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Biological experiments performed in space crafts like space stations, space 

shuttles, and recoverable satellites has enabled extensive spaceflight life 

investigations (SLIs). In particular, SLIs have revealed distinguished space 

effects on microbial growth, survival, metabolite production, biofilm 

formation, virulence development and drug resistant mutations. These provide 

unique perspectives to ground-based microbiology and new opportunities 

for industrial pharmaceutical and metabolite productions. SLIs are with 

specialized experimental setups, analysis methods and research outcomes, 

which can be  accessed by established databases National Aeronautics and 

Space Administration (NASA) Life Science Data Archive, Erasmus Experiment 

Archive, and NASA GeneLab. The increasing research across diverse fields 

may be  better facilitated by databases of convenient search facilities and 

categorized presentation of comprehensive contents. We therefore developed 

the Space Life Investigation Database (SpaceLID) http://bidd.group/spacelid/, 

which collected SLIs from published academic papers. Currently, this database 

provides detailed menu search facilities and categorized contents about the 

studied phenomena, materials, experimental procedures, analysis methods, 

and research outcomes of 448 SLIs of 90 species (microbial, plant, animal, 

human), 81 foods and 106 pharmaceuticals, including 232 SLIs not covered by 

the established databases. The potential applications of SpaceLID are illustrated 

by the examples of published experimental design and bioinformatic analysis 

of spaceflight microbial phenomena.
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Introduction

The development of space-based technologies has enabled 
extensive life science investigations (Afshinnekoo et al., 2020) on 
space platforms such as International Space Station (ISS, all the 
abbreviations can be found in Supplementary Table S1; Witze, 
2020), space shuttles, and satellites (Afshinnekoo et al., 2020). In 
particular, various experiments have revealed distinguished effects 
of the space environment on microbial growth (Kim et al., 2013), 
colonization (Checinska Sielaff et al., 2019), survival (Yamagishi 
et al., 2018; Kawaguchi et al., 2020), metabolite production (Benoit 
et al., 2006; Huang et al., 2015), biofilm formation (Zhao et al., 
2019), virulence development (Hammond et al., 2013; Gilbert 
et al., 2020), and drug resistant mutations (Fajardo-Cavazos and 
Nicholson, 2016). These effects offer useful perspectives to 
microbiology research. Some of these effects have been exploited 
for microbial production of pharmaceuticals, food components, 
and industrial metabolites in space (Cortesão et al., 2020). The 
impact of spaceflight on life occurs across multiple scales and 
systems. The relevant knowledge is both important for spaceflight 
investigations and provides useful perspectives to ground-based 
research such as microbiology. The investigations of the complex 
spaceflight effects require interdisciplinary efforts and integration 
of information resources across multiple fields (Goswami 
et al., 2013).

Space life science investigations (SLIs) and subsequent studies 
can be  facilitated by the establishment of several specialized 
databases (Table 1). NASA Life Science Data Archive (LSDA)1 
provides brief reports of 2,659 SLIs mainly founded by 
NASA. Erasmus Experiment Archive (EEA)2 contains brief 
reports of 4,187 European Space Agency (ESA) funded or 
co-funded spaceflight experiments (2,550 SLIs). NASA GeneLab 
database (Berrios et al., 2021) includes 359 SLI omics datasets. The 
entries in these databases can be  searched and browsed by 
categories like species, research field, etc. These categories were 
summarized in Supplementary Table S2. Some databases focus on 
specific areas or missions. For example, Lifetime Surveillance of 
Astronaut Health database,3 which integrated in LSDA, provides 
51 sets of clinical test data of astronaut occupational surveillance. 
The developing Integrated Biobank for Space Life Science4 
currently contains 4 available sets of omics data from mouse 
habitat missions in ISS conducted by Japan Aerospace Exploration 
Agency (JAXA).

There is an increasing interest of SLIs across diverse fields, 
both for spaceflight and ground-based life investigations. In 
particular, microbial investigations from different aspects have 
been performed in spaceflights such as: cell biology investigation 
of the effects of microgravity and nutrition on microbial growth 

1 https://lsda.jsc.nasa.gov/

2 https://eea.spaceflight.esa.int/portal/

3 https://lsda.jsc.nasa.gov/LSAH/LSAH_Home

4 https://ibsls.megabank.tohoku.ac.jp/

(Kim et  al., 2013), system biology study revealed microbial 
microgravity response pathways (Roy et al., 2016), and studies 
reported genomic and transcriptomic changes during spaceflight 
(Li et al., 2014; Morrison et al., 2019). Several studies also showed 
industrial and medical implications of space environment, such as 
the production of useful secondary metabolism (Benoit et al., 
2006; Huang et  al., 2015), the virulence change of pathology 
(Hammond et al., 2013), the enhancement of antibiotic resistance 
(Fajardo-Cavazos and Nicholson, 2016), and hardware design 
studies (Rabbow et al., 2017). To better facilitate broad research 
interests across diverse fields, there is a need for databases 
equipped with search facilities convenient to non-experts and 
information contents that are both comprehensive and categorized 
for efficient evaluation.

We therefore developed a new database, Space Life 
Investigation Database SpaceLID,5 which records investigations 
published in peer reviewed academic journals. In SpaceLID, each 
publication constitutes an entry, which commonly includes the 
procedure and outcomes presented in figures and tables of 
multiple experiments. In comparison, LSDA and EEA entries 
mainly constructed based on reports of single experiments, 
including descriptions of the procedure and outcomes mainly in 
text6; while GeneLab focus on sharing omics data (Table 1). To a 
certain extent, the entries of SpaceLID present the protocols of 
SLIs more comprehensively and display their outcomes more 
intuitively. For providing detailed menu search facilities and 
categorized information, SpaceLID attached tags to individual 
SLIs, which summaries the multiple aspects of the investigations 
(Supplementary Table S2). Compared to the established databases, 
the tags in SpaceLID are more detailed and hierarchical in 
information presentation. These tags are also inclined to show the 
biological significance, which facilitate the identification of SLIs 
in specific fields. The potential applications of the SpaceLID 
information contents are illustrated by the literature-reported 
bioinformatic analyses of spaceflight microbial data.

Materials and methods

Data collection and processing

The contents of SpaceLID were obtained by the following 
procedure. First, literatures of SLIs were searched from 
PubMed (Sayers et  al., 2022) using keyword combinations 
between spaceflight-related terms and life science-related 
terms (Table  2). For example, search “International Space 
Station microbe” return 63 results. Secondly, these 
publications were manually checked for selecting 
experimental SLIs to be included in Space-LID. The following 
types of publications were excluded in SpaceLID: (1) Not 

5 http://bidd.group/spacelid/

6 https://lsda.jsc.nasa.gov/Experiment/exper/1796
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describing original experimental investigations (e.g., reviews, 
commentaries, news). (2) Without sufficient descriptions 
about the experiments performed in spaceflight, or works 
focused on spaceflight simulations (e.g., simulated 
microgravity). The remaining ones were then assigned their 
respective unique identification IDs in the format SLID-
XXX. Thirdly, the selected publications were manually 
evaluated for summarizing categorized information. The 
generated categories reflect four class of information: (1) The 
materials be  investigated, including species, tissue, and 
organs. (2) The methodology be used, including experimental 
setups, analysis methods, etc. (3) The focus of the publication, 
such as the studied phenomena and properties. (4) In addition 
to the information provided in the publication, the relevance 
between the study and certain fields, i.e., medicine and 
biophysics was also manually annotated. The categorized 
information of publications was attached to their IDs. Finally, 
the contents of publications were organized into plain text 
tables in a fixed format. The tables recorded the publication 
information (title, journal, doi), the tags summarized in the 
previous step, the spaceflight program, the research protocols, 
and the research outcome. The tables and figures in the 
investigation outcomes were regenerated from the origin file.

Database construction

The SpaceLID data entries were stored in MySQL (version 
5.7.34) database management system, which is an efficient and 

popular relational database management system. In order to 
be compatible with users and improve presentation, the front-end 
of web pages were constructed with HTML5, CSS3 and JavaScript. 
The interaction between the front-end and the database is 
achieved through PHP (version 7.2.24) which is an open source 
and efficient server-side programming language. SpaceLID was 
published using the Nginx (version 1.14.0) server with lightweight 
and free characteristics that could meets our needs.

The contents of SpaceLID can be searched by browse, keyword 
search, and menu search options. The browse page can be accessed 
by clicking the “Browse” button on the top panel of the SpaceLID 
main page. In the browse page, SLIs can be browsed by Kingdom 
of life (microbes, plants, human, and animals), space medicines, 
space foods, and space biophysics phenomena. Keyword search 
window is located in the center of the SpaceLID main page. Menu 
search panels are in the Advanced search section in the lower part 
of main page. The menu search panels include menus for 
organism, phenomenon (e.g., microbiome changes), project type 
(spaceflight, ground), research outcome type (outcome with 
categorizable data, outcome without categorizable data).

Results

SpaceLID database contents and access 
facilities

Our search procedure led to 448 literature-reported 
space life investigations (SLIs) with detailed information, in 

TABLE 2 List of key words searched in PubMed for finding space life investigations.

Spaceflight-related terms Life science related terms

International Space Station, ISS, satellite, 

space shuttle, spaceflight

amphibian, astronaut, bacteria, bacterial, biofilm, biology, bird, blood, bone, brain, cardiovascular, drug, fish, food, fruit, fungal, 

fungus, health, human, leaf, liver, lizard, medicine, mice, microbe, microbial, microbiota, monkey, mouse, murine, plant, rat, 

rodent, root, seed, seedling, shoot, skeletal, vegetable, worm

TABLE 1 Comparison of SpaceLID and established space life science databases.

Databases LSDA EEA GeneLab SpaceLID

Number of SLIs 2,659 2,550 359 448

Data sources  1. NASA funded studies

 2. Data submitted by users

 1. 1. ESA funded studies  1. Data uploaded by the creators

 2. Data submitted by users

 1. 1. Published academic journal 

papers

Data types  1. Experimental procedure and 

outcomes

 2. Experimental datasets

 3. Experimental related 

publications

 1. Experimental procedure and 

outcomes

 2. Experimental datasets

 3. Experimental related 

publications

 1. Raw and metadata of omics 

studies

 2. Environmental data

 3. Data related publications.

 1. Experimental procedure and 

outcomes, shown in figures and 

tables

 2. Publications

Analysis tool No No Datamining and visualization tools No

Data categorization* 11 primary categories, 537 

sub-categories.

5 primary categories, 504 sub-

categories.

6 primary categories, 156 sub-

categories.

6 primary categories, 15 sub-

categories, 423sub-sub-categories.

*Detailed introduction of data categorization can be found in Supplementary Table S2. The categorizes of each database can be achieved in the following links: LSDA: https://lsda.jsc.nasa.
gov/Experiment; EEA: https://eea.spaceflight.esa.int/portal/?; GeneLab: https://genelab-data.ndc.nasa.gov/genelab/projects; SpaceLID: http://bidd.group/spacelid/browse.php.
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TABLE 3 Tag classes in SpaceLID.

Tag classes Contents Available primary categories

Project type Types of the aircrafts (or ground study) used in the SLIs. Microbe, Plant, Animal, Human

Investigated time The time of the publication of the SLIs. Microbe, Plant, Animal, Human

Profile The investigated phenomenon, property, or other objectives of the SLIs. Microbe, Plant, Animal, Human

Part The biospecimen studied in the SLIs. Plant, Animal, Human

Organism The scientific and common name of the investigated species. Microbe, Plant, Animal

Disease/Health condition The associated diseases or conditions of the SLIs. Microbe, Animal, Human

Microbe form The form of microbes during spaceflight. Microbe

which 236 are not included in the established databases. 
Currently, SpaceLID cover 90 species. The landscape of 
SpaceLID is shown in Figure  1A. In particular, the 88 
microbial SLIs involved in multiple fields of microbiology, 
such as biofilm, microbial colonization on space crafts, and 
microbial production of pharmaceuticals and metabolites 
(Figure 1B).

For the convenience of users of diversified backgrounds, 
the SpaceLID recorded SLIs are annotated with tags of 
different research fields (Supplementary Table S2). In the 
Browse page,7 the SLIs are sorted by organism category by 
default. The four primary categories are Microbe, Plant, 
Animal, and Human. According to the properties of the study 
in these categories, different tag classes were designed, as 
shown in Table  3. Click the tag classes can expand the 
corresponding selectable tag list. Click the “BROWSE” 
button, the studies with selected tags can be surmised into a 
table. For example, select “Metabolite production  - 
pharmaceutical metabolite” and browse, seven SLIs can 
be  found: such as antibiotics Actinomycin D produced by 
Streptomyces plicatus WC56452 (Benoit et  al., 2006; Lam 

7 http://bidd.group/spacelid/browse.php

et al., 2006), Natamycin produced by Streptomyces gilvosporeus 
LK-22 (Liang et  al., 2007), and Monorden produced by 
Humicola fuscoatra WC5157 (Lam et al., 1998; Supplementary  
Figure S1).

The browse result is summarized in a table, in which each 
SLI contains six columns: the unique ID of the SLI in 
SpaceLID, the title of the SLI, the investigated species, the 
studied biological phenomenon, the associated disease 
condition, and the studied biophysical phenomenon 
(Supplementary Figure S1). The ID is a hyperlink to the 
corresponding page of each SLI. The study page provides the 
following information: (1) Study Description: all tags within 
the study and the abstract. (2) Spaceflight information: the 
flight program, duration, and the information link. (3) 
Protocols: The assay performed in the SLI and the brief 
introduction of the corresponding methods. (4) Study 
Outcomes: the main results of the SLI summarized in 
categorized boxes. The corresponding formatted figures, 
tables and assays are attached in the boxes. (5) Publications: 
the information about the paper. To facilitate the crosstalk 
between SLIs and other fields such as biophysics, 
pharmaceutical science, and food science, SpaceLID also 
support browse investigations by Space Biophysics 
Phenomenon, Space Medicines, and Space Foods.

A B

FIGURE 1

(A) Space Life Science Investigations (SLIs) in SpaceLID. The numbers in parentheses indicate the species, foods, and medicines recorded in the 
database. (B) The investigated phenomena or properties of the microbial SLIs. The number of SLIs in each filed is shown in the parentheses.
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Application of SpaceLID for information 
of experimental design of antibiotics 
production by spaceflight microbes

The application of SpaceLID database can be illustrated by an 
example of the information for the experimental design of 
microbial production of antibiotics in space. By inputting 
“antibiotic production” in the SpaceLID keyword search window, 
one can find 4 studies of microbial production of antibiotics in 
space (Lam et al., 1998, 2006; Benoit et al., 2006; Liang et al., 
2007). By clicking an entry SLID-305, one can access the 
information page of spaceflight production of the antibiotic drug 
Actinomycin D by Streptomyces plicatus WC56452 (Benoit et al., 
2006). From the Experimental or treatment protocol section, one 
can find useful information for the design of a spaceflight 
experiment in microbial production of antibiotics. This 
experiment can be conducted with a hardware called Multiple 
Orbital Bioreactor with Instrumentation and Automated Sampling 
(MOBIAS), which has been designed for long-term cell culture 
growth on ISS through semi-continuous fed batch processing.8 
The MOBIAS hardware can be  inserted into the Commercial 
Generic Bioprocessing Apparatus (CGBA) for thermal and 
process control.9 The microbial cultures can be maintained in 
three phases throughout the spaceflight. The first phase involves 
the processes from sample loading to orbit detection with the 
CGBA temperature held at 10.2 ± 0.6°C to prevent significant 
culture growth prior to microgravity exposure. The second phase 
consists of batch mode culture growth, with the CGBA 
temperature increased over a period of ~45 min and maintained 
at 22.0 ± 0.2°C for the duration of spaceflight. The third phase 
transitions the culture to fed-batch conditions to provide fresh 
medium and allow for the removal of spent medium and 
byproducts to maintain viable cultures for the long duration (e.g., 
72-days) spaceflight.

Application of SpaceLID for information 
of bioinformatic analysis of antimicrobial 
resistance and virulence genes of 
spaceflight microbes

A second example of SpaceLID application is the information 
for bioinformatic analysis of the antimicrobial resistance genes 
(AMR-genes) of spaceflight microbes. The search of SpaceLID by 
keyword “antimicrobial resistance” led to 3 entries of spaceflight 
antimicrobial resistance investigations. In particular, entry 
SLID-344 is about the detection of AMR-genes associated with the 
ISS environmental surfaces, where bioinformatic analysis has been 
conducted on 63 detectable AMR-genes of 21 BSL-2 bacterial 
strains from 24 samples collected from the ISS (Urbaniak et al., 

8 https://lsda.jsc.nasa.gov/Hardware/hardw/1403

9 https://lsda.jsc.nasa.gov/Hardware/hardw/908

2018). These 24 samples have been collected during 3 sampling 
events (flight F1, F2, and F3) at 8 locations onboard ISS, and tested 
for resistance against 9 antibiotics (cefazolin, cefoxitin, 
ciprofloxacin, erythromycin, gentamycin, oxacillin, penicillin, 
rifampin, and tobramycin). Because elevated AMR-genes indicate 
the levels of antimicrobial resistance, the abundance profiling of 
the 63 AMR-genes with respect to the flights and ISS locations 
may provide useful clues about the environmental conditions for 
constraining the abundance of AMR-genes, which is important 
for developing mitigation strategies to maintain astronaut health 
during long duration spaceflights.

The relative abundances of the AMR-genes can be displayed 
in a bar-plot by taking the read count of each AMR-gene in a 
sample and dividing by the total read count of that sample. The 
abidance profile of the 63 AMR-genes with respect to the flights 
and ISS locations can be  analyzed by means of hierarchical 
clustering method (Thalamuthu et al., 2006), based on Euclidian 
distances of centered log ratio transformed gene abundance data. 
This analysis finds genes that share similar expression pattern in 
certain samples or treatments, which may have related functions 
or located within the same pathways. Hierarchical clustering can 
be  performed by both agglomerative (bottom-up) or divisive 
algorithm (top-down), which are usually chosen according to the 
amount of data and the aimed number of classes (Figure 2). In the 
study as the example (Urbaniak et  al., 2018), the clustering 
patterns of the 63 AMR-genes can be visualized by a dendrogram 
(Figure  3A) using the pvclust package10 and by a heatmap 
(Figure 3B) generated with the gplot package.11 These profiles 
reveal lower relative abundances of most of the 63 AMR-genes 
during the F3 flight with respect to the F1 and F2 flights. Further 
investigations of the environmental conditions, sanitary measures, 
and activities on F3 with respect to those on F1 and F2 may shed 

10 https://github.com/shimo-lab/pvclust

11 https://gplot.readthedocs.io/en/latest/basic.html

FIGURE 2

Illustration of hierarchical clustering method. Samples and 
classes are represented by the uppercase letters and circles. 
Agglomerative algorithm (bottom-up) firstly treats every 
individual sample as singleton classes, then merges pairs of 
classes successively, until all clusters merged into a single one. 
Divisive algorithm (top-down) firstly treats all samples as one 
class, then splitting the class recursively, until all individual 
samples split into singleton classes.
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light on the factors that constrain the abundance of AMR-genes 
on spaceflights.

The usefulness of SpaceLID for the information of the 
spaceflight bioinformatics analysis can be illustrated by another 
example. By selecting “Virulence” tag under the “Disease/Health 
Condition” button of “Microbe” class in SpaceLID browse page, 
10 entries were presented in the result page. Among these entries, 
SLID-155 is based on a study which applied shotgun metagenome 
sequencing to determine the virulence capabilities of the microbial 
communities separated from ISS samples (Singh et al., 2018). The 
sequencing data was analyzed by MEGAN6, a comprehensive 

toolbox for metagenome analysis (Huson et al., 2007). Filtered 
sequencing reads form each sample was clustered by the MEGAN6 
equipped lowest common ancestor algorithm, a hierarchical 
clustering method assign reads to taxa. The organisms were then 
identified by searching the taxa reads in the NCBI taxonomy 
database using DIAMOND (Buchfink et al., 2015) and MEGAN6. 
The pathogenic organisms were annotated by the Bacterial and 
Fungal Risk Group Database.12 The sequencing reads were also 

12 https://my.absa.org/Riskgroups

A

B

FIGURE 3

Temporal comparison of AMR-gene profiles (modified from a figure in Urbaniak et al., 2018). (A) Hierarchical clustering of the AMR-genes. Red values 
are AU (Approximately Unbiased) p-values, and green values are Bootstrap probability values. Clusters with AU p-values larger than 90% are highlighted 
by rectangles, meaning that there is a 90% certainty of these clusters being a distinct group. F“x” refers to the flight number, followed by the location. 
(B) Heatmap of centered log ratio transformed gene expression data. Deep blue boxes represent samples that have higher gene expression then the 
geometric mean expression (light blue), which has been calculated from all samples, which has been calculated from all samples.
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translated to protein and then searched in references databases 
eggNOG (Powell et al., 2012), SEED (Overbeek et al., 2005), and 
KEGG (Kanehisa and Goto, 2000) to estimate their function. The 
virulence related reads were classified into categories based on the 
reference virulence factors supplied by the SEED database. Several 
virulence gene group such as multi-drug-resistant resistance efflux 
pump were found to be prevalent in samples. The SpaceLID entry 
SLID-155 recorded the detail methods and outcomes of this study.

Application of SpaceLID for information 
of bioinformatic methods of molecular 
pathway analysis of spaceflight microbes

A third example of SpaceLID application is the information of 
bioinformatics methods for probing the molecular pathways of 
microbes altered in spaceflight. The search of SpaceLID by the 
keywords “molecular pathways” led to 4 SLI entries involving the 
analysis of molecular pathways of different species in space. 
Specifically, entry SLID-333 describes systems biology analysis for 
revealing the molecular pathways of two proteobacteria altered in 
spaceflight (Roy et al., 2016). The two proteobacteria are Pseudomonas 
aeruginosa PAO1 (P. aeruginosa) and Salmonella enterica serovar 
Typhimurium (S. typhimurium). The effects of spaceflight on these 
bacteria may be inspected by differential gene expression analysis. 
However, gene expression changes of bacteria are generally low under 
microgravity (Wilson et  al., 2007). Hence, passive mapping of 

differentially expressed genes to pathways may not reveal statistically 
confident profiles of molecular pathways in spaceflight. To overcome 
this problem, the gene set enrichment analysis (GSEA) method 
(Subramanian et  al., 2005) implemented in the GenePattern 2.0 
package (Reich et al., 2006) may be employed for knowledge-based 
interpretation of the expression profiles of focused gene sets. Based 
on the prior annotation of the gene groups shared functions or other 
properties, through calculated the tendency of genes in certain set S 
close to an extreme (most up-or down-regulated) of all ranked genes 
L (represented by an Enrichment Score, ES), GSEA can determine 
whether these genes significantly correlated with the investigated 
phenotype (Figure  4). GSEA has revealed microbial cellular and 
metabolic pathways altered in spaceflight (Roy et al., 2016). As shown 
in the example study (Roy et al., 2016), the common pathways of the 
two proteobacteria altered by spaceflight may be displayed by Venn 
diagrams (Wilson et al., 2007; Wilson et al., 2008; Crabb et al., 2010; 
Crabbé et al., 2011), which reveals that the number of overlapping 
pathways between P. aeruginosa and S. typhimurium in space is 
significantly higher than the number between P. aeruginosa in space 
and simulated microgravity conditions (Figure 5). Examples of the 
commonly altered pathways between P. aeruginosa and 
S. typhimurium in space are ribosome, RNA degradation, protein 
export, flagellar assembly, methane metabolism, toluene degradation, 
oxidative phosphorylation, TCA cycle, glycolysis, purine metabolism, 
and pyrimidine metabolism. Further examinations of these pathways 
may shed lights on the common stress response of the microbes to 
spaceflight conditions.

A B

FIGURE 4

Illustration of the gene set enrichment analysis (GSEA) method. (A) A gene expression dataset sorted by correlation with phenotype, the 
corresponding heatmap, and the “gene tags,” i.e., location of genes from a set S within the sorted list. (B) Plot of the running sum for S in the data 
set, including the location of the maximum enrichment score (ES) and the leading-edge subset. The figures were drawn using data from 
GSE35958, only used to show the principle of GSEA method.
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A B

FIGURE 5

Venn diagrams among different experiments showing common altered pathways (modified from a figure of Roy et al., 2016). (A) P. 
aeruginosa in space, rotating wall vessel (RWV), and random positioning machine (RPM) experiments. Valine, leucine, and isoleucine 
degradation pathways are common among the three experiments. Flagellar assembly, protein export, ribosome, RNA degradation, TCA 
cycle, and oxidative phosphorylation are increased in RWV and RPM but decreased in space. (B) P. aeruginosa in space, S. typhimurium 
in space (rich media), and S. typhimurium in space (minimal media). Ribosome, RNA degradation, protein export, flagellar assembly, 
methane metabolism, toluene degradation, oxidative phosphorylation, TCA cycle, glycolysis, purine metabolism, and pyrimidine 
metabolism are the common altered pathways.

Discussion

The extreme environment of outer space has profound 
effects on life and human health in space (White and Averner, 
2001; Checinska Sielaff et al., 2019). The knowledge of the 
response of life under space environment is not only 
important for space exploration (Afshinnekoo et al., 2020), 
but also benefit terrestrial applications (Ruyters and Stang, 
2016; Maiwald et al., 2021). Investigations and knowledge of 
space microbiology is particularly important for space safety 
(Mermel, 2013; Bijlani et  al., 2021), biotechnology 
development (Cockell, 2022), resource and waste recycling 
(Lindeboom et  al., 2018). Technologies from diverse 
disciplines such as nanotechnologies, bioinformatics 
(Schmidt and Goodwin, 2013; Castro-Wallace et al., 2017) 
and artificial intelligence (AI; Scott et  al., 2021; Madrigal 
et al., 2022) have been and are being applied for space life 
investigations. Established (LSDA, EEA, GeneLab, etc.) and 
newly emerged SLI databases can be enriched with expanding 
information and data of space investigations, and more 
convenient access facilities can be  introduced by these 
databases. These databases can also provide useful 

information for facilitating the broad research interests across 
diverse fields and for the development of new enabling 
technologies in support of future space life investigations.
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