequencing approaches: Technologies 
and platforms

Current sequencing platforms generate reads not long enough 
not to cover an entire microorganismal genome with a single read. 
For a long time, genomic and transcriptomic analysis have been 
dominated by second generation sequencing technologies, 
represented by Illumina technology (Illumina, Inc.), that deliver 
millions of high-quality short reads (150 ~ 500 bp). Third 
generation sequencing, illustrated by PacBio (Pacific Biosciences 
of California, Inc.) and Oxford Nanopore (Oxford Nanopore 
Technologies Limited) technologies, deliver reads of up to 10 kb. 
In earlier years, these technologies suffered from low accuracy, but 
this factor is continuously improving, partly due to the 
development of specialized software. Long reads have the 
advantage of allowing better resolution of genomic repeats or 
structural variation, although they remain less affordable than 
short read and have more strict requirements regarding sample 
quality. Protocols need to be adapted to ensure sufficiently long 
fragments. A summary of already existing protocols can be found 
in Maghini et al. (2021), still they might need further adaptation 
such as replacement of mechanical lysis by enzymatic lysis 
(Maghini et  al., 2021). It should be noted that most currently 
available algorithms and bioinformatic analysis pipelines are more 
suitable for shorter reads, however more and more dedicated tools 
for analysis of long reads are emerging in this rapidly developing 
field (Amarasinghe et al., 2020). An excellent review on currently 
available sequencing technologies can be found in Hu et al. (2021).

Based on these sequencing technologies, two alternative 
approaches emerge to obtain complete genomes: de novo assembly 
and reference-based sequencing (also called resequencing). The 
latter uses already available genome sequences of type strains as a 
mapping template (Giani et al., 2019). The choice between either 
approach is dictated by the purpose of the research and most 
important by the availability of good references for the studied 
organisms. Currently, advances in sequencing technologies have 
delivered billions of nucleotide sequences that are available at 
publicly accessible databases, and new genome sequences are 
incorporated almost on a daily basis (Sayers et al., 2020; Harrison 
et  al., 2021). In each project a number of steps, detailed in 
Dominguez Del Angel et al. (2018), have to be considered often in 
consultation with the sequencing facility. For example, the number 
of required sequences (sequencing depth) critically depends on 
estimated genome size and higher values are required for a de novo 
assembly. These requirements also vary with the structure of the 
genome, the sequencing technology, and the quality of the reads 
(Sims et al., 2014).

Advances in sequencing technologies (Ciuffreda et al., 2021), 
combined with the development of ultra-fast and memory efficient 
computational algorithms have enable genome-resolved 
metagenomics, that is the recovery of high-quality microbial 
genomes from complex environmental samples by de novo 
assembly (Kayani et  al., 2021). For the analysis of microbial 
communities, in fact, longer reads from marker genes such as 16S 

rRNA or ITS enable better taxonomic resolution (Tedersoo et al., 
2021). Similarly, longer reads can be used to complement short 
reads for finishing genome assembly and gap solving, as illustrated 
in seven bacterial genomes in Utturkar et al. (2017). An extensive 
review of all computational tools for generating metagenome-
assembled genomes can be found in Gwak et al. (2021) and Yang 
et al. (2021).

Computational genomics

Once initial quality of the starting material has been 
guaranteed, genome analyses associated with interaction between 
microbial cells and natural or synthetic interfaces follow standard 
pipelines for genome assembly, and structural and functional 
annotation (Ejigu and Jung, 2020) or metagenomic binning, 
abundance analysis and functional interpretation (Bharti and 
Grimm, 2021). The main challenge in the study of microbial 
surface interaction is the functional annotation of relevant 
elements and pathways. Identification of genes and pathways 
specifically related to biofilm formation or the interaction with 
surfaces has recently been boosted by the potential of CRISPR for 
high-throughput functional genomics. Systematic disruption of 
gene expression levels using CRISPR interference has been used 
to interrogate control of biofilm formation in multiple strains of 
Pseudomonas fluorescens (Noirot-Gros et al., 2019). These can 
be complemented with computational tools. Protein location tools 
aim at predicting the subcellular location from the protein 
sequence through the recognition of sorting (or targeting) 
sequences and or the analysis of sequence features. Multiple tools 
are currently available and reviewed by Imai and Nakai (2020); 
these tools remain relevant even with the recent advances in 
proteomics technologies as they can offer whole genome coverage 
which is often not available for proteomics. Initially developed 
algorithms, such as p-sort (Nakai and Horton, 1999), target 
peptide signals, but algorithms were subsequently improved by 
including identification of transmembrane helices and extensive 
comparisons with proteins of known location. Currently, 
algorithms based on deep learning or other machine learning 
approaches exploit the wealth of available proteomics datasets for 
training. Still, no perfect method has been developed and most 
successful approaches are consensus methods combining 
predictions from different tools. Such is the case of the predictions 
in the BUSCA web server (Savojardo et al., 2018) that searches for 
protein features such as secretory or organelle-targeting peptides, 
GPI-anchors, and alpha or beta transmembrane regions by 
combining up to eight well established algorithms. It should 
be noted however, that in many cases membrane proteins are 
predicted based on transmembrane domains, best suited for 
integral membrane proteins. Membrane bound proteins have 
distinct features that makes their prediction elusive and dedicated 
algorithms for this task are currently developed, again combining 
prediction tools relying on machine learning approaches, such as 
TooT-M (Alballa and Butler, 2020). Moreover, we  expect that 
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recent breakthroughs on protein structure prediction will largely 
increase accuracy of location predictions based on sequence 
information (Jumper et al., 2021). Finally, the up-and-coming use 
of protein Language Models, basing their reconstruction solely on 
local and global sequence information, has also shown to improve 
the prediction tools considerably (Teufel et al., 2022).

Generation and analysis of 
transcriptomics data for the study 
of microbial-surface interactions

Comprehensive mRNA sequencing is a powerful tool for 
conducting unbiased, quantitative differential gene expression 
analysis (LoCoco et  al., 2020). However, the reliability of the 
obtained data depends on the extraction of high-quality RNA 
from samples. As in the case of DNA, the isolation of RNA with 
acceptable quality for RNA sequencing (RNA-seq) analysis from 
microorganisms present in macroscopic and microscopic, biotic 
and abiotic surfaces, is challenging, due to the presence of 
inhibitors, chelators, low amounts, or due to particularities of the 
experimental design, for example, when performing single cell 
transcriptomics analyses. Keeping RNA integrity during 
extraction can be problematic, especially in tissues such as skin 
with dense, connective matrices, and elevated ribonuclease 
expression. In addition, the ability of nanoforms to adsorb single-
stranded nucleic acids is a burden for the isolation of RNA from 
cells that interact with them.

RNA isolation from (nano)biotic/organic 
surfaces/matrices

Skin/animal tissues
Transcriptomics analyses of microbial strains interacting with 

animal biological tissues, such as skin and lung epithelial tissues, 
are becoming standard approaches to understand microbial 
lifestyles and pathogenicity (Guilhen et  al., 2016). However, 
studying colonizing bacterial gene expression with RNA 
sequencing is challenging because the ratio of host RNA to 
bacterial RNA is very high in infected tissue which hampers 
obtaining enough bacterial reads to study bacterial expression 
levels. Methods for microbial RNA isolation and enrichment, 
tailored to the composition particularities of the multicellular 
matrix, have been published during the last years. For instance, a 
hybridization method, based on the coincidence cloning (CC) 
approach, for the isolation of representative bacterial cDNA pools 
from infected organs has been proposed as an easy-to-implement 
procedure. Co-denaturation and co-renaturation of the excess of 
bacterial genomic DNA with the cDNA transcribed from total 
RNA of the infected tissue enabled a >1,000-fold enrichment of a 
certain bacterial cDNA fraction (Azhikina et al., 2010). The use of 
commercial kits for the enrichment of microbial RNA from tissue 
samples has been described as well, in combination with specific 

methodologies to isolate bacterial fractions. In particular, the 
direct transcriptome analysis of Mycoplasma hyopneumoniae from 
pig tissue lungs was shown to be  problematic due to the low 
bacterial mRNA available. However, the MICROBEnrich kit has 
been successfully employed in the isolation of enough bacterial 
mRNA for RNA sequencing, employing as a starting material 
infected lung flushes (Kamminga et al., 2020).

Skin also challenges the isolation of RNA from colonizing 
bacteria. For instance, the isolation of RNA from the pathogenic 
bacteria Mycobacterium ulcerans from skin tissue from a mouse 
model for RNA sequencing required the development of a method 
based on differential lysis (Robbe-Saule et al., 2017). First, the host 
cells were disrupted by a combination of tissue mechanical lysis 
and proteinase K treatment. This process does not have an impact 
on bacterial cells integrity, which can be separated from the lysate 
containing host RNA by centrifugation, and the pellet containing 
the bacteria is subsequently resuspended in lysis buffer, disrupted 
by bead-beating, and finally purified on a Zymo column.

The microbial biofilm matrix itself can significantly interfere 
during the RNA extraction. For instance, polysaccharides, the 
major component of the Staphylococcus epidermidis biofilm matrix 
(about 90%), a common inhabitant of normal human skin and 
mucosa, which has recently emerged as a leading cause of biofilm-
related infections, make bacterial cell lysis and RNA purification 
difficult (França et  al., 2011). França et  al. (2011), compared 
different kits, with different characteristics, for RNA isolated 
quantity, purity, integrity, and functionally. The compared kits 
were: FastRNA® Pro Blue (MPBiomedicals, Irvine, CA, 
United  States), which employs mechanical and chemical lysis 
together with organic extraction; PureZOL™ RNA isolation 
reagent (Bio-Rad, Hercules, CA, United  States), which uses 
chemical lysis with organic extraction; and PureLink™ RNA Mini 
Kit (Invitrogen, San Diego, CA, United States) that uses enzymatic 
lysis and silica membrane extraction. While all kits were able to 
extract intact and functional total RNA from S. epidermidis 
biofilms, the obtained results showed that the FastRNA® Pro Blue 
kit was the only one able to isolate pure and large RNA amounts.

Plant tissues
Adapted RNA harvesting protocols have allowed in vivo 

transcriptomic analyses of microbes during interactions with their 
host plants. Studies focused mainly on legume/rhizobia systems, 
taking advantage of the high bacterial population present in 
nodules (Chapelle et al., 2015). However, analysis of colonizers in 
other plant tissues (e.g., leaves) has proven more challenging, due 
to the low proportion of their RNA in the host tissue samples 
(particularly in early colonization stages), and to the fact that plant 
RNA cannot be removed easily through bacterial RNA enrichment 
or eukaryotic RNA subtraction. Different methodologies have 
been described for bacterial RNA isolation from plant tissues, 
such as leaves and roots.

Chapelle et al. (2015) described a method for analysis of the 
gene expression of a bacterial pathogen at the initial stages of foliar 
infection. The method is based on bacterial cell isolation, through 
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a density gradient centrifugation step of a disrupted and filtered 
plant tissue, which results in a 104 to 105-fold enrichment of 
bacterial RNA, compared to crude total RNA samples. To prevent 
changes during the process, the isolation is performed in the 
presence of an RNA stabilizing agent (Chapelle et al., 2015). More 
recently, Nobori et al. (2018) applied a similar protocol to obtain 
enough RNA from Pseudomonas syringae infected Arabidopsis 
leaves, to perform RNA sequencing analysis (Nobori et al., 2018). 
Dual RNA sequencing analysis, at a sequencing of >20 GB per 
mixed sample (bacteria infected plant leave), allows the in vivo 
transcriptional analysis of plant-bacteria interactions (Liao 
et al., 2019).

RNA isolation from abiotic surfaces

During biofilm development, sessile cells acquire physiological 
characteristics differentiating them from planktonic cells. 
Increasing attention has been paid to gene expression levels, to 
understand surface sensing and biofilm formation. When initial 
responses to spontaneous cellular adhesion occur, only a limited 
number of cells are generally attached to the surface. Since 
different cells attach to the surface at distinct times, a significant 
heterogeneous population of cells is present and single-cell 
methods are very relevant at the initial stages (Kimkes and 
Heinemann, 2020). Continuous improvements of single cell 
isolation methods and RNA-seq technologies in relation to single 
cell sensitivity have enabled single cell transcriptomics analysis 
(Chen et  al., 2017). For instance, Imdahl et  al. (2020) have 
developed a protocol for cell sorting and RNA-seq analysis of 
bacteria, based on systematic cell isolation using fluorescence-
activated flow cytometry (FACS) and MATQ-seq (Imdahl et al., 
2020), a highly sensitive sequencing protocol able to detect 
transcriptional variation among cells of the same population 
(Sheng et al., 2017).

In regard to mature biofilms, the microbial cell physiology 
differs depending on their spatial location within the community, 
as gradients appear throughout the biofilm. To isolate different 
subpopulations of a bacterial strain within a biofilm, and study 
differences in gene expression that occur at localized sites and due 
to distinct environmental conditions, or stochastic gene expression 
events, laser capture microdissection has been used to isolate 
samples that can be  subjected to transcriptomics analyses 
(Williamson et al., 2012).

RNA isolation for transcriptomics analysis from 
microorganisms present in abiotic surfaces can be challenging as 
well in many cases, due to the presence of inhibitors, chelators, low 
amounts, difficult access, etc. In case of bacteria, mRNA 
sequencing can be even more challenging, as it does not contain a 
poly-A tail at the 3′ end, which is commonly used to enrich these 
molecules during reverse transcription, considering as well that 
bacterial cells usually contain 100-fold lower RNA than 
mammalian cells, and more than 95% consists on ribosomal RNA 
(rRNA) (Wangsanuwat et al., 2020). To deal with these limitations, 

a number of solutions have been investigated. For instance, several 
commercial kits have been developed to remove bacterial rRNA 
from total RNA samples, such as MICROBExpress, RiboMinus 
and Ribo-Zero, which are based on subtractive hybridization to 
deplete rRNA. Another possibility is the specific degradation of 
rRNAs with 5′-monophosphate ends, but not mRNAs with 
5′-triphosphate ends, employing Terminator™ 5′-phosphate-
dependent exonuclease. Also, different technologies based on 
rRNA tiling and degradation are available. In addition, the 
Enrichment of mRNA by Blocked rRNA (EMBR-seq) technique 
has been recently introduced, based on the use of 5S, 16S and 23S 
rRNA blocking primers and poly-A tailing to specifically deplete 
rRNA and enrich mRNA during downstream amplifications 
(Wangsanuwat et al., 2020).

Total RNA chelation by active surfaces, such as certain 
nanomaterials, has been described when studying the global 
transcriptional response of microorganisms interacting with 
them, as well as the development of a specific methodology to 
overcome this issue. In particular, the obtention of high-quality 
total RNA in enough amounts to be used for RNA-seq analysis of 
yeast cells interacting with graphene oxide nanoparticles could 
only be achieved through the introduction of a separation step, 
prior to the start of the RNA isolation protocol (Laguna-Teno 
et al., 2020). The separation step, based on a sorbitol gradient 
separation process, allowed to separate yeast cells from graphene 
oxide nanoparticles, to successfully isolate ribonucleic acid levels 
(in concentration and purity) for RNA-seq analyses.

The successful purification of ancient RNA, including that 
from microbial origin, has been described, although not many 
studies are yet available. The most common case of recovery and 
analysis of ancient microbial RNA is that of viruses and viroids 
from ancient samples that had been preserved chemically, frozen 
or in a dry state (Guy, 2014; Smith et al., 2014). For instance, the 
RNA virus causing the 1918 great influenza could be isolated from 
formalin-fixed, paraffin-embedded, lung autopsy materials using 
proteinase K digestion, followed by either a phenol-chloroform or 
an acidic guanidinium thiocyanate-phenol chloroform extraction 
step, and isopropanol precipitation in the presence of glycogen 
(Krafft et al., 1997). The 1918 great influenza pandemic virus was 
also isolated from frozen, unfixed lung tissues, using RNAzol and 
manufacturer indications (Reid et  al., 1999). Furthermore, by 
employing a viral particle-associated nucleic acid enrichment 
approach, DNA and RNA viral genomes from a 700-year-old fecal 
sample from caribou preserved in a subarctic ice patch were 
isolated and sequenced. Viroid RNA has been successfully 
amplified and sequenced as well from 50-year-old dried leaf 
material, using standard purification approaches (Guy, 2013). Few 
reports on the purification and sequencing of microbial RNA 
from archeological seeds have been published as well. Deep 
sequencing of ancient biological material, such as approximately 
700 years old desiccated maize kernels, allowed to obtain microbial 
reads (Fordyce et al., 2013), including bacteria and archaea. In this 
study, nucleic acid extraction was performed using an optimized 
protocol, involving initial bleaching of the testa to minimize 
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external contamination. Also, RNA purification and sequencing 
from approximately 750 years old barley grain allowed the 
reconstruction of the RNA genome from an ancient barley stripe 
mosaic virus (Smith et  al., 2014). This required a modified 
protocol of the MirVana miRNA Isolation Kit, with extended 
(8 day) initial incubation of the sample in 1 ml CTAB buffer, 
following a standard isolation procedure.

Sequencing approaches and 
computational analysis

Transcriptomics share the same sequencing technologies and 
platform of genomics. Dealing with microorganisms interacting 
with surfaces is also not entailing major adaptations in the data 
analysis workflow. However, the introduction of long reads 
sequencing has also pushed forward the transcriptomic field 
owing to the technology ability to produce near full or full-length 
mRNAs also without the need of reverse transcription (Ciuffreda 
et al., 2021). An example is the use of Oxford Nanopore in the 
direct detection of mRNA in a marine pelagic crustacean 
zooplankton community to monitor seasonal changes (Semmouri 
et al., 2020). In addition, microorganismal mRNA presents no or 
low percentage of introns in comparison to higher eukaryotes 
making the initial data treatment not very different from 
genomics. More challenging is the detection of transcripts in 
communities. The reason for the above lies once more in the still 
prominent use of Illumina sequencing technology that generates 
high-throughput short RNA-seq reads. However, many tools have 
been developed to tackle this problem as reviewed by Shakya 
et al. (2019).

When analyzing transcriptomics data, the interest is on 
differences in gene expression. These can indicate what is actively 
transcribed in the condition under consideration and give insights 
on the specific functions possibly happening in the different 
conditions. Many tools have been developed to normalize and 
calculate (with the most widely used being the R packages limma, 
EdgeR and DeSeq2) and their performance and usability is 
continuously assessed as for example in Corchete et al. (2020). 
Mapping back the transcripts to related genes enables the use of 
both KEGG (Kyoto Encyclopedia of Genes and Genomes) 
pathway mapper and Gene Ontology enrichment covering 
biological process, molecular function, and cellular component to 
gain more biological information. These tools allow the retrieval 
of cellular, molecular and organismal-based functions that are 
enriched in the up or down regulated samples as exemplified in 
Laguna-Teno et  al. (2020). Same analysis pipeline, yet with 
dedicated software tools, can be applied to the study of an entire 
community of microorganisms with the aim of identifying the 
presence of collective functionalities. In such a 
metatranscriptomics approach the information on genes that are 
expressed in the community can tell whether for instance a 
resistance gene is actively transcribed or the microorganismal 
individuals are viable. Of particular interest is the possibility of 

using Oxford Nanopore RNA-sequencing in loco to easily detect 
the above mentioned characteristics in food or clinical samples as 
reviewed in Ciuffreda et  al. (2021). Software tools for 
metatranscriptomics analysis are still at their infancy and therefore 
in continuous development. For an analysis of present tools, 
current challenges and promises of metatranscriptomics analysis 
we  refer the reader to Shakya et  al. (2019) with attention on 
current best practice presented in Chung et al. (2021).

Generation and analysis of 
proteomics data for the study of 
microbial-surface interactions

With the development of more sensitive mass spectrometry 
(MS) instruments and quantitative approaches, proteomics has 
become a routine analysis for investigating the protein molecular 
effectors within any cell type. The proteome, or else the ensemble 
of the proteins present in the analyzed sample at a given time, can 
be easily recorded by MS for many types of live specimen (Mann 
et al., 2013).

Cell-surface and cell–cell interactions of microorganisms are 
physically mediated among others by proteins. Their study 
represents a unique opportunity to understand how these 
microorganisms can colonize biotic and abiotic surfaces to their 
advantage. Proteomics offers the additional benefit of being able 
to dissect multiple levels of the interaction’s players. In fact, 
various methods have been developed to extract the proteins 
released by the cells in the extracellular environment (secretome), 
to probe for proteins directly exposed in the surface of the cells 
(surfaceome), and finally to look at intracellular proteins globally 
or at the level of specific organelles. Collecting this multi-layer 
information is hampered by the quantity of starting material. In 
addition, separating the microbial component from the surface or 
interacting biotic material is not always trivial as well as producing 
a clean sample. However, the downstream processing of the 
protein sample follows the standard pipeline of cysteine reduction 
and alkylation, enzymatic digestion into peptides, peptide 
desalting and concentration, and finally MS analysis of the 
peptides. An additional barrier to the successful identification and 
quantification of cell-surface and cell–cell protein interactions is 
represented by the data analysis that normally requires a priori 
genomic information and annotation, and that suffers from the 
sparsity of collected data.

Protein extraction from biotic surfaces

Animal tissues
The analysis of host-associated microbiome samples presents 

several challenges related to the efficient and unbiased protein 
extraction. Differences in the cell envelope between Gram positive 
and negative bacteria and the presence of extracellular microbial 
proteins affect sample preparation. Evaluations of multiple 
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extraction methods are therefore important. Such an approach 
sets the use of SDS and ultrasonication as the best method to date 
for human gut metaproteomic sample preparation (Zhang et al., 
2018). Another challenge is posed by contamination due to the 
presence of a large proportion of host proteins overtaking the 
microbial ones, and the presence of contaminants such as food 
residues. Starr et al. (2018) recently presented an extensive review 
of proteomics and metaproteomic approaches developed to study 
host microbe interactions.

Interactions between the host and the microorganisms 
colonizing it can be collected from several compartments of the 
body for example saliva and plaque, intestinal mucosa, skin, 
bronchoalveolar lavage fluids (BALF). In the metaproteomic field, 
samples for the analysis of gastrointestinal tract prevail over other 
types of samples because the mucosa represents the second 
greatest interaction site between the microbes and their host, and 
the most richly populated microbial surface. Extraction methods 
for the gut microbiome are also focused on combining multiple 
omics technologies. Keller and colleagues investigated three 
different extraction methods for the analysis of metabolites, 
peptides, and proteins using mouse cecum as a sample. To detect 
the largest number of small molecules and identify the largest 
number of peptides, metabolomic and peptidomic samples are 
best prepared by methanol/chloroform/water extraction. 
However, the highest number of protein identifications was 
obtained with the acidified methanol extraction for proteomics 
sample preparation. The combination of multiple omics 
technologies asks for a compromise in the extraction methods 
more suitable to specific omics technologies (Keller et al., 2021).

Microbial lung infections are less studied by metaproteomics. 
However, respiratory diseases caused by microbes can 
be investigated not only via a biopsy of lung tissue but also using 
expectorated sputum and BALF. Invasive pulmonary aspergillosis 
caused by A. fumigatus was recently studied in human BALF and 
mouse models using extraction of proteins via eFASP (Erde et al., 
2014). This analysis detected candidate biomarkers for the 
infection (Machata et al., 2020). Cystic fibrosis is a genetic disease 
in which pathogens play a major role in the disease progression. 
To study the pathophysiology of the microbial community in 
cystic fibrosis, recently protocols to better purify the microbial 
pathogens from sputum were developed based on differential 
centrifugation and detergent treatment to enrich bacterial cells. 
The extraction method improved the identification of the 
proteome from sputum of Pseudomonas aeruginosa infected cystic 
fibrosis samples (Wu et al., 2019). A more recent version of such 
protocol is based on mechanical homogenization combined with 
extracellular DNA aggregates digestion by DNAase I  and 
differential centrifugation steps for the enrichment of microbial 
cells. The metaproteomics analysis identified enriched proteins 
from various bacterial genera and highlighted that arginine 
deiminase pathway and multiple proteases could be contributors 
to the pathophysiology of cystic fibrosis (Graf et al., 2021).

In the analysis of whole proteomes, a new field is represented 
by paleoproteomics the analysis of ancient proteins. Owing to the 

superior biomolecular preservation of proteins in comparison to 
DNA, paleoproteomics has the potential to go further back in 
time. It relies on samples that are less prone to contamination with 
recent molecules in comparison to DNA. Since no amplification 
step is necessary causing extra contamination, the amount of 
protein material recovered becomes more binding (Buckley, 
2019). Most of the research in the past years has been focused on 
the analysis of biomineralized ancient tissues namely bones and 
teeth. For example, protein signatures left by microbes in dental 
pulp samples can be used to diagnose ancient infectious diseases. 
Proof of principle was the identification of proteins from Yersinia 
pestis in 300 years-old dental pulp collected in plague-positive sites 
in France (Barbieri et  al., 2017). Analysis of ancient proteins 
present on archeological artifacts (Vilanova and Porcar, 2020) or 
remains can also highlight the presence of ancient infections. 
Greco et al. (2018) managed to purify using the PlusOne 2-D 
Clean-Up kit (GE Healthcare Life Sciences) proteins from ancient 
Egyptian cheese and identify the presence of Brucella melitensis 
and date a brucellosis infection to the Ramesside period (Greco 
et al., 2018).

Ground and plants
Protein enrichment from soil and litter samples is obtained by 

aqueous buffers in combination with mechanophysical treatments, 
use of organic solvents, detergents, and strong acids or bases 
(Keiblinger and Riedel, 2018). Soil and litter protein analysis is 
challenged by the broad heterogeneity of the samples with respect 
to characteristics such as electrical conductivity, texture, pH, 
carbon–nitrogen–phosphorus stoichiometry or humic acid 
content (Starke et  al., 2019). For example, humic compounds 
adsorb proteins and represent an obstacle to the extraction, 
purification, and quantification of proteins but can be  mostly 
removed via acid filtration (10 kDa) (Qian and Hettich, 2017). A 
combination of extraction strategies is recommended to achieve 
higher coverage in the metaproteome samples. This could include 
SDS–phenol and TCA precipitation or NaOH extraction methods 
(Chourey and Hettich, 2018). SDS-based protocols are indicated 
for efficient identification of proteins from soil (Bastida et al., 
2014) while NaOH is suitable to extract specific proteins covalently 
bound to clay particles.

Microbially-driven soil processes are responsible for plant 
organic matter mineralization and stabilization. An example study 
looked at the lignocellulose decomposition happening in situ 
within the surface level sediments collected from a natural 
established salt marsh located in the United  Kingdom. 
Lignocellulose is permeated with the phenolic heteropolymer 
lignin that makes lignocellulose more hydrophobic and resistant 
to enzymatic degradation (Leadbeater et al., 2021). To look at the 
extracellular (secretome) and transmembrane (surfaceome) 
proteins, crosslinking of ε-amino groups of lysine with NHS-ester 
biotinylation reagents (i.e., Sulfo-NHS-SS-Biotin) was used. This 
method can label the cell surface primary amine of proteins 
without affecting the membrane and thus reducing cytoplasmic 
contamination (Hurley et al., 1985; Bonn et al., 2018). Extraction 
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with SDS and protein precipitation are then used (Alessi et al., 
2017). The label allows for the purification of the surface proteins 
via affinity with streptavidin and subsequent elution thanks to the 
cleavable arm of the cross-linker reagent. Finally, proteins can 
be  identified via standard liquid chromatography and mass 
spectrometry (LC-MS/MS) pipelines.

To detect the secretome of Hypocrea jecorina fungus growing 
on bagasse, birch or spruce wood, or pure cellulose a new 
culturing method was created using agar plates containing the 
insoluble substrates and a low protein binding hydrophilic 
polyethersulfone membrane. In this way it was possible to collect 
the diffused secreted enzymes on an area under the membrane, 
thus avoiding fungal cell contamination (Bengtsson et al., 2016).

Plant proteomes can be profoundly affected by pathogens and 
beneficial microbes as recently reviewed (Jain et al., 2021). Efficient 
separation of plant, bacterial and fungal surface proteins from 
barley grains could be achieved with 25 mM sodium acetate pH 5.0 
containing 0.02% (w/v) sodium azide, followed by centrifugation 
and filtration of extracted proteins (Sultan et  al., 2016). Stable 
isotope probing approach can be used to track the nutrient flows 
from isotopically labeled substrates to certain microorganisms in 
microbial communities. This tracking of carbon flows from 13CO2 
to the rhizosphere communities was performed in Zea mays, 
Triticum aestivum, and Arabidopsis thaliana. Rhizosphere soil was 
harvested from roots by separation from the loose soil and 
transferred in a harvesting buffer. The solution was then filtered 
(100 μm nylon mesh cell strainer) and centrifuged to obtain a 
pellet. A soil pellet was prepared by grounding it to fine powder in 
liquid nitrogen and a commercial kit NoviPure Soil Protein 
Extraction Kit (Mo Bio Laboratories) was used to extract proteins 
from soil and streamline the extraction (Li et al., 2019). The same 
kit was used for the release of proteins from the rhizosphere of Vitis 
vinifera for metaproteomics analysis (Bona et al., 2019).

Protein extraction from abiotic surfaces

Interactions of microorganisms with abiotic surfaces involve 
among others nanomaterials, and biomaterials. To investigate how 
microorganisms react to microgravity environments and 
understand the exposure risk for humans in closed environments, 
particulates scraped from HEPA filters and from polystyrene 
wipes sampling the cupola surfaces of the international space 
station were analyzed. In this case, samples were first resuspended 
in sterile phosphate-buffered saline (PBS; pH 7.4), concentrated 
on a 0.45-μm filter and plated on two different media (R2A and 
PDA) to allow the growth of both environmental bacteria and 
fungi. Two Aspergillus fumigatus strains were identified and 
characterized by proteomics showing an increase in stress 
responses, and carbohydrate and secondary metabolism proteins 
(Knox et al., 2016; Blachowicz et al., 2019).

When focusing on the analysis of bacteria interacting with 
abiotic surfaces, proteomics can shed lights not only into the 
formation of sessile microbial cells organized in biofilms (Sauer, 
2003) but also in the global changes arising by the altered molecular 

physiology of the bacterial cells when engaged in a biofilm (Ram 
et al., 2005). To investigate the formation of sessile microbial cells, 
cell surface biochemical components representing the surfacesome, 
also called surfaceome or surfome, of bacteria can be purified and 
analyzed. These proteins are key for the adhesion of the cells to 
inert surfaces and to each other.

Proteomics samples can be  prepared from biofilm and 
bacteria entrapped in polymeric scaffolds (i.e., hydrogel) that 
mimic biofilm condition via conventional sample preparation 
and quantitative MS methods. For example, Shewanella oneidensis 
changes in protein expression were recorded in case of growth in 
an alginate hydrogel and biofilm by iTRAQ labeling (Zhang et al., 
2014). Cells were resuspended in PBS and lysed in 0.1% SDS, 
0.5 M TEAB by vortexing and ultrasonication. Newer isobaric 
labeling tags such as TMT are also routinely employed. For 
example, TMT labeling was used to understand the effect of silver 
nanoparticles on Pseudomonas aeruginosa biofilm where 3,672 
proteins were identified and >600 showed a significant change 
(Liao et al., 2019).

Proteomics can also shed light into the attachment of microbes 
and formation of biofilms on biomaterials such as metals, alloys, 
ceramics, and polymers. Widely studied cases are orthopedic and 
dental implant devices. New coatings are continuously being 
developed to inhibit bacterial growth and biofilm formation on 
those devices (Arciola et al., 2018). It is therefore important to 
study how bacteria adhere to the biomaterials. For example, 
bacterial adherence proteins were extracted from the surface of 
Staphylococcus epidermidis after directly adhering to titanium 
implant materials. The bacteria were resuspended in osmotic lysis 
buffer with 20% sucrose (w/v) in 20 mM Tris–HCl, pH 7.0, 
supplemented with 10 mM MgCl2, and a protease inhibitor 
cocktail and treated with 100 U/ml of mutanolysin enzyme for 
1–2 h at 37°C. Subsequent centrifugation removed the intact 
protoplasts. This allowed the identification of 6 relevant proteins 
on the surface of S. epidermidis (Bürgers et al., 2018).

Proteomics sample preparation

While the perfect sample preparation relies on ad hoc separation 
and protein extraction methods, any improvement in the 
standardization of the bottom-up proteomics pipeline will also 
benefit the analysis of cell–cell and cell-surface microbes’ interactions 
by proteomics. Increasing the throughput and reproducibility as well 
as scaling down the proteomics workflow are aspects to consider. An 
example of the improvement in throughput is the “cell-to-peptides” 
workflow developed for fungi and Gram-negative bacteria using an 
integrated and automated platform. This includes equipment that 
allows for the cell lysis, protein precipitation and so removal of 
metabolites and lipids, subsequent protein resuspension and 
normalization, followed by tryptic digestion. Through the protocol 
96–384 samples can be  prepared in a few hours in a highly 
reproducible manner (Chen et al., 2019).

Gram-negative L. pneumophila, Gram-positive S. aureus, and 
a capsuled Gram-positive S. suis were used as test samples for the 
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development of a “universal” protocol for bacteria available in 
limited numbers (2 × 106 bacterial cells per sample corresponding 
to 0.12–0.9 μg protein per sample). Use of detergent (10% SDS) 
and ultrasonication disruption are combined with the beads-
based single pot solid-phase enhanced sample preparation (SP3) 
method that allows for efficient removal of debris, detergents, 
and salts.

This protocol opens the doors to the use of samples from 
animal experiments, human origin, and the environment 
(Blankenburg et al., 2019). SP3 can also be automated (autoSP3) 
using a liquid handling robot to care for the preparation of 96 
samples at the time (Müller et  al., 2020) bringing together 
miniaturization and high throughput.

Computational proteomics

When considering computational methods for the analysis of 
proteomics data in the context of cell–cell and cell-surface analysis 
of microorganisms, pipelines use a traditional approach of MS/MS 
peptide spectral matching based on database search. However, 
availability of a reference proteome is key to this database search 
strategy which can be limited due to the complex composition of 
microbial samples. Therefore, MS-based proteomics of 
microorganisms has grown hand in hand with the availability of 
the respective genomics information. Genomic and transcriptomic 
data can be used to generate ad hoc protein sequence databases to 
aid the interpretation of proteomic data in what is called a 
proteogenomic approach. In turn, the proteomic data deliver 
protein-level evidence of the gene expression data and support the 
refinement of gene models. Finally, the enhanced gene models can 
help improve protein sequence databases for traditional proteomic 
analysis (Nesvizhskii, 2014).

More complex samples and the need for larger reference 
databases represent bigger computational challenges for 
metaproteomics analysis compared to pure culture proteomics. 
Recently, open-source software solutions such as 
MetaProteomeAnalyzer and Prophane are making 
metaproteomics data analysis more at hand. Their advantages 
stand in combining different search engines for the peptide-
spectrum and using a more comprehensive set of available 
databases (such as NCBI, UniProt, EggNOG, PFAM, and CAZy) 
for improved annotation (Schiebenhoefer et  al., 2020). The 
database used for the metaproteomics analysis has a large 
influence on the results obtained as recently reviewed (Blakeley-
Ruiz and Kleiner, 2022).

Generation and analysis of 
metabolomics data for the study 
of microbial-surface interactions

Metabolites, compounds usually below 1.5 kDa of molecular 
weight, are often products of a variety of biological processes and 

reactions (Roberts et al., 2012; Zhang et al., 2018; Jacyna et al., 
2019). They are a fine molecular reflection of the phenotype, as 
they depend on the specific conditions of the cells and can even 
differentiate between a wild type and a mutant specimen (Fiehn 
et  al., 2000). Metabolomics provides a quantifiable layer of 
confirmation from the observed molecular events (Kanani et al., 
2008). Measurements of metabolite concentrations along active 
pathways have largely been used for optimizing biotechnological 
processes, such as fermentation (Khakimov et al., 2017). This omic 
approach allows to determine accurately the levels of metabolites 
at each growth stage, and facilitate the optimization of production 
(Zhao et al., 2019) and it can help with screening for genetically 
improved strains (Liang et al., 2020).

Primary metabolites are associated with basic processes of 
production or breakdown of substrates (Demain, 1980) while 
secondary metabolites are linked to “social” interactions such as 
coordination or competition with other bacterial strains (Tyc Olaf 
et  al., 2017). These analytes can belong to the intracellular or 
extracellular moiety and secreted metabolites can mediate 
communication and coordination between organisms not only in 
highly populated structures, such as the quorum sensing mediated 
by metabolites in biofilms (Rodrigues and Černáková, 2020), but 
also during interkingdom communication (Thaiss et al., 2016).

There are two main types of metabolomics instruments or 
platforms: nuclear magnetic resonance (NMR) and mass 
spectrometry (MS) (Sugimoto, 2021). NMR has a non-invasive 
nature, meaning that the sample does not have to be sacrificed. It 
allows for applications such as real-time analysis of metabolite 
fluxes, requiring no treatment of samples. It is suitable for highly 
polar compounds, and it is not restricted to fluids (Emwas et al., 
2019). It has clear drawbacks: a limited number of detected 
metabolites due to lower sensitivity, spectral overlaps, very limited 
databases, a lack of bidimensional NMR data generation, or 
elevated technical costs related to maintenance and purchase of 
the instruments (Wishart, 2019). MS can be mainly divided into 
gas chromatography coupled to MS (GC–MS), and liquid 
chromatography coupled with single and double stage MS (LC–
MS or MS/MS) (Zeki et al., 2020). GC–MS requires a low amount 
of samples, due to high sensitivity. The databases for compound 
identification in untargeted mode are well developed, since this 
technology has been in use from the early 2000s (Kanani et al., 
2008). One of the main disadvantages in GC–MS is that samples 
have to be derivatized prior to the run, with the exception of 
volatile or non-polar analytes (Moros et  al., 2017; Zeki et  al., 
2020). LC–MS offers a higher resolution than GC–MS, without 
the need for derivatization, and detecting a wide range of analytes 
(Favre et al., 2017; Zeki et al., 2020). Semi-polar metabolites are 
preferentially analyzed in this platform (Zeki et al., 2020).

Methods for isolation of metabolomes

Two main approaches can be distinguished: targeted (analysis 
of a predefined set of metabolites) and untargeted (analysis of the 
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whole set of metabolites according to instrumental capabilities) 
metabolomics. However, sample preparation including recovery, 
quenching, and metabolite extraction, tend to be similar for both 
targeted and untargeted metabolomics. Differences in protocols 
appear at the biofilm recovery stage, which varies according to the 
studied material. In addition, a deproteinization step is often 
carried out in the targeted approach (Iwasaki et al., 2012).

Metabolomic samples require the material to be  treated 
quickly and at low temperatures to prevent changes that may 
be triggered by cell lysis (Zhang and Powers, 2012). Procedures 
that include flash freezing or lyophilization of samples aim to 
provide a snap-shot of the metabolite profiles, through enzymatic 
quenching, which has the objective of stopping the metabolism at 
a certain condition or treatment without further modifications 
(Teng et al., 2009; van Gulik, 2010). Low temperature processing 
and storage increase the stability of metabolites contained in 
biological fluids for longer periods and enhance potential for 
quantification (Scalbert et  al., 2009; Kok et  al., 2019). Sample 
preparation also has the objective of enriching some metabolites 
of interest (especially in targeted metabolomics), while removing 
substances that may bias the analyses (Gika and Theodoridis, 
2011; Gong et al., 2017).

In the case of a biofilm, sampling usually begins at a washing 
step intended for removing growth media and loosely attached 
planktonic cells that could contribute with confounding signal 
(Sadiq et al., 2020; Guo et al., 2021). In addition, biofilms have to 
be detached first due to their recalcitrant nature. This represents 
several issues that depend largely on the type of surface.

Biotic surfaces
Stringent detachment methods cannot be applied to biotic 

surfaces without mixing the two metabolic profiles. The high 
specificity of metabolic profiles is exemplified even when 
comparing the molecular behavior of bacteria in biofilm or 
planktonic stages (Lu et al., 2019). Enzymatic treatments targeted 
to the biofilm can allow the recovery of the biomass without 
disruption of host tissues. However, the enzymatic treatment has 
a clear drawback due to incubation at room temperature leading 
to alteration or degradation of metabolites (Stipetic et al., 2016). 
Alternative methods include sonication treatment aimed at 
bacteria inhabiting the root rhizosphere (Noirot-Gros et  al., 
2018). Other studies use mechanical methods such as 
bronchoalveolar lavage to study lung samples from infected mice 
(Tomlinson et  al., 2021). Harsher mechanical disruption was 
employed to study bacterial samples grown on autoclaved chicken 
meat (Dupre et  al., 2019). In this case, the detachment was 
attained by disruption of the meat tissue with a pipette and using 
PBS as the homogenization solution. A first very low speed 
centrifugation step was intended to eliminate cell debris (mainly 
the disrupted meat substrate), and a second centrifugation for 
pelleting the cells of interest (bacteria). A similar approach using 
first a full matrix homogenization in mortar and pestle in the 
presence of liquid nitrogen was applied to study the surface 
cheese metabolome (Afshari et al., 2020).

Paix and collaborators (Paix et al., 2020) used a methanol bath 
to recover the surface microbial metabolome, similarly to the 
approach used by Guo et al. in where leaves were gently suspended 
in the presence of methanol, with further centrifugation and 
derivatization of the resulting supernatants (Guo et al., 2018). 
Recovery of surface metabolites can also be achieved with a solid 
phase material, as demonstrated with the surface metabolome of 
Fucus vesiculosus (Cirri et al., 2016; Parrot et al., 2019). Lastly, due 
to ethical constraints related to research with human subjects, the 
surface skin metabolome is sampled using adhesive tape and 
quenching is achieved by immediate storage at ultralow 
temperatures (Roux et al., 2021).

In between a biotic and an abiotic surface stands the enamel, 
namely the outer human tooth layer, which is composed mainly 
of 95% carbonated hydroxyapatite (Robinson et al., 1998), and 
develops through mineralization of a proteinaceous matrix (Gil-
Bona et al., 2020). da Costa Rosa et al. (2021) induced dental 
caries lesions over the premolars of healthy individuals. The 
biofilm grown on appliances of extracted teeth were dried and 
removed with a phosphate/sodium azide buffer, or those at 
occlusal surfaces through a microbrush appliance.

Abiotic surfaces
Mechanical detachment from abiotic surfaces can be achieved 

through inert scraping tools to recover most of the biomass from 
polystyrene surfaces (Sadiq et  al., 2020). Alternatively, the 
experimental design can include a direct step of cell disruption 
with glass beads in the presence of a solvent solution 
chloroform:methanol:ddH2O (Stipetic et  al., 2016) aiming to 
quench metabolism. In comparison with scraping, it presents the 
advantage of congealing the metabolism at the exact moment 
when the cells are broken, because all metabolites are immediately 
released, and enzymatic reactions quenched. Another approach 
consisting of lyophilization of biofilms attached to metal coupons 
was used in combination with exposure to 50% methanol and use 
of vortexing as a mechanical disruption step (Pu et al., 2021). 
Other methods use a step of ultrasonic treatment prior to 
detachment (Zhao et al., 2019). Lastly, alternative approaches have 
successfully applied other chromatographic techniques without 
the need of scrapping as demonstrated by Brauer et al. (2017), or 
even without the need to disrupt the sample at all, such as a 
targeted assay where volatile metabolites were continuously 
screened (Slade et al., 2019). Finally, the biomass recovery issue 
can be solved also by pooling together several technical replicates 
that can increase the quantity of available material and aid to 
overcome the potential loss of material during sampling.

Metabolite extraction

The selected extraction solvent depends on the platform to 
be used but it affects the type of metabolites that can be recovered 
(Cheng et  al., 2020). The highest coverage is achieved with a 
combination of solvents, at the expense of a significant increase in 
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labor and costs. Examples include pure methanol, 50% methanol 
(Pu et  al., 2021), ice-cold chloroform:methanol:ddH2O (1:3:1) 
(Stipetic et al., 2016; Weidt et al., 2016), methanol:H2O:chloroform 
(2.5: 1: 1) (Afshari et al., 2020), acetonitrile, a mixture of equal 
volumes of acetonitrile and K2HPO4 - NaH2PO4 buffer (0.1 M, pH 
7.4) (Zhao et  al., 2019), or combinations of acetonitrile 
with chloroform.

Besides the bias that every solvent introduces, it is also 
important to consider that some types of metabolites can 
be affected if the solvent has not been adapted for that specific 
purpose. In that regard, Rabinowitz and Kimball (Rabinowitz 
and Kimball, 2007) developed an acidic acetonitrile/methanol/
water mixture that largely avoided the decomposition of 
triphosphate intracellular components. Other extraction 
procedures use a hot methanol approach at 70°C instead of the 
usual low-temperatures (Yu et  al., 2018). While it has been 
stated that cold conditions are needed, these are more important 
at the quenching step than in the metabolite isolation. Cell 
debris is precipitated by centrifugation and supernatants 
containing the metabolite extracts can further be mixed with 
acetonitrile for protein precipitation (Polson et al., 2003), prior 
to another step of centrifugation. Protein precipitation is an 
important step due to improved spectral resolution (Zhang 
et  al., 2018). Supernatants are filtered and can be  then 
lyophilized for long-term storage. Removal of methanol or 
acetonitrile is usually carried out by vacuum or by the 
mentioned lyophilization (Favre et al., 2018; Lu et al., 2019). 
Interestingly, these last two studies have also coupled quenching 
and metabolite extraction.

When considering sample preparation for GC–MS, samples 
are subjected to derivatization for the analysis of metabolites that 
contain polar groups and are not volatile (Moros et al., 2017). This 
procedure also offers advantages in terms of accuracy, sensitivity, 
or range of detection among others in LC–MS platforms (Zhao 
and Li, 2020). The derivatization is very specific to the targeted 
chemical groups (amines, phenols, thiols, etc.) and the matrix 
(Ollinik et al., 2021), and once added to the samples, the reagents 
and specific metabolites react to yield the derivatized compound 
(Zhao and Li, 2020).

Computational metabolomics

Regarding computational approaches no differences in the 
pipelines can be identified when specifically analyzing cell-surface 
interactions. The massive information flow in the age of big data 
has pushed the development of suites and software platforms 
intended for data processing, annotation, and provision of a 
biological meaning to raw signals originating from the 
instruments. Many of these tools have been developed in the R 
environment, but still require an effort of bioinformatic adaptation 
and learning from the would-be users. Issues often arise due to 
non-standardized analysis pipelines, and the great variety of 
available software.

Upon completion of the run, a set of peaks or features are 
available for the user (Mahieu et al., 2016). For both MS platforms, 
the data includes intensity, mass (m/z), and retention time (Yao 
et al., 2019). These peaks have to be divided between real signals 
and noise (Styczynski et al., 2007). There are several platforms for 
data analysis of MS data that allow carrying out peak detection 
and alignment (Gardinassi et al., 2017; Tsugawa, 2018). Among 
them are MS-DIAL (Tsugawa et al., 2015), MZmine (Pluskal et al., 
2010), XCMS (Mahieu et al., 2016), OpenMS (Röst et al., 2016), 
ADAP (Jiang et al., 2010), apCLMS (Yu et al., 2009), or MAVEN 
(Clasquin et al., 2012; Table 1). Recently, for the R XCMS software, 
a detailed protocol has been published (Yao et  al., 2019). The 
databases of choice in that specific case for GC–MS were the 
GOLM metabolome retention indexed spectral library (Kopka 
et al., 2005), and NIST Main EI MS Library (NIST SDR 1A v14/
v17). Once the peaks are identified, correspondence to the same 
analyte in different runs in the platform has to be established. The 
main cause of failure at this step is that the same analyte can 
display both different retention time and m/z, as illustrated by 
Mahieu and colleagues (Mahieu et al., 2016). As the practices are 
diverse, relevant cited examples have been organized in Table 1. 
This table reflects the diversity in computational approaches for 
metabolomics data interpretation in the study of cell-
surface interactions.

Within some of the examples used from biofilm research, 
Favre et  al. (2018) used XCMS for preprocessing of their 
untargeted metabolomics acquired data, including suppression of 
redundant signals (additional script provided by authors). At the 
stage of data analysis, discrimination was performed through 
principal component analysis (PCA) and partial least-square 
discriminant analysis (PLS-DA). This statistical analysis seems to 
be widely used (Table 1). The variable importance in projection 
(VIP) concept was termed, highlighting the highest contribution 
of analytes to their biomarker selection model. The VIP value was 
used for selection of the metabolites to annotate, relying on public 
databases: Metlin1, KEGG2, Pubchem (Kim et  al., 2016), 
Chemspider3, and Lipidmaps4. These last tools highlight the 
importance of visualization in order to obtain a general view of 
the metabolism and be able to draw relevant biological conclusions 
out of a vast amount of data. Tang and colleagues (Tang et al., 
2021) used a similar data analysis approach (XCMS), yet 
employing in-house built MetDDA and LipDDA as reference 
databases (not publicly available).

In their targeted metabolomics approach, Guo et al. (2021) 
used the proprietary Agilent software (Agilent Technologies, 
United States) for peak processing. Adopting Proprietary software 
for the conversion of raw data into processable information is 
another common practice. Further normalization was achieved 

1 https://metlin.scripps.edu/landing_page.php?pgcontent=mainPage

2 www.genome.jp/kegg/compound/

3 www.chemspider.com/

4 www.lipidmaps.org/
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using the experimental values of colony-forming units (CFU), 
where the normalized values were processed with MetaboAnalyst 
(Pang et al., 2021). This tool can be coupled into the OmicsAnalyst, 
to integrate several omics data (Zhou et al., 2021).

An internal standard can serve for comparison between 
samples (Dupre et al., 2019). In their study, GC–MS data was 

compared with the libraries (National Institute of Standards and 
Technology, Gaithersburg, MD, United  States), WILEY7n 
(Palisade Corporation, Ithaca, NY, United  States), while for 
analysis of chromatograms and spectra they used HP Chemstation 
(Agilent Technologies, United States) and AMDIS (NIST, MD, 
United States).

TABLE 1 Computational approaches used in cell-surface interaction research studies.

Ref. Bioinformatic analysis Database Statistics

Stipetic et al. (2016) XCMS Smith et al. (2006) MzMatch and PeakML Scheltema 

et al. (2011)

Set of standards Match to literature 

Sumner et al. (2014)

Bayes moderated t-tests Smyth (2004) 

FDR

PCA

Favre et al. (2018) Data Analysis (v. 4.3, Bruker Daltonics) XCMS Simca 13.0.3 

in-house scripts

XCMS DB PCA

PLS-DA

Dupre et al. (2019) HP Chemstation (Agilent) AMDIS (NIST) NIST02 (National Institute of 

Standards and Technology, 

Gaithersburg, MD, United States) 

WILEY7n (Palisade Corporation, 

Ithaca, NY, United States) Custom 

libraries

Student’s t-test PCA

Lu et al. (2019) GC–MS: XCMS and AMDIS LC–MS: AB SCIEX Analyst XCMS DB (GC–MS) MetaboAnalyst 3.0: multivariate 

analysis

Slade et al. (2019) MATLAB R2018a N/A Time course mean

Zhao et al. (2019) TopSpin 4.0.3 (Bruker, Rheinstetten, Germany) Amix 

package (version 3.9.15, Bruker)

BMRB ECMDB SIMCA-P+, v. 11.0: multivariate 

analysis MetaboAnalyst 4.0

Paix et al. (2020) LC–MS: Data Analysis (v. 4.3; Bruker, Germany) XCMS 

Workflow4Metabolomics (W4M) in Galaxy environment 

Giacomoni et al. (2015) GC–MS: MSD ChemStation (v. 

F.01.00.1903) R package “eRah” Domingo-Almenara et al. 

(2016)

Comparison with standards Wiley 

2008 NIST 2011

R MetaboAnalyst: Multivariate 

analysis PCA, PLS-DA

Sadiq et al. (2020) Shimadzu GCMS PostRun

MS DIAL

Origin (V)

FiehnLib PCA PLS-DA MetaboAnalyst

da Costa Rosa et al. (2021) Topspin (Bruker Biospin)

AMIX programs (Bruker

Biospin, Germany)

Metaboanalyst 2.0

Human Metabolome database PLS-DA

O-PLS-DA

Guo et al. (2021) Agilent proprietary software Comparison with standards GraphPad Prism 6.0

Microsoft Office (Excel 2013)

MetaboAnalyst v. 4.0

Pu et al. (2021) ProteoWizard Kessner et al. (2008)

XCMS Smith et al. (2006)

CAMERA Kuhl et al. (2012)

MetaX Wen et al. (2017)

Rstudio (version 3.6.0)

HDMB Wishart et al. (2013)

MassBank Horai et al. (2010)

Lipidblast Kind et al. (2013)

Student’s t-test

Tang et al. (2021) XCMS MetDDA

LipDDA

(In-house databases)

PCA

OPLS-DA

Tomlinson et al. (2021) E-Maven v0.10.0. Clasquin et al. (2012); Agrawal et al. 

(2019)

Comparison with standards Two-Way ANOVA with Dunnett’s 

Multiple Comparisons

BMRB, Biological Magnetic Resonance Data Bank; ECMDB, the E. coli Metabolome Database; FDR, false discovery rate (Röst et al., 2016); PCA, principal components analysis; PLS-DA, 
partial least squares-discriminant analysis; NIST, National Institute of Standards and Technology; OPLS-DA, orthogonal partial least squares-discriminant analysis.
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Integration between omics 
datasets

When coombining data generated by different omics, we get 
closer to a factual representation of the molecular mechanisms 
responsible for a certain phenotype. For example, an extensive multi-
omics approach involving meta-genomics and -proteomics, and 
metabolomics was used to study the microbial structure, enzymatic 
repertoire, functional traits, and relevant metabolic pathways of a 
pre-denitrification biofilter installed in a WWTP in an urban area in 
China (Tian and Wang, 2021). Recently Li and Wen (2021) 
highlighted how multi-omics approaches have a prime role in the 
bio-mining of microorganisms from extreme environments and the 
understanding of how they dissolve metal-sulfide elements 
(bio-leaching) or break down the mineral matrix (bio-oxidation).

Statistical analysis methods such as PCA or PLS are commonly 
used for multiple omics techniques to reduce the dimensionality of 
the data and evaluate the similarity between samples from 
(biological) replicates. In that regard, we have highlighted some of 
the statistical approaches used by several studies included within this 
review (Table 2). In addition to these similarities in the statistical 
treatment, a commonly discussed outcome of omics technologies is 
the reconstruction of metabolic pathways and provision of functional 
annotation. The issue, especially with genomics and to a lesser degree 
with transcriptomics, is that we  are not always certain of the 
downstream events. If we consider the number of “features” obtained 
by each omics technology, we observe a trend toward reduction of 
obtained features when we  navigate from Genomics > 
Transcriptomics > Proteomics > Metabolomics. Sometimes the 
problem arises when trying to integrate information that is not easy 
to merge. Genomics provides a “full” overview of the system, while 
for example metabolomics can render very specific information. 
Some authors have used a combination of targeted amplicon 
sequencing and metabolomic profiling. This approach provides the 
taxonomical overview of the complex microbial community, while 
it also informs of the specific metabolic events taking place.

For long time mRNA levels recorded by transcriptomics have 
been used as a proxy for the protein levels. However, absolute 
levels of mRNA molecules and corresponding proteins are usually 
poorly correlated as the recorded changes (increase or decrease) 
in transcripts are buffered at the protein level through multiple 
levels of regulation (post-transcriptional, synthesis and 
degradation of proteins) (Greenbaum et  al., 2003). The 
combination of multiple approaches can also focus the attention 
on regulatory events. As the use of multi-omics approaches gained 
momentum, statistical approaches have been deployed to reduce 
the dimensionality of the data and identify significant associations. 
Correlation, either Pearson or, most often, Spearman is commonly 
used for this task (Ni et  al., 2020). Other approaches use 
multivariate analysis tools and the MixOmics R package (Rohart 
et al., 2017)5 provides an interface to these approaches. To gain 

5 http://mixomics.org/

insight in Clostridioides difficile nosocomial infection, Stewart 
et  al. (Stewart et  al., 2019) used MixOmics to integrate 
metagenomics and metatranscriptomics data in combination with 
the multivariate dimensionality-reduction tool, PLS-DA. Thanks 
to this unifying approach they characterized a transkingdom 
interaction between bacteria and fungi thus revealing antibiotic-
independent mechanisms opposing the return to a healthy gut 
microbiome (Stewart et al., 2019). Paix et al. (2019) integrated 
metabolomics seasonal variation with metabarcoding. Data was 
integrated through a multi-block data integration analysis 
(DIABLO) (Singh et al., 2019), to establish a group of metabolites 
and OTUs that together could discriminate between months. In 
another integration study, Paix et al. (2020) used a distance-based 
redundancy analysis method to understand functional 
characteristics of a microbiome growing on a biotic surface (algae 
surface). The study associated microbial composition obtained 
through 16S rRNA sequencing and characterized using the 
UniFrac distance to normalize concentrations of 
relevant metabolites.

In addition to these statistical methods, mathematical models 
of metabolism can be used to describe metabolic phenotypes and 
provide a framework for integration of omics data, especially 
those that are difficult to integrate, such as genomic datasets. 
Constraint-based modeling is arguably the most widely adopted 
approach to represent cellular metabolism through Genome Scale 
Models (GEM) that represent the collection of metabolic reactions 
of an organism (Orth et al., 2010). GEMs are based on collecting 
genome encoded metabolic information in a stoichiometric 
matrix that can be used for quantitative and qualitative phenotype 
predictions. The models can be  further adapted to specific 
conditions through the integration of transcriptional data [see 
(Sinha et al., 2021) and reference therein]. Such integration allows 
exploration of otherwise non-accessible measurements, such as 
the intracellular changes of Burkholderia cenocepacia along the 
different stages of biofilm development (Altay et  al., 2021). 
Proteomics data provide an even closer link to the actual fluxes to 
obtain a GEM better adapted to a physiological state as in the case 
of the study of pH adaptation in the human pathogen Enterococcus 
faecalis (Großeholz et al., 2016).

Conclusion

Where life exists, interactions are intrinsically set in an 
interwoven display of possibilities. We can study from the prey–
predator relationships in the savanna, down to the realms of 
microbial species altering their molecular behavior in radical ways 
when encountering the boundaries of biotic or abiotic surfaces.

Omics technologies offer the opportunity to study surface-
induced changes at an unprecedented resolution: a global scale. 
Preparation and analysis of the samples have greatly improved, 
and many methods have been developed to avoid contamination 
and preserve the biological information. Whether our interest lies 
in DNA, RNA, proteins or metabolites, obstacles are still present 
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in recovering material from difficult environments and/or samples 
in sufficient quantity and quality. Miniaturization and automation 
of the sample preparation approaches will contribute greatly to 
alleviate these problems as well as the possibility of performing 

some type of omics analysis in loco, i.e., through portable 
sequencers. A still standing challenge is the development of a 
sample preparation method that could efficiently extract all types 
of biological material for the integrative analysis of all omics on 

TABLE 2 Summary of studies involving use of one or more omics methodologies and the statistical data reduction commonly applied.

Ref. Omics field Study subject Subject type Experiment Highlighted 
number of 
features

Data reduction

Imdahl et al. 

(2020)

Transcriptomics Salmonella enterica 

serovar Typhimurium

Bacteria Late stationary phase, 

anaerobic shock, NaCl 

shock

Pool: 101 (anaer.); 274 

(NaCl)

Single c.: 63 (anaer.); 

131 (NaCl)

Unbiased clustering by 

PCA, DEGs (DESeq2)

Laguna-Teno 

et al. (2020)

Transcriptomics Saccharomyces cerevisiae Fungi/yeast Toxicology exposure, 

two GOs vs. control

1,181 (GOC); 340 (GO) PCA, DEGs, FDR, FC, 

functional annotation

Semmouri et al. 

(2020)

Transcriptomics Zooplankton community Environmental 

community

Seasonal community 

characterization

Over 3,000 annotated 

transcripts per sample

Functional 

interpretation

Bengtsson et al. 

(2016)

Proteomics Hypocrea jecorina Fungi Secretome 

characterization

155 identified proteins Hierarchical clustering

Bona et al. (2019) Proteomics Vitis vinifera cv. Pinot 

Noir rhizosphere

Environmental 

community

Proteome and 

taxonomy 

characterization

579 identified proteins Functional 

interpretation

Knox et al. 

(2016)

Proteomics Aspergillus fumigatus Fungi ISS strains vs. clinical 

isolates

N/S One-way ANOVA, 

comparison of fold 

change (Log2)

Ram et al. (2005) Genomics

Proteomics

Natural acid mine 

drainage biofilm

Environmental 

community

Characterization of a 

naturally occurring 

biofilm

2,003 identified 

proteins

Functional 

interpretation

Zhang et al. 

(2014)

Proteomics Shewanella oneidensis Bacteria Alginate entrapped 

cultures vs. biofilms

1,712 identified 

proteins

Student’s t-test

Khakimov et al. 

(2017)

Metabolomics Streptoccoccus 

thermophilus

Bacteria Several time points 

through fermentation 

process

64 identified peaks PARAFAC2, PCA, 

ASCA

Favre et al. 

(2017)

Metabolomics Persicivirga (Nonlabens) 

mediterranea; 

Pseudoalteromonas 

lipolytica; Shewanella sp.

Bacteria Characterization of 

response to culture 

medium, growth phase, 

culture mode

155 ± 22 m/z features PCA, PLS-DA

Lu et al. (2019) Metabolomics Uropathogenic 

Escherichia coli

Bacteria Comparison between 

biofilm and planktonic 

stages

38 differential 

metabolites

Unsupervised PCA, 

PLS-DA, heatmap

Stipetic et al. 

(2016)

Metabolomics Staphylococcus aureus Bacteria Comparison between 

biofilm and planktonic 

stages

530 significant 

metabolites

Bayes moderated 

t-tests, FDR, PCA

Afshari et al. 

(2020)

Genomics

Metabolomics

Cheddar cheese 

microbial community

Environmental 

community

Comparison between 

industrial vs. 

traditional cheese, 

outer surface vs. core

46 metabolites (GC–

MS)

8,000 features (LC–MS)

ANOSIM, PCA, 

MCIA (integration), 

Spearman analysis

Parrot et al. 

(2019)

Genomics

Metabolomics

Imaging

Fucus vesiculosus surface 

microbiome

Environmental 

community

Comparison of surface 

metabolome with 

whole tissue extract

50 metabolites 

(surface) 27 

metabolites (extracts)

One-way 

PERMANOVA, PCoA, 

HAC

PCA, principal component analysis; DEGs, differentially expressed genes; Ref., reference; FC, fold change; ISS, international space station; N/S, not stated; N/A, not applicable; Single c., 
single cell; anaer., anaerobic; ASCA, ANOVA-simultaneous component analysis; PLS-DA, partial least-squares discriminate analysis; FDR, Benjamini and Hochberg false discovery rate; 
MCIA, multiple co-inertia analysis; HAC, hierarchical ascendant classification; PCoA, principal coordinates analysis; ASV, amplicon sequence variant; WWTP, wastewater treatment 
plant.
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the same specimen. Finally, we  also look forward to the 
implementation of single cell omics technologies in the field with 
the confidence that adding such resolution will uncover key 
differences in the biological changes induced by direct and 
indirect surface interactions within a microorganismal community.

Multiomics approaches are well suited to reach a systems-
level understanding of these biological processes and the 
underlying mechanisms behind them. The four types of 
studied molecules provide clues not only from a curiosity-
driven scientific perspective, but also from an applied point of 
view. In the present review we  have introduced the latest 
research trends in the field from the perspective of the four 
main omics technologies. Genomics can accurately answer 
questions about the identity of those cells colonizing the 
surface of interest and provide an overview of the potential 
metabolic and information lifestyle. At a deeper level, 
transcriptomics can assist in the evaluation of which genes 
from the genomic arsenal are put at play, while proteomics 
indicates accurately who is involved. DNA and proteins have 
a complementary key role in the maintenance of structures, as 
it has been explained in the case of the extracellular biofilm 
matrix. Metabolomics not only provides information about 
primary basic metabolism of cells, but also about the very 
important secondary metabolites. It has been shown how the 
metabolic fingerprint differs when cells are isolated and in a 
planktonic state, or when attached to surfaces and potentially 
interact with one another. The methodological approaches are, 
in most cases, directed toward the recovery of small 
biomass amounts.

Omics technologies largely depend on computational 
methodologies and bioinformatic pipelines to analyze the 
generated raw data and extract biological knowledge. Pipelines for 
data analysis often combine methods and algorithms specific for 
the chosen data type (such as mapping algorithms for RNA 
sequencing reads or tools for peak characterization for MS data 
analysis) with (statistical) methods that can be applied to a broad 
set of data types, such as PCA, PLS or enrichment analysis, as 
shown it Table  2. It should be  noted that the cases we  have 
reviewed show that standard bioinformatic pipelines are suitable 
to understand data generated from cells interacting with complex 
extracellular matrices, provided the sample acquisition process 
has generated material with sufficient quality. We believe that it 
can be  advantageous to complement these pipelines with 
additional analysis to specifically capture the complexity of cell-
surface interactions. We see great potential in methods to predict 
subcellular location that will allow extensive characterization of 
the microbial secretome and surfaceome. Finally, predictive 
algorithms to characterize protein–protein interactions can boost 
our understanding of the molecular mechanisms underlying cell–
cell interactions.

Methods have been developed to model bacterial growth on 
surfaces, attachment and biofilm formation and to describe the 
physical properties of the system, see for instance (Horn and 
Lackner, 2014). To go one step further, approaches have been 

proposed to link the intracellular metabolism with the 
environmental changes due to the cell-surface interaction and 
associated gradients for organisms such as E. coli and 
P. aeruginosa (Biggs and Papin, 2013; Tack et al., 2017). Modeling 
frameworks, able to account for more complex systems and 
gradients, and with multiple species, are actively developed 
(Harcombe et al., 2014; Bauer et al., 2017; Angeles-Martinez and 
Hatzimanikatis, 2021; Dukovski et al., 2021). We believe omics 
datasets can be used to extensively test the predictive power of 
these methods and to further refine and increase their prediction 
accuracy. Accurate predictions of microbial behavior upon cell-
surface interactions will provide a better understanding of the 
dynamics of colonization, will inform on the effect of 
environmental changes such as changes of nutrient availability, 
antibiotic addition, or introduction of additional microbial 
species, and will provide efficient means to prevent or exploit 
these phenomena.
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