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Salicylic acid remodeling of the 
rhizosphere microbiome induces 
watermelon root resistance 
against Fusarium oxysporum  
f. sp. niveum infection
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Fusarium wilt disease poses a severe threat to watermelon cultivation by affecting 

the yield and quality of the fruit. We had previously found that the rhizosphere 

microbiome has a significant impact on the ability of watermelon plants to resist 

Fusarium wilt development and that salicylic acid (SA) is closely related to this 

phenomenon. Therefore, in this study, the role of SA as a mediator between 

plants and microbes in activating resistance against Fusarium oxysporum  

f. sp. niveum (FON) infection was explored through physiological, biochemical, 

and metagenomic sequencing experiments. We demonstrated that exogenous 

SA treatment could specifically increase some beneficial rhizosphere species 

that can confer resistance against FON inoculation, such as Rhodanobacter, 

Sphingomonas, and Micromonospora. Functional annotation analysis indicated 

that SA application significantly increased the relative abundance of glycoside 

hydrolase and polysaccharide lyase genes in the microbiome, which may play 

an essential role in increasing plant lipids. Moreover, network interaction analysis 

suggested that the highly expressed AAC6_IIC gene may be  manipulated 

through SA signal transduction pathways. In conclusion, these results provide a 

novel strategy for controlling Fusarium wilt in watermelons from the perspective 

of environmental ecology, that is, by manipulating the rhizosphere microbiome 

through SA to control Fusarium wilt.
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Introduction

Watermelon (Citrullus lanatus) is an important horticultural crop worldwide (Everts 
and Himmelstein, 2015). However, the commercial cultivation of this fruit is severely 
threatened by the soil-borne fungus Fusarium oxysporum f. sp. niveum (FON), which causes 
Fusarium wilt, a disease that leads to a significant decline in crop quality and yield (Xu et al., 
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2015; Ren et  al., 2016; Li et  al., 2019). Salicylic acid (SA), a 
phytohormone present in plants and some microbes, is reported to 
be an important signaling molecule that induces plant resistance 
to diseases (Yang et  al., 2015; Zhang and Li, 2019). With the 
deciphering of the watermelon genome, Lü et al. found via gene 
ChIP transcription analysis that the phenylalanine ammonia lyase 
(PAL) gene plays an important role in the lignin metabolic pathway 
of resistance to Fusarium wilt (Lü et al., 2011). Lv reported that the 
intercropping of wheat and watermelon with FON induced SA 
synthesis in the watermelon plant to enhance its resistance to 
Fusarium wilt (Lv et  al., 2018). Furthermore, our research 
demonstrated the important role of SA in regulating watermelon 
resistance against Fusarium wilt, with results indicating that the 
significantly expressed C. lanatus PAL (ClPAL) and non-pathogen-
related (NPR) genes play key roles in SA synthesis and signal 
transduction in this plant species (Zhu et al., 2022a,b).

Recently, increasing evidence has suggested that the 
rhizosphere microbiome plays critical roles in promoting plant 
growth and health, such as enhancing nutrient uptake by the host 
plant and increasing its resistance against pathogen attack (Levy 
et al., 2017; Berendsen et al., 2018). The establishment of plant–
rhizosphere microbiome interaction is a highly coordinated event 
influenced by the host plant and soil. For instance, the plant 
immune system shapes the microbiome, which, in turn, can 
increase the plant’s immune capacity (Heintz and Mair, 2014; Levy 
et al., 2017; Aleklett et al., 2018). Notably, our previous studies 
have demonstrated the important role of the soil microbial 
community structure in controlling the occurrence of Fusarium 
wilt in watermelons (Zhu et al., 2018, 2019). For instance, our 
results indicated that the presence of beneficial microbes, such as 
Rhodanobacter, Pseudomonas, Sphingomonas, and Herbaspirillum, 
is important for the prevention of watermelon disease (Zhu 
et al., 2020).

Consistently, more researchers have begun to notice that 
rhizosphere microbiome composition is influenced by an array of 
plant-derived metabolic substances (Trivedi et al., 2020; Liu et al., 
2021). Additionally, the essential role of SA in recruiting specific 
rhizosphere microbiomes has been previously reported. For 
instance, Trivedi et al. showed that SA affected the abundance of 
specific bacterial groups in the roots via a combination of direct 
and indirect effects (Trivedi et al., 2020). However, the mechanism 
by which watermelon plants affect microbiome assembly and the 
impact of this interconnectedness on plant and microbiota 
functions remains unclear. Chen et  al. found that systemic 
accumulation of SA could affect microbiome assembly in the 
rhizosphere of Arabidopsis plants after foliar infection by 
pathogens (Chen et al., 2020). Therefore, through metagenomic 
sequencing and relevant physiological and biochemical analyses, 

we aimed to explore the effect of exogenous SA in remodeling the 
watermelon rhizosphere microbiome to induce resistance against 
FON infection. Our research findings provide a new strategy for 
controlling watermelon Fusarium wilt from the perspective of 
environmental ecology and have significant value for promoting 
sustainable agricultural development.

Materials and methods

Experimental process and sampling

The experiment was conducted in the city of Changsha 
(112°58′42″E, 28°11′49″N), Hunan Province, China. The soil used 
for planting was sandy loam, collected from our field experiment 
at the Gaoqiao Scientific Research Base of the Hunan Academy of 
Agricultural Sciences in Changsha ( Zhu et al., 2020). Our previous 
studies found that the high content of pathogens in the soil under 
a continuous cropping system leads to SA accumulation in the 
plant (Zhu et al., 2022a,b). Therefore, we sterilized the soil to make 
them as same background before use (LDZM-80KCS-3 vertical 
pressure steam sterilizer, ZHONGAN, Shanghai, China) to avoid 
errors and study how SA can improve watermelon immune 
resistance at the early stage after FON infection. The watermelon 
variety used was Zaojia 8,424 (Xinjiang Farmer Seed Technology 
Co., Ltd., Urumqi, China), which is the main cultivar on the 
Chinese market. The watermelon seedlings were cultivated in 
seedling pots containing peat, perlite, and vermiculite (6:3:1) and 
grown in a biochemical incubator (LRH-300, ZHUJIANG, 
Taihong, Shaoguan, China) that was set at 25°C during 16 h of light 
and 18°C during 8 h of darkness. After 30 days, each plant was 
transplanted into separate pots. When the seedlings were at the 
two-leaf stage, 5 ml of 100 μM exogenous SA (Sigma-Aldrich LLC., 
Merck KGaA, Darmstadt, Germany) was incorporated into the 
root zone of each plant, and another 5 ml was added 24 h later. The 
Fusarium strain FON was firstly incubated in the dark for 7 days 
on a PDA plate at 28°C. Then, a bam plug was selected from the 
PDA plate and placed into 300 ml of potato dextrose broth in a 
flask, before propagation on a rotary shaker at 200 rpm at 
26–30°C. Two days later, 5 ml FON (1 × 106 conidia/mL) was 
added to the root zone of each plant (Li et al., 2019).

The plants were divided into the following three groups: S, 
mock-inoculation control (H2O); SA, 100 μM exogenous 
SA + FON; and SF, FON only. We set six different sampling times 
before and after the different treatments: 0 days post-inoculation 
(dpi) (before treatment), 12 h post-inoculation (hpi), 1 dpi, 3 dpi, 
5 dpi, and 7 dpi. Sampling was stopped at 7 dpi when the disease 
symptoms (yellowing and wilting) started to appear. We selected 
10 watermelon plants as one replicate and set three independent 
replicates (30 plants) for each sample group, at six different 
sampling times with every three treatments (16 groups). Therefore, 
480 plant samples were collected from 480 pots.

The soil samples were designated S0 (mock-inoculation control, 
before treatment), S3 (mock-inoculation control, 3 dpi), SF3 (FON 

Abbreviations: ARO, antibiotic resistance ontology; dpi, days post-inoculation; 

FON, Fusarium oxysporum f. sp. niveum; hpi, hours post-inoculation; MDA, 

malondialdehyde; PAL, phenylalanine ammonia lyase; POD, peroxidase; SA, 

salicylic acid.
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treatment, 3 dpi), SA3 (SA + FON treatment, 3 dpi), S7 (mock-
inoculation control, 7 dpi), SF7 (FON treatment, 7 dpi), and SA7 
(SA + FON treatment, 7 dpi). For each treatment group, the 
rhizosphere soil sample was pooled from 10 plant roots in one 
repetition, with three independent replicates, at each sampling time. 
After removing the plant roots and stones, the rhizosphere soil 
samples were placed in 5 ml sterile centrifuge tubes and then 
divided into three parts. In total, 21 samples were collected at the 
three different sampling times (i.e., 0 dpi, 3 dpi, and 7 dpi) and 
stored at −80°C for sequencing analysis.

Determination of the watermelon plant 
root morphology and physiological and 
biochemical indexes

First, the root morphology of each plant was captured using a 
digital camera. The roots were then cut with sterilized scissors, and 
their fresh weights were measured using an electronic balance. 
Thereafter, the roots were placed in sterilized 5 ml centrifuge tubes 
to test their peroxidase (POD) and phenylalanine ammonia lyase 
(PAL) activities and malondialdehyde (MDA) content. The POD and 
PAL activities were analyzed using a BC0095 peroxidase assay kit 
and BC0215 PAL test kit (Beijing Solarbio Science & Technology 
Co., Ltd., Beijing, China), respectively, whereas the MDA content 
was determined using the thiobarbituric acid method using a 
BC0025 MDA assay kit (Beijing Solar-bio Science & Technology Co., 
Ltd.), according to the manufacturer’s protocols. A Tecan-SPARK 
microplate reader (Tecan Trading AG, Männedorf, Switzerland) and 
Eppendorf 5415R refrigerated centrifuge (Eppendorf AG, Hamburg, 
Germany) were used for the assays. Three biological replicates per 
sample were performed, with three technical replicates.

The disease incidence was calculated as follows:

 

( )Diseaseincidence % (no.of infected plants
/ totalnumberof plantssurveyed) 100.

=
´

Soil DNA library preparation

A total of 1 μg DNA per sample was used for sequencing. In 
brief, DNA sequences 350 bp in size were fragmented by 
sonication, and the fragments were then end-polished, A-tailed, 
and ligated with the full-length adaptor for Illumina sequencing 
followed by PCR amplification. The PCR products were purified 
(AMPure XP system), and libraries were prepared and analyzed 
for size distribution using the Agilent2100 Bioanalyzer. Three 
biological replicates per sample were analyzed. Raw data were 
obtained using the Illumina NovaSeq 6000 sequencing platform.

Metagenomic sequencing

Readfq V8 was used to acquire the clean data for subsequent 
analysis against the host database using the Basic Local 

Alignment Search Tool (BLAST), which uses Bowtie 2.2.4 as 
default software to filter the reads that are of host origin. After all 
the reads that were not used in the forward step were combined, 
SOAPdenovo was used to generate the mixed assembly using the 
same parameters as those applied for the single assembly. The 
Scaftigs (≥500 bp) assembled from both the single and mixed 
assemblies were used to predict the open reading frames (ORFs) 
using MetaGeneMark software, and sequences shorter than 
100 nt were filtered from the predicted result with default 
parameters. For ORF prediction, sequence redundancy was 
reduced using the Cluster Database at High Identity with 
Tolerance software, and a unique initial gene catalog was 
obtained. The clean data of each sample were mapped to the 
initial gene catalog using Bowtie 2.2.4 with the following 
parameter settings: --end-to-end, −-sensitive, -I 200, and -X 400. 
Genes with two or fewer reads in each sample were filtered, and 
the gene catalog (UniGene database) obtained was used for 
subsequent analysis.

The abundance of each gene in each sample was statistically 
analyzed based on the number of mapped reads and their lengths. 
The basic information statistics, core- and pan-genomic analyses, 
correlation analysis of the samples, and Venn diagram analysis of 
the number of genes were all based on the abundance of each gene 
in each sample in the gene catalog. DIAMOND software was used 
to blast the UniGene database to the sequences of bacteria, fungi, 
archaea, and viruses, which were all extracted from the 
non-redundant database of the National Center for Biotechnology 
Information (NCBI). Finally, the clean reads were deposited in the 
NCBI Sequence Read Archive database (Accession number: 
PRJNA707127).

Assembly of the Core rhizosphere 
communities, common functional 
databases used, and resistance gene 
annotation

To determine the dynamic changes in the dominant soil 
microbial communities during all three sampling times in the 
different treatment groups, we used community bar-plot analysis 
to identify the 10 most abundant soil microbial communities at 
both the phylum and genus levels. Moreover, we used multiple 
t-tests to compare significant differences in soil microbial 
communities at 3 and 7 dpi, both at the phylum and genus levels, 
after SA application. To elucidate the molecular mechanism by 
which the rhizosphere microbial community cooperates to induce 
plant resistance against Fusarium wilt, we blasted the unique genes 
against various functional annotation databases such as the Kyoto 
Encyclopedia of Genes and Genomes (KEGG), Evolutionary 
Genealogy of Genes: Non-supervised Orthologous Groups 
(eggNOG), Carbohydrate-Active Enzymes (CAZy), and the 
Comprehensive Antibiotic Resistance Database (CARD) to 
determine their abundance and analyzed them statistically with a 
visual display.
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FIGURE 1

Comparison of watermelon root phenotypes in different treatment groups S, Mock-inoculation control; SA, SA + FON treatment; SF, FON 
treatment; FON, Fusarium oxysporum f. sp. niveum; SA, salicylic acid; hpi, hours post-inoculation; dpi, days post-inoculation.

KEGG, eggNOG, and CAZy databases were used for functional 
annotation of the resistance genes. The Unigenes were aligned to 
the CARD database using Resistance Gene Identifier software with 
default parameter settings. The relative abundance of the antibiotic 
resistance ontology (ARO) cluster, abundance bar charts, 
abundance cluster heatmaps, and differences in the number of 
resistance genes between soil groups were displayed according to 
the alignment results. Similarly, the distribution of resistance genes 

in each sample and analyses of the species attribution of those 
genes and their resistance mechanisms were also investigated.

Statistical analysis

Statistical analysis was performed using GraphPad Prism 9 
(GraphPad Software, San Diego, CA, United States). All values are 
expressed as mean ± standard error (n = 3). The differences 
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between the groups were tested using an analysis of similarities. 
Figures were constructed using Microsoft Office 2010 (Microsoft 
Corporation, Redmond, WA, United States).

Results

Effectiveness of salicylic acid treatment 
in controlling fusarium wilt of 
watermelon

To clarify whether exogenous SA treatment can control 
Fusarium wilt disease in watermelon, we first compared the root 
phenotypes after exposure to exogenous SA + FON or FON 
alone at five different sampling times. The SA group had more 
fibrous roots than the SF group did. The roots in the SF group 
began to turn yellow at 3 dpi, and obvious plant yellowing and 
wilting symptoms were observed at 7 dpi (Figure  1). 
Furthermore, there was a significant difference in the fresh 
weight of the roots between the samples at 1, 3, and 7 dpi. For 
instance, the root fresh weight of the SA group was 2.5 times 
heavier than that of the SF group at 7 dpi (Figure  2A). The 
incidence of Fusarium wilt after SA application was significantly 
lower (by –20%) than that in plants not treated with 
phytohormones (Figure 2B). Moreover, the MDA content in the 

SF group first increased from 12 hpi onward, then declined at 3 
dpi and finally increased significantly again at 7 dpi. However, 
we noticed an increase in MDA content at 3 dpi in both SA and 
S groups (Figure 2C). Similarly, POD activity was significantly 
increased at 3 dpi in the SA and S groups, which indicated that 
this sampling time might be  a key time point for activating 
resistance defenses in watermelon plants (Figure 2D). Moreover, 
there were significant enhancements in PAL activity in the SA 
group at 3 dpi and 7 dpi, whereas the enzyme activity was 
significantly lower in the SF group at 7 dpi (Figure 2E), which 
confirmed the symptoms and disease incidence results. 
Therefore, the results from plant root physiological and 
biochemical studies indicate that exogenous SA treatment can 
effectively reduce the incidence of Fusarium wilt in watermelon.

Sequencing and metagenome assembly

We selected three sampling times to compare the dynamic 
changes in the dominant soil microbial communities between the 
different treatments. Gene sequencing analysis revealed that the ORFs 
were approximately 200–600 nt in length (Supplementary  
Figure S1A). According to the results of the quality control analysis, 
the evenness of the number of ORFs observed in the samples tended 
to be consistent (Supplementary Figure S1B). The Venn diagram 
showed that there were 624,730 overlapping genes among all groups 

A B

C D E

FIGURE 2

Comparison of physiological changes, disease incidence, and biochemical indexes of watermelon plants after exogenous salicylic acid application. 
(A) Comparison of the root fresh weight of different samples. (B) Comparison of the disease incidence in different samples. (C) Comparison of the 
malondialdehyde (MDA) content in different samples. (D) Comparison of the peroxidase (POD) activity in different samples. (E) Comparison of the 
phenylalanine ammonia lyase (PAL) activity in different samples. S, Mock-inoculation control; SA, SA + FON treatment; SF, FON treatment; FON, 
Fusarium oxysporum f. sp. niveum; SA, salicylic acid; hpi, hours post-inoculation; dpi, days post-inoculation; 0 dpi: before treatment. Three 
biological replicates per sample were analyzed. Data are expressed as mean ± SE (n = 3). Multiple t-tests of ANOSIM (*p ≤ 0.0001).
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A

B

FIGURE 3

Assembly of core rhizosphere microbial communities. 
(A) Community bar-plot analysis of the relative abundance of 
rhizosphere microbial communities in the different soil groups at 
the phylum level. (B) Community bar-plot analysis of the relative 
abundance of rhizosphere microbial communities in the different 
soil groups at the genus level. S0, Mock-inoculation control 
(before treatment); S3, mock-inoculation control, 3 dpi; S7, 
mock-inoculation control, 7 dpi; SA3, SA + FON treatment, 3 dpi; 
SA7, SA + FON treatment, 7 dpi; SF3, FON treatment, 3 dpi; SF7, 
FON treatment, 7 dpi. FON, Fusarium oxysporum f. sp. niveum; 
SA, salicylic acid; dpi, days post inoculation. Three biological 
replicates per sample were analyzed. Data are expressed as 
mean ± SE (n = 3).

of samples, and there were unique genes in each group 
(Supplementary Figure S1C).

Dynamic changes in the soil microbial 
community structure

The top  10 phyla in all samples were Proteobacteria, 
Actinobacteria, Bacteroidetes, Gemmatimonadetes, Firmicutes, 
Acidobacteria, Verrucomicrobia, Deinococcus-Thermus, 
Elusimicrobiota, and Chloroflexi (Figure 3A). The top 10 genera 
were Rhodanobacter, Micromonospora, Massilia, Flavobacterium, 
Cellvibrio, Frateuria, Stenotrophomonas, Streptomyces, 
Pseudomonas, and Solimonas (Figure  3B). Additionally, the 
heatmap showed dynamic changes in the rhizosphere 
communities among the groups at different sampling times; that 
is, there was an obvious enrichment of Proteobacteria and 
Firmicutes in the SA3 sample but a higher accumulation of 
Actinobacteria, Candidatus Saccharibacteria, Candidatus 
Woesebacteria, Chlamydiae, and Mucoromycota in the SF3 
sample (Figure 4A). In agreement with previous research, our 
results indicated that Proteobacteria is the second largest phylum 

of hydrogenogenic CO oxidizers, which may play a significant 
role in helping plants against FON infection (Badger and Bek, 
2008; Wang and Sugiyama, 2020). Overall, our results indicated 
that the application of SA changed the watermelon rhizosphere 
soil microbial communities.

For instance, at the phylum level, the abundances of 
Actinobacteria, Chlamydiae, Chloroflexi, Cyanobacteria, 
Dictyoglomi, Proteobacteria, Thermotogae, and Thaumarchaeota 
differed significantly between the SA3 and SF3 samples (Figure 4B). 
Moreover, the SA3 sample showed a significant abundance of 
Proteobacteria, whereas the SF3 sample was significantly enriched 
with Actinobacteria. In contrast, the SA7 sample had a significantly 
higher abundance of Blastocladiomycota, Dictyoglomi, and 
Elusimicrobiota, whereas the SF7 sample had a high abundance of 
Actinobacteria, Dictyoglomi, Gemmatimonadetes, Deinococcus-
Thermus, Ascomycota, and Planctomycetes (Figure  4B). At the 
genus level, the abundance of Rhodanobacter increased significantly 
in the SA3 sample, whereas that of Actinoplanes, Burkholderia, 
Chryseolinea, Luteimonas, Micromonospora, Nitrolancea, 
Ohtaekwangia, Sorangium, Sphingomonas, and Xanthomonas 
decreased significantly compared to the levels in the SF3 sample 
(Figure  4C). However, the abundances of Stenotrophomonas, 
Sphingomonas, Ramlibacter, Herbaspirillum, Polaromonas, and 
Azospirillum were significantly higher, whereas those of Dokdonella, 
Gemmatirosa, Castellaniella, Gemmatimonas, Chitinophaga, 
Myxococcus, Mizugakiibacter, Trichoderma, and Moritella were 
significantly lower in the SA7 soil than in the SF7 sample (Figure 4C). 
Collectively, these results suggest that although the structure of the 
main soil microbial community did not change, the abundance of 
specific species was significantly altered at different time points after 
pathogen injection.

Functional annotations and gene 
taxonomy predictions for the different 
rhizosphere microbiomes

For the SA3 sample, KEGG analysis of the cluster at level 1 
revealed the significant activation of four major pathways: 
environmental information processing, cellular processes, 
metabolism, and human diseases (Figure  5A). Detailed 
information on the 43 pathways at cluster level 2 is displayed in 
Figure 5B. The heatmap of the KEGG ortholog groups (Figure 5C) 
showed that K06042 (precorrin-8X/cobalt-precorrin-8 methyl 
mutase), K02055 (putative spermidine/putrescine transport 
system substrate-binding protein), K16164 (acyl pyruvate 
hydrolase), and K18930 (D-lactate dehydrogenase) were more 
highly enriched in the SF3 sample than in the SA3 soil. 
Furthermore, the distribution of linear discriminant analysis 
scores between the SA3 and SF3 KEGG ortholog groups indicated 
that K02014 (iron complex outer membrane receptor protein) was 
increased in SA3, whereas K03088 (RNA polymerase sigma-70 
factor, ECF subfamily) was increased in SF3 (Figure 5C).

The heatmap of the eggNOG classification, where the 
significantly expressed genes were merged into 12 groups, is shown 

https://doi.org/10.3389/fmicb.2022.1015038
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Zhu et al. 10.3389/fmicb.2022.1015038

Frontiers in Microbiology 07 frontiersin.org

in Figure 6A. Histograms of the distribution of linear discriminant 
analysis scores for resistance genes with statistically significant 
differences between the groups are shown in Figure  6B. For 
instance, there was a significantly higher expression level of genes 
related to transcription, carbohydrate transport, and metabolism 
in SF3 than in S3 plants. The genes significantly expressed in SA3 
belonged mainly to post-translational; intracellular trafficking, 
secretion; cell motility; and cell wall: membrane envelope 
biogenesis. In contrast, those in SF3 belonged primarily to 
transcription and secondary metabolite biosynthesis. However, SF7 
had a significantly higher number of genes related to translation, 
ribosomal structure, and biogenesis; cell cycle control and cell 
division; carbohydrate transport and metabolism; intracellular 
trafficking, secretion; energy production and conversion; defense 
mechanisms; and replication, recombination, and repair.

A Venn diagram of the distribution of resistance genes among 
the five selected samples is shown in Figure 7A. Heatmap analysis 
of the six CAZy classes indicated that the highly enriched genes in 
SA3 were in the classes GH: glycoside hydrolases and PL: 

polysaccharide lyases (Figure 7B). Analysis of the relative abundance 
of Unigenes showed that the major facilitator superfamily antibiotic 
efflux pump (bcr_1), drug class of aminoglycoside antibiotics, 
resistance mechanism of antibiotic inactivation (AAC6_IIC), and 
Serratia metallo-beta-lactamase (SMB_1) genes were highly 
expressed in SA3, whereas the ATP-binding cassette antibiotic efflux 
pump (msrC), drug class of aminoglycoside antibiotic, resistance 
mechanism of antibiotic inactivation (AAC6_IIC), ATP-binding 
cassette antibiotic efflux pump, major facilitator superfamily 
antibiotic efflux pump, resistance-nodulation-cell division antibiotic 
efflux pump (Pseudomonas_aeruginosa_soxR), and defensin-
resistant mprF (Listeria_monocytogenes_mprF) genes were increased 
in SA7 (Figure 7C). Finally, two-circle graphs (Figure 8) of the main 
phyla associated with the resistance genes expressed in the soil 
samples indicated that Proteobacteria were the predominant source 
in SA3, whereas Chloroflexi, Acidobacteria, and Cyanobacteria 
expressed most of the resistance genes in SA7. Interestingly, some 
resistance genes from Ascomycota were observed only in the SF 
groups and those from Firmicutes only in the SF7 group.

A B

C

FIGURE 4

Dynamic changes in the significantly abundant rhizosphere microbial communities. (A) Heatmap of the dynamic changes in different phyla among 
the various soil groups. (B) Bar plots showing the significant differences in relative abundance of the main phyla. (C) Bar plots showing the 
significant differences in relative abundance of the main genera. Three biological replicates per samples were analyzed. Data are expressed as 
mean ± SE (n = 3). Multiple t-tests (*p ≤ 0.01). S0, Mock-inoculation control, before treatment; S3, mock-inoculation control, 3 dpi; S7, mock-
inoculation control, 7 dpi; SA3, SA + FON treatment, 3 dpi; SA7, SA + FON treatment, 7 dpi; SF3, FON treatment, 3 dpi; SF7, FON treatment, 7 dpi; 
FON, Fusarium oxysporum f. sp. niveum; SA, salicylic acid; dpi, days post-inoculation.
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FIGURE 5

Functional diversity of the microbiomes among different soil samples based on KEGG pathways analysis (A) Heatmap of enrichment differences in 
six major metabolic pathways on level 1 among the samples. (B) Heatmap of enrichment differences in metabolic pathways on level 2 among the 
samples. The X-axis represents the sample group names; the Y-axis represents the KEGG metabolic pathway annotation information. 
(C) Distribution of linear discriminant analysis (LDA) scores between the SA3 and SF3 KEGG ortholog groups. S0, Mock-inoculation control, before 
treatment; S3, mock-inoculation control, 3 dpi; S7, mock-inoculation control, 7 dpi; SA3, SA + FON treatment, 3 dpi; SA7, SA + FON treatment, 7 dpi; 
SF3, FON treatment, 3 dpi; SF7, FON treatment, 7 dpi; FON, Fusarium oxysporum f. sp. niveum; SA, salicylic acid; dpi, days post-inoculation.
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Discussion

Exogenous salicylic acid application 
leads to the enrichment of beneficial 
microbes in the watermelon rhizosphere

The rhizosphere plays a fundamental role in microbe–microbe 
and plant–soil–microbe interactions. Microbes and their 
interactions can extend the capacity of plants for disease resistance 
and improve their nutrient use efficiency (Berendsen et al., 2018). 
Emerging evidence indicates that some microbial symbionts 
communicate with the plant immune system through multiple 
feedback mechanisms, giving the plant the ability to resist 
pathogens and to maintain growth and development (Liu et al., 
2021). Many studies have emphasized the role of soil microbial 
communities in enhancing plant growth and health (Aleklett et al., 
2018; Toju et al., 2018). For example, Xin et al. found that the plant 
immune system is required to maintain the normal growth of 
commensal bacteria in Arabidopsis (Xin et al., 2016). Other studies 
have reported that assemblages of host-specific microbiomes in the 
rhizosphere are vital for disease resistance. For instance, some 

disease-resistant crop varieties are enriched in specific sets of 
bacterial species in the rhizosphere, which contribute to the 
suppression of pathogens (Delgado-Baquerizo et  al., 2018). 
Another study showed that SA causes changes in the microbiome 
through allelopathy in wheat (Kong et al., 2020). It is not known 
how plant roots normally select and maintain a healthy rhizosphere 
microbiota. SA plays an important role in regulating plant 
immunity, which is necessary for systemically acquired resistance 
(Trivedi et al., 2020). In agreement with this theory, our results 
indicated that although the structure of the main soil microbial 
community did not change, specific microbes were significantly 
altered at different time points after pathogen injection. Likewise, 
we observed that Proteobacteria, the second largest phylum of 
hydrogenogenic CO oxidizers (Badger and Bek, 2008; Wang and 
Sugiyama, 2020), accumulated significantly in SA3. Lebeis et al. 
found that SA could modulate the root microbiome of A. thaliana. 
Specifically, plants with altered SA signaling had root microbiomes 
that differed from each other in their relative abundance of 
Proteobacteria as one of the core microbiomes when compared 
with those of wild-type plants (Lebeis et al., 2015). Furthermore, at 
the genus level, SA3 had a significantly higher abundance of 

A
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FIGURE 6

Functional diversity of the microbiomes among different soil samples based on eggNOG metabolic pathway analysis (A) Heatmap of enrichment 
differences in metabolic pathways among the samples. The X-axis represents the sample group name; the Y-axis represents the eggNOG 
metabolic pathway annotation information. (B) Distribution of LDA scores of functional differences between samples. The X-axis represents the 
LDA score; the Y-axis represents the eggNOG metabolic pathway annotation information. Three biological replicates per sample were analyzed. 
Data are expressed as mean ± SE (n = 3). S0, Mock-inoculation control, before treatment; S3, mock-inoculation control, 3 dpi; S7, mock-inoculation 
control, 7 dpi; SA3, SA + FON treatment, 3 dpi; SA7, SA + FON treatment, 7dpi; SF3, FON treatment, 3 dpi; SF7, FON treatment, 7 dpi. FON, Fusarium 
oxysporum f. sp. niveum; SA, salicylic acid; dpi, days post-inoculation.
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Rhodanobacter than SF3 and SA7 had a higher abundance of 
Azospirillum, Herbaspirillum, Stenotrophomonas, and 
Sphingomonas than SF7. Rhodanobacter is capable of oxidizing 
ammonia and of denitrification (De Cercq et al., 2006; Huo et al., 
2018). Some members of the genus Azospirillum exhibit biocontrol 
activity against phytopathogens and have been used as biofertilizers 
because of their plant growth-promoting activities, such as 
biological nitrogen fixation, hormone production, phosphate 
solubilization, and siderophore production (Mendez-Gomez et al., 
2020). Sphingomonas is considered an abundant microbial resource 
for the biodegradation of aromatic compounds, thus showing great 
potential for environmental protection and industrial production 
applications because of its high metabolic capacity and 
multifunctional physiological characteristics (Vorholt et al., 2017). 
Stenotrophomonas maltophilia, which exists widely in water, soil, 
and animals, is a multidrug-resistant opportunistic pathogen that 
causes life-threatening infections in immunocompromised 
individuals (Messiha et al., 2007; Mendes et al., 2013; Hassan and 
Bano, 2016). Herbaspirillum species have been described as closely 
associated with plants, both endophytically and epiphytically, 
because their nitrogenase activity promotes plant growth (Wang 
et  al., 2014). For instance, using histochemical analysis, 
Herbaspirillum seropedicae has been shown to colonize the root 

surfaces and inner tissues of maize, sorghum, wheat, and rice 
seedlings grown in vermiculite (Ramos et al., 2020).

Therefore, these significantly altered microbial communities 
confirmed our hypothesis that SA can recruit beneficial 
microorganisms (such as Rhodanobacter, Sphingomonas, and 
Micromonospora) in the watermelon rhizosphere. The next 
question that needs to be answered is whether SA-influenced 
changes in rhizosphere microflora are beneficial to the 
antagonism of plants against pathogens, that is, is the increased 
resistance of plants to pathogens induced directly by SA alone, or 
by the rhizosphere microbiota, or by both?

Significantly expressed microbiome 
genes may interact with salicylic acid 
signaling to regulate watermelon 
resistance to disease

Many researchers have found that SA and plant-associated 
beneficial microorganisms are key candidates for systemic acquired 
resistance (SAR) and induced systemic resistance (ISR), respectively 
(Berendsen et al., 2018; Teixeira et al., 2019). Therefore, to elucidate 
the molecular mechanism through which the rhizosphere microbial 
community cooperates with the watermelon plant to induce 
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FIGURE 7

Differential abundance of functional resistance genes among different soil samples (A) Venn diagram showing the distribution of 
functional resistance genes among the five selected sample groups. (B) Heatmap of the differences in relative abundance of six CAZy 
classes among the samples. (C) Heatmap of the differences in relative abundance of the antibiotic resistance ontology (ARO) cluster 
among the samples. S0, Mock-inoculation control, before treatment; S3, mock-inoculation control, 3 dpi; S7, mock-inoculation 
control, 7 dpi; SA3, SA + FON treatment, 3 dpi; SA7, SA + FON treatment, 7 dpi; SF3, FON treatment, 3 dpi; SF7, FON treatment, 7 dpi. 
FON, Fusarium oxysporum f. sp. niveum; SA, salicylic acid; dpi, days post-inoculation.
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FIGURE 8

Comparison of the relationship between resistance genes and main phyla in the different soil samples S0, Mock-inoculation control, before 
treatment; S3, mock-inoculation control, 3 dpi; S7, mock-inoculation control, 7 dpi; SA3, SA + FON treatment, 3 dpi; SA7, SA + FON treatment, 7 dpi; 
SF3: FON treatment, 3 dpi; SF7, FON treatment, 7 dpi. The inner circle is the phylum distribution for the antibiotic resistance ontology (ARO) 
cluster, and the outer circle is the phylum distribution for all sample genes in the group. FON, Fusarium oxysporum f. sp. niveum; SA, salicylic acid; 
dpi, days post inoculation.

resistance against Fusarium wilt, we blasted unique genes to annotate 
their functions. Surprisingly, genes enriched in environmental 
information processing, cellular processes, and metabolism pathways 
were significantly more highly expressed in SA3 than in SF3. 
Furthermore, K02014 (iron complex outer membrane receptor 
protein) was expressed at significantly higher levels in SA3 than in 
SF3. Simultaneously, the genes enriched in the process groups of cell 
motility and cell wall: membrane envelope biogenesis were expressed 
more significantly in SA3 than in SF3. These results confirm our 
hypothesis that the rhizosphere microbiome assemblage is affected 
by SA signal transduction pathways (Mendes et al., 2011; Chaparro 
et al., 2014; Vorholt et al., 2017; Delgado-Baquerizo et al., 2018). 
Notably, the resistance genes from GHs and PLs were highly 
accumulated in SA3 compared with those in the other soil groups. 
In particular, AAC6_IIC was consistently more significantly 
accumulated in the SA groups, indicating that it may play an 
important role in interplay with plant lipid membranes. Furthermore, 
we  noticed that the relative abundance of Proteobacteria 
corresponding to resistance genes was the highest post-inoculation, 
which means that more of such genes may come from species in this 

phylum. Our results confirm the conclusions of other studies that 
plant genetics and agricultural practices can potentially impose 
selective pressures on specific microbes and microbial communities. 
Thus, our findings not only show that SA treatment is beneficial to 
the antagonism of plants against pathogens but also suggest that, 
during pathogen infection, the rhizosphere microbiome may play a 
key role in activating a series of defensive feedback mechanisms in 
the plant through SA signal transduction pathways.

Conclusion

In conclusion, our results indicate that exogenous SA treatment 
can specifically increase some beneficial rhizosphere species that can 
confer resistance against FON inoculation. The glycoside hydrolase 
and polysaccharide lyase genes in the microbiome, specifically from 
a group of beneficial microbes (such as Rhodanobacter, 
Sphingomonas, and Micromonospora), may potentially induce 
activation of the plant immune system against Fusarium wilt disease 
and promote plant growth. Our results provide a novel strategy for 
controlling Fusarium wilt in watermelon by manipulating the 
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rhizosphere microbiome through phytohormones, such as 
exogenous SA treatment. Furthermore, we  aim to elucidate the 
mechanisms underlying the interplay between lipid membrane 
signaling and SA signal transduction pathways in future studies.
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