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Although clinical studies have shown the possible relationship between 

Helicobacter pylori (H. pylori) infection and the development of nonalcoholic 

fatty liver disease (NAFLD), their causal relationship is still unknown. This 

bidirectional Mendelian randomization (MR) study aimed to investigate 

the causal link between H. pylori infection and NAFLD. Two previously 

reported genetic variants SNPs rs10004195 and rs368433 were used as 

the instrumental variables (IVs) of H. pylori infection. The genetic variants 

of NAFLD were extracted from the largest genome-wide association study 

(GWAS) summary data with 1,483 cases and 17,781 controls. The exposure 

and outcome data were obtained from the publicly available GWAS dataset. 

Then, a bidirectional MR was carried out to evaluate the causal relationship 

between H. pylori infection and NAFLD. In addition, the GWAS data were 

also collected to explore the causal relationship between H. pylori infection 

and relevant clinical traits of NAFLD, including triglycerides, low-density 

lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), 

fasting blood glucose (FBG), and body mass index (BMI). Genetically predicted 

H. pylori infection showed no association with NAFLD both in FinnGen GWAS 

(OR, 1.048; 95% CI, 0.778–1.411; value of p = 0.759) and the GWAS conducted 

by Anstee (OR, 0.775; 95% CI, 0.475–1.265; value of p = 0.308). An inverse MR 

showed no causal effect of NAFLD on H. pylori infection (OR,0.978;95% CI, 

0.909–1.052; value of p = 0.543). No significant associations were observed 

between H. pylori infection and the levels of triglycerides, LDL-C, HDL-C, or 

FBG, while H. pylori infection was associated with an increase in BMI. These 

results indicated that there was no genetic evidence for a causal link between 

H. pylori and NAFLD, suggesting that the eradication or prevention of H. pylori 

infection might not benefit NAFLD and vice versa.
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Introduction

Nonalcoholic fatty liver disease (NAFLD) is a common liver 
disorder characterized by liver steatosis which is considered the 
manifestation of metabolic syndrome in the liver (Hamaguchi 
et al., 2005). Approximately, 10 to 30% of patients with NAFLD 
may eventually develop nonalcoholic steatohepatitis (NASH), 
which can result in cirrhosis, hepatocellular carcinoma, and liver 
failure (Yu et al., 2018; Duell et al., 2022). Currently, the prevalence 
rates for NAFLD are gradually increasing, imposing serious 
economic and societal burdens. Helicobacter pylori (H. pylori) is a 
kind of gram-negative bacterium. It can selectively colonize the 
human gastric epithelium (Liu et al., 2018). H. pylori infection is 
common, with approximately, 60% of the global human 
population infected (Hooi et  al., 2017). Previous studies have 
reported that H. pylori infection may promote insulin resistance, 
increase inflammatory cytokine production, and stimulate white 
adipose tissue to activate the related signaling pathways, which 
could contribute to NAFLD (Cheng et  al., 2017). One animal 
study has shown elevated liver function and increased metabolic 
indexes in H. pylori infection mice models with high fat diet (He 
et al., 2018).

Several observational studies found that the prevalence of 
NAFLD is common in patients with H. pylori infection 
accounting for approximately, 33–47% (Kang et al., 2018; Jiang 
et al., 2019; Abo-Amer et al., 2020). Some meta-analysis studies 
also indicated that H. pylori infection could increase the incidence 
rate of NAFLD. However, other retrospective studies came out 
with the opposite conclusion that H. pylori infection is not an 
independent risk factor for NAFLD (Okushin et al., 2015; Alvarez 
et al., 2020; Han et al., 2021). In addition, it should be noted that 
all the available evidence is based on observational studies, which 
have obvious limitations such as unmeasured or imprecisely 
measured confounders, reverse causation, and other sources of 
bias. There is a paucity of definitive evidence on the causal link 
between H. pylori infection and NAFLD, which is important for 
the prevention or treatment of NAFLD through 
H. pylori eradication.

Mendelian randomization (MR) is an epidemiological analytic 
method to strengthen causal inference. The MR design utilizes 
genetic variants as instrument variables (IVs) for the exposure of 
interest, usually single nucleotide polymorphisms (SNPs), which 
are randomly distributed and unaffected by environmental factors 
and other cofounders (Davey Smith and Hemani, 2014). Thus, the 
MR design can rigorously account for the causal relationships 
between complex disorders. With the accumulation of genome-
wide association studies (GWASs) and the availability of large-
scale GWAS data, two-sample MR design is becoming more 
accessible and increasingly widespread. In this study, we  first 
performed a two-sample MR analysis to predict H. pylori infection 
and assess its association with NAFLD in two independent, 
population-scale GWAS data for NAFLD. In addition, we treated 
the incidence of NAFLD as the exposure to explore reverse 
causation between H. pylori infection and NAFLD, hoping to 

clarify their causal relationship and provide useful advice for 
clinical practice.

Materials and Methods

Mendelian randomization design

The framework of the current MR study was described in 
Figure 1. In this current study, we used genetic variants as IV for 
the MR analysis. The assumed validity of our MR study was based 
on the following three core assumptions: (1) relevance assumption: 
the genetic variants are strongly associated with the exposure; (2) 
independence assumption: the genetic variants are not associated 
with any confounders that might mediate ways from exposure to 
outcome; and (3) exclusion-restriction assumption: the genetic 
variants affect the outcome only possible via the exposure (Emdin 
et al., 2017).

Data sources description

The genetic association of NAFLD was derived from two 
independent GWAS data; one was obtained from a recently 
published study composed of 1,483 European cases and 17,781 
European controls (Anstee et  al., 2020), and the other was 
composed of 894 European cases and 217,898 European controls; 
it was downloaded from the GWAS data sources on the FinnGen 
database, which is available at https://www.fifinngen.fifi/en. The 
NAFLD in the GWAS conducted by Anstee et  al. (2020) was 
definitively diagnosed by histopathology after liver biopsy, while 
the NAFLD in the FinnGen GWAS was diagnosed according to 
electronic medical records. The GWAS summary data of H. pylori 
infection were obtained from the public data that had been 
assembled in the European Bioinformatics Institute (EBI) database 
at https://gwas.mrcieu.ac.uk/datasets/ieu-b-4905/, which included 
1,058 European cases and 3,625 European controls. In addition, 
the GWAS data were also collected to investigate the causal effect 
between H. pylori infection and the relevant clinical traits of 
NAFLD, including triglycerides, low-density lipoprotein 
cholesterol (LDL-C), high-density lipoprotein cholesterol 
(HDL-C), fasting blood glucose (FBG), and body mass index 
(BMI). The GWAS summary statistics of lipid traits, including 
triglycerides, LDL-C, and HDL-C levels, were obtained from the 
United Kingdom Biobank database (Richardson et al., 2020). The 
GWAS summary statistics of FBG were obtained from EBI 
database (Manning et al., 2012), and the GWAS statistics of BMI 
were obtained from MRC Integrative Epidemiology Unit (MRC-
IEC) database.1 Each GWAS was approved by corresponding 
Ethics Committees. The details of the GWAS data included in this 
study were shown in Table 1.

1 https://www.bristol.ac.uk/integrative-epidemiology/
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Selection of genetic instrumental 
variables for Helicobacter pylori infection

Genetic IVs can be  acquired via two ways, one is from 
previous literature and the other is directly from the GWAS 
summary statistics. The genetic IVs of H. pylori infection were 
obtained from a previous study conducted by Mayerle et  al. 
(2013). The toll-like receptor 1 (TLR1) gene SNP rs10004195 at 
4p14 and the Fc gamma RIIA (FCGR2A) gene SNP rs368433 at 
1q23.3 have been identified as the genetic variants for H pylori 
seroprevalence with the strongest association strength. The A 
allele of TLR1 has been reported to increase the risk of H. pylori 
infection (Tang et al., 2015; Kalkanli Tas et al., 2020), while FCGR 
polymorphisms have been implicated in persistent bacterial 
infections including H. pylori (Corcoran and Byrne, 2004). 
Furthermore, to examine the strength of the allele scores as 
instruments, the F statistic for each SNP was approximated from 
the following equation:
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×

−
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K

R
R
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where, N is the sample size of the exposure dataset, K is the 
number of SNPs, and R2 represents the proportion of the variation 
explained by IVs (Burgess and Thompson, 2011). The F statistic of 
the two SNPs was greater than 30, as shown in Table 2. Thus, the 
two SNPs were utilized as the IVs of H. pylori infection for 
subsequent analysis.

Selection of genetic instrumental 
variables for NAFLD and relevant clinical 
traits

The genetic IVs of NAFLD and relevant clinical traits were 
obtained from the GWAS summary statistics. To screen for 
eligible genetic IVs that met the MR assumptions, a series of 

FIGURE 1

Schematic representation of the bidirectional MR study on the causal relationship between H. pylori infection and NAFLD. IVs, instrument variants; 
H. pylori, Helicobacter pylori; SNP, single-nucleotide polymorphisms; NAFLD, nonalcoholic fatty liver disease.

TABLE 1 Details of the studies included in the Mendelian randomization analyses.

Phenotype Consortium 
or author Ethnicity Sample size Year Number 

of SNPs Web source

NAFLD Anstee et al European 1,483 cases and 17,781 controls 2020 7,411,923 https://www.ebi.ac.uk/gwas

NAFLD FinnGen study European 894 cases and 217,898 controls 2021 16,380,466 https://gwas.mrcieu.ac.uk/datasets/finn-b-NAFLD/

H. polyri infection EBI European 1,058 cases and 3,625 controls 2021 7,247,045 https://gwas.mrcieu.ac.uk/datasets/ieu-b-4905/

Triglycerides UK Biobank European 441,016 participants 2020 12,321,875 https://gwas.mrcieu.ac.uk/datasets/ieu-b-111/

LDL-C UK Biobank European 440,546 participants 2020 12,321,875 https://gwas.mrcieu.ac.uk/datasets/ieu-b-110/

HDL-C UK Biobank European 403,943 participants 2020 12,321,875 https://gwas.mrcieu.ac.uk/datasets/ieu-b-109/

FBG EBI European 58,074 participants 2012 2,599,409 https://gwas.mrcieu.ac.uk/datasets/ebi-a-GCST005186/

BMI MRC-IEU European 454,884 participants 2018 9,851,867 https://gwas.mrcieu.ac.uk/datasets/ukb-b-2303/

SNP, single-nucleotide polymorphisms; NAFLD, nonalcoholic fatty liver disease; H. pylori, Helicobacter pylori; EBI, European Bioinformatics Institute; LDL-C, low density lipoprotein 
cholesterol; HDL-C, high density lipoprotein cholesterol; FBG, fasting blood glucose; BMI, body mass index.
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quality control measures were performed. Firstly, SNPs needed 
to reach genome-wide significance with a value of p <5 × 10−8. 
Secondly, a linkage disequilibrium (LD) clumping algorithm 
with R2 < 0.001, window size = 10,000 kb, and value of p 
<5 × 10−8 was applied to exclude SNPs that were in strong 
LD. Finally, to ensure that the effect alleles belonged to the same 
allele, the exposure and outcome datasets were harmonized to 
eliminate SNPs with intermediate allele frequencies and 
ambiguous SNPs with nonconcordant alleles. After these 
rigorous selections, these SNPs were used as the IVs for 
subsequent analysis.

Statistical analysis and data visualization

All statistical analyses and data visualization were performed 
using the R programming software (R4.1.2).2 The Wald ratio and 
Inverse Variance Weighted (IVW) methods (Burgess et al., 2013) 
were provided by the “TwoSampleMR” R package (Version 0.5.6). 
A two-sided value of p <0.05 was considered significant. For MR 
analyses with two more IVs, two complementary approaches, 
MR-Egger and Weighted-median, were used to ensure the 
robustness of the analysis. Forest plots were generated using the 
“forestplot” R package (Version 2.0.1).

Results

Causal effects of Helicobacter pylori 
infection on NAFLD

The SNP rs10004195 (T > A), a missense variant, and the SNP 
rs368433 (T > C), an intron variant, were used in the MR analysis 
working as IVs. Their F statistics were 263.67 and 143.22, 
respectively, much greater than 30. All genetic associations were 
aligned to the allele that increases the H. pylori seropositivity 
(Mayerle et al., 2013).Genetically predicted H. pylori infection 
showed no association with NAFLD in the FinnGen GWAS under 
the IVW method [odds ratio (OR), 1.048; 95% confidence interval 
(CI), 0.778–1.411; value of p =0.759]. Similar results were obtained 
when only using SNP rs10004195 as IVs and the Wald ratio 
method (OR, 1.044; 95% CI, 0.713–1.530; value of p = 0.824). As 
SNP rs368433 could not be  found in the GWAS summary 
statistics, only rs10004195 was used as an IV for the MR analysis 
in the GWAS conducted by Anstee et al. (2020). Additionally, the 

2 https://www.rproject.org/

result was not significant using the Wald ratio method (OR, 0.775; 
95% CI, 0.475–1.265; value of p = 0.308; Figure 2).

Causal effects of NAFLD on Helicobacter 
pylori infection

The IVs of NAFLD were identified from the largest NAFLD 
GWAS conducted by Anstee et  al. (2020). A total of 3 SNPs, 
rs738409, rs13118664, and rs17216588, were selected. The SNP 
rs738409 (C > G) is a missense variant of the patatin like 
phospholipase domain containing 3 (PNPLA3) gene which has 
been confirmed to be  associated with the risk of NAFLD in 
multiple GWASs (Chambers et al., 2011; Sookoian and Pirola, 
2011). The SNP rs13118664 is an intron variant of the 
hydroxysteroid 17-beta dehydrogenase 13 (HSD17B13) gene, and 
its variant has been reported to be associated with a lower risk of 
NAFLD and incidences of adverse liver outcomes (Ting et al., 
2021; Hudert et al., 2022). Unfortunately, currently no complete 
information or related publications exist on the SNP rs17216588 
(C > T). The F statistic of each SNP was greater than the empirical 
threshold of 30, indicating less bias caused by weak instruments 
(Table 3). Genetically predicted NAFLD showed no association 
with H. pylori infection under the IVW method (OR,0.978;95% 
CI, 0.909–1.052; value of p = 0.543). Similar results were obtained 
using the Weighted-median method and MR-Egger method 
(Weighted-median OR, 0.976; 95% CI, 0.897–1.062; value of p: 
0.578; MR-Egger OR, 0.939; 95% CI, 0731–1.206; value of 
p = 0.709; Figure 3).

Causal effects of Helicobacter pylori 
infection on the relevant clinical traits of 
NAFLD

MR analyses were further performed to examine the causal 
association between H. pylori infection and common NAFLD 
clinical traits. These clinical traits, including lipidemic, glycemic, 
and obesity, have been broadly reported to be associated with 
NAFLD. The analysis revealed that H. pylori infection had no 
causal effect on triglyceride (OR, 1.005; 95% CI, 0.994–1.016; 
value of p = 0.409), LDL-C (OR, 1.003; 95% CI, 0.975–1.053; value 
of p = 0.514), HDL-C (OR,0.994; 95% CI, 0.954–1.036; value of 
p = 0.788), or FBG (OR, 1.006; 95% CI, 0.989–1.023; value of 
p = 0.510). However, there was a statistical significance on BMI 
(OR, 1.022; 95% CI, 1.008–1.036; value of p = 1.47 × 10−3), which 
suggested that H. pylori infection could cause the increase in BMI 
(Figure 4).

TABLE 2 Instrumental SNPs of H. pylori infection and F statistics.

Instrumental SNP Effect allele Other allele Gene EAF BETA SE P F

rs10004195 A T TLR1 0.25 0.3576744 0.04048331 1.00E-18 478.17

rs368433 C T FCGR2A 0.16 0.3148107 0.05609599 2.00E-08 286.52

https://doi.org/10.3389/fmicb.2022.1018322
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Causal effects of the clinical traits of 
NAFLD on Helicobacter pylori infection

The IVs of NAFLD traits were identified from their respective 
GWAS summary data. In the MR analyses of clinical traits, no 
genetic evidence of causal effects on H. pylori infection was 
identified (Table 3). Two other methods, the weighted median and 
MR-Egger also did not demonstrate significant causal effects on 
H. pylori infection (Figure 5).

Discussion

In the present study, we  tried to explore the association 
between H. pylori infection and NAFLD risk by the bidirectional 
MR method, which is a natural RCT, using publicly shared 

large-scale GWAS data. Our results showed that there was no 
significant causal relationship between H. pylori infection and 
NAFLD risk.

There was inconsistent evidence to show the causal effect of 
H. pylori infection on the risk of NAFLD. A cross-sectional study 
performed on northern Chinese patients reported that H. pylori 
infection is independently associated with an increased risk of 
NAFLD (OR, 1.27; 95%CI, 1.07–1.50; Jiang et  al., 2019). Two 
cohort studies performed in Egypt and Korea have also reached 
similar conclusions (Kim et al., 2017; Abdel-Razik et al., 2018). In 
addition, another cross-sectional study showed that the prevalence 
of H. pylori infection was higher in the NAFLD group than in the 
control group (41.25% vs. 36.85%, value of p < 0.001; Yu et al., 
2018), which indicated that NAFLD incidences were also related 
to H. pylori infection risk. Nevertheless, the causal relationship 
between them remains controversial because of the studies with 

FIGURE 2

Mendelian randomization result of the effect of H. pylori infection on NAFLD. nSNP, the number of SNPs used in the analysis, and the SNP 
rs10004195 was used if nSNP = 1. The SNPs rs10004195 and rs368433 were used if nSNP = 2. OR, the odds ratio. 95% CI, 95% confidence interval.

TABLE 3 Instrumental SNPs of NAFLD and F statistics.

Instrumental SNP Effect allele Other allele Gene EAF BETA SE P F

rs13118664 T A HSD17B13 0.21 −0.301645779 0.053181595 1.41E-08 865.14

rs17216588 T C – 0.15 0.477475644 0.063805777 7.24E-14 150.78

rs738409 G C PNPLA3 0.07 0.602675277 0.040715726 1.45E-49 191.29

“—” stands for not reported.
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opposing findings. One case–control study performed in 
Guatemala reported that H. pylori infection was not related to 
NAFLD or other metabolic abnormalities (Alvarez et al., 2020). 
Other cross-sectional studies performed in Japan and Korea 
showed that the prevalence of H. pylori was not a risk factor for 
NAFLD (Okushin et al., 2015; Han et al., 2021). One European 
cohort study also described similar conclusions (Wernly et al., 
2022). In addition, Lecube et al. conducted a study to investigate 
the relationship between H. pylori and NAFLD in 93 subjects with 
both gastric and liver biopsies, and the results showed that 
H. pylori infection did not seem to be associated with abnormal 
metabolism or advanced degrees of NAFLD (Lecube et al., 2016). 
Recently, several cross-sectional studies performed in China also 
found that H. pylori infection did not appear to increase the 
prevalence rate of, or to be associated with, or be a risk factor for, 
NAFLD (Cai et al., 2018; Fan et al., 2018; Liu et al., 2021; Wang 
et al., 2022).

The controversy between H. pylori infection and the risk of 
NAFLD could be  attributed to several reasons. Firstly, these 
studies were all observational studies, lacking randomized, 
prospective, and blinded methods. The discrepancy among the 
findings is likely due to the limitations of the observational studies. 
Secondly, the diagnostic approaches used for H. pylori infection 
and NAFLD were different. According to World Gastroenterology 
Organization (WGO) Global Guidelines, urea breath tests (UBTs) 

are the best recommended noninvasive test for H. pylori infection 
(Katelaris et al., 2021). In some studies, H. pylori infection was 
determined by serum or fetal IgG antibodies against H. pylori, 
which were not accurate enough (Kim et al., 2017; Abdel-Razik 
et al., 2018; Abo-Amer et al., 2020; Alvarez et al., 2020). Liver 
biopsy is the gold standard method for NAFLD diagnosis; 
however, most of the studies used ultrasonography or FibroScan 
to diagnose NAFLD because of their noninvasiveness and security. 
Thirdly, the prevalence of H. pylori infection is distinct in various 
geographical regions, which may influence the effect of H. pylori 
infection on NAFLD. According to a meta-analysis study 
conducted by Hooi et al. (2017), the prevalence of H. pylori is 
approximately, 79.1% in Africa, whereas 54.7% in Asia, 47% in 
Europe, and 37.1% in North America (Hooi et  al., 2017). A 
subgroup analysis of one meta-analysis study discovered that 
H. pylori infection was only associated with NAFLD risk in Asia. 
These differences could be attributed to the different ethnic group’s 
lifestyles, dietary patterns, and socioeconomic statuses.

The current study also explored the correlation between 
H. polyri infection and the relevant metabolic characteristics of 
NAFLD. The results showed that there was no significant 
correlation between H. pylori infection and the levels of TG, 
LDL-C, HDL-C, or FBG. Epidemiological studies have been 
performed to explore the association between H. pylori infection 
and lipid profiles, some of which have reported a significant 

FIGURE 3

Mendelian randomization result of the effect of NAFLD on H. pylori infection. nSNP, the number of SNPs used in the analysis. OR, the odds ratio. 
95% CI, 95% confidence interval.
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correlation between H. pylori infection and elevated lipid levels 
(Kim et al., 2011; Shimamoto et al., 2020). However, the results are 
controversial. Several studies reported that no significant 
differences in serum lipid levels were found between the H. pylori 
positive group and the H. pylori negative group, and the lipid 
levels also did not change significantly following H. pylori 
eradication (Elizalde et al., 2002; Akbas et al., 2010; Watanabe 
et al., 2021). This is probably due to differences in the general 
characteristics of the study populations and the lack of control for 
confounding factors related to lipid profiles. Therefore, extracting 
conclusions from observational studies is a difficult task. The MR 
study allows for a more robust and substantiated conclusion with 
the advantages of being free of these issues. It is worth noting that 
a causal effect of H. pylori infection on an increase in BMI was 
found in our study, without a reverse result. A study performed on 
Danish adults reported that the seroprevalence of H. pylori 
infection is increased in people with a high BMI (Rosenstock 
et  al., 2000). Nevertheless, H. pylori may be  the cause of the 
increase in BMI, and we  cannot discount the possibility of 
reverse causation.

The identification of mechanisms underlying NAFLD and the 
uncovering of novel therapeutic targets are of high priority while 
the treatment for H. pylori infection is easy and relatively 

inexpensive. Thus, this concern has received considerable 
attention (Cheng et al., 2017). Our study is the first study to reveal 
the causal relationship between H. pylori infection and NAFLD, 
and a bidirectional MR analysis was carried out to clarify the 
causation. The study could increase the recognition of pathogenic 
factors of NAFLD from the perspective of systems biology. 
However, there are some limitations in our study. Firstly, the 
diagnosis of H. pylori infection was based on serological testing in 
the GWAS data, which may have biased on the detection of 
H. pylori infection. Secondly, the dataset we used only included 
the European population. Although using a single European 
population to investigate the causal relationship can minimize 
population stratification bias, it might not be  generalizable to 
other populations. Thirdly, two IVs of H. pylori infection were 
used in estimating the causal effect, which could guarantee the 
power of the MR study; however, the strict selection of IVs may 
cause a false negative result. Fourthly, the relationships between 
the risk factors for H. pylori infection such as Vitamin B12 
deficiency, iron deficiency anemia, and primary immune 
thrombocytopenia, and NAFLD were not defined due to a lack of 
related GWAS data. Fifthly, the relationships between H. pylori 
infection and the fibrosis indexes were not defined also due to a 
lack of related GWAS data. In addition, the proportion of NAFLD 

FIGURE 4

Mendelian randomization result of the effect of H. pylori infection on clinical traits related to NAFLD. nSNP, the number of SNPs used in the 
analysis and the SNP rs10004195 was used if nSNP = 1. The SNPs rs10004195 and rs368433 were used if nSNP = 2. LDL-C, low density lipoprotein 
cholesterol; HDL-C, high density lipoprotein cholesterol; FBG, fasting blood glucose; BMI, body mass index; OR, the odds ratio. 95% CI, 95% 
confidence interval.
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cases was not large enough which might also reduce the 
statistical power.

Conclusion

Our MR study did not find a causal link between H. pylori 
infection and NAFLD risk, suggesting that eradication or 
prevention of H. pylori infection might not benefit for NAFLD and 
vice versa. However, because of limitations in the serological 
diagnosis of H. pylori, further GWAS based on histological 
diagnoses and more MR studies may be  needed to assess the 
relationship between H. pylori infection and NAFLD.
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