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Land-use conversion affects the composition and assembly of plant-associated 

microbiomes, which in turn affects plant growth, development, and ecosystem 

functioning. However, agroforestry systems, as sustainable land types, have 

received little attention regarding the dynamics of different plant-associated 

microbes. In this study, we  used high-throughput sequencing technology 

to analyze the assembly mechanisms and the driving factors of pine- and 

Panax notoginseng (P.n.)-associated microbiomes during the conversion of 

different pine forests (Pinus kesiya var. langbianensis and Pinus armandii) into 

P.n.-pine agroforestry systems. The results showed that the conversion of 

pure pine forest into P.n.-pine agroforestry systems significantly altered the 

diversity of pine-associated fungi rather than the community structure, and 

the community structure of P.n.-associated fungi rather than the diversity. 

Additionally, plant-associated fungi were more responsive to land-use change 

than bacteria. Main effect analysis revealed that compartment rather than 

genotype was the driving factor of pine- and P.n.-associated microbiomes, 

but P.n. cultivation also significantly affected the assembly of pine-associated 

microbiomes. In addition, there was a transfer of P.n. endophytes to pine trees 

in agroforestry systems and the beneficial microbiomes (Massilia, Marmoricola, 

Herbaspirillum, etc.) were enlarged in pine roots. Therefore, the diversity of 

the assembly mechanisms of P.n.- and pine-associated microbiomes played 

an important role in the P.n.--pine agroforestry systems and were the basis for 

the sustainable development of the P.n.--pine agroforestry systems.
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GRAPHICAL ABSTRACT

Highlights

 –  The conversion of pure pine forests into Panax 
notoginseng-pine agroforestry systems affected plant-
associated microbiomes.

 –  The assembly of Pine- and Panax notoginseng-associated 
microbiomes had different influencing factors.

 –  Compartment rather than genotype was the driving 
factor of Panax notoginseng and pine-associated 
microbiomes, but Panax notoginseng cultivation also 
affected the assembly of pine associated microbiomes.

 –  There was a diffuse spread of Panax notoginseng 
endophytes into the pine roots, and beneficial 
microbiomes (Massilia, Marmoricola, Herbaspirillum, 
etc.) increased in pine roots.

Introduction

Plant-associated microbiomes include endophytes in plant 
tissue and rhizosphere soil microbiomes, mainly include 
bacterial and fungal taxa. These microbiomes play an 
important role in plant development and plant physiological 
state prediction (Montesino, 2003; Hardoim et al., 2015). Some 
endophytes have been proven to promote plant growth 
(Chandra et al., 2018) and accumulate beneficial components 
(Tiwari et  al., 2010; Brader et  al., 2014). Especially for 
medicinal plants, endophytes can regulate the synthesis of key 
secondary metabolites and increase the content of effective 
components, such as participating in the transformation and 
increasing the concentration of ginsenosides in ginseng (Song 

et al., 2017b; Fu, 2019) and promoting the accumulation of 
berberine in Coptis teeta (Liu et al., 2020). Similarly, many 
rhizosphere soil microbes (such as PGPB and PGPF) can 
enhance plant nutrient absorption and utilization (Van Der 
Heijden et al., 2008; Balsanelli et al., 2019) and enhance crop 
quality (Verginer et al., 2010; Nasopoulou et al., 2014). They 
are especially important for the formation of high-quality 
medicinal plants, such as improving the nutritional element 
enrichment of Paris polyphylla (Zhang H. Z. et al., 2019), and 
participating in the synthesis of indigo in Baphicacanthus 
cusia and artemisinin in Artemisia annua (Zeng et al., 2018; 
Zhai et al., 2019). Therefore, plant-associated microbiomes 
have a significant impact on the quality of plants, especially 
medicinal plants.

The assembly of plant-assiocated microbiomes follows the 
theory of microbial ecology and is affected by stochastic and 
deterministic assembly processes (Dini-Andreote et  al., 
2015). Previous studies have shown that in high microbial 
diversity communities, stochastic assembly processes are 
dominant for most cases, while in low microbial diversity 
communities, deterministic assembly processes are dominant 
(Kembel, 2009; Xun et  al., 2019). And the potential and 
stability of ecosystems can be predicted by determining their 
relative contributions (Tilman et al., 1997; Duffy et al., 2017; 
Galand et  al., 2018). In plant–microbe interactions, the 
assembly of plant-associated microbiomes is affected by 
specific driving factors, such as genotype (Bulgarelli et al., 
2013; Xu et  al., 2020), plant tissue (Dong et  al., 2018; 
Alibrandi et al., 2020), soil conditions (Qiao et al., 2017; Long 
and Yao, 2020) and host-associated environments (Campisano 
et  al., 2017; Cai et  al., 2020). Fungi and bacteria are 
differentially affected due to their physiological and 
evolutionary differences. Bacteria, such as the rhizosphere 
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bacteria of maize (Ren et al., 2020), the endophytic bacteria 
of Fagus sylvatica (Coince et al., 2014) and rice (Feng et al., 
2019), and the root-related bacteria of the medicinal plant 
Polygonum cuspidatum (Zhang et  al., 2020), are mainly 
shaped by environmental variables and soil factors, while 
fungi, such as the root-related fungus Helianthus annuus (Leff 
et  al., 2017) and the rhizosphere fungi Picea asperata and 
Abies faxoniana (Li et al., 2021), are more sensitive to soil 
nutrient contents and host inheritance. In addition, plant 
interactions are also crucial to the shaping of plant-assiocated 
microbiomes. For example, mangroves have a potential 
impact on the colonization of root endophytic bacteria of 
Spartina alterniflora (Hong et  al., 2015). However, either 
interspecific or intraspecific impact of plant interactions, 
especially the relationship between Panax notoginseng (P.n.) 
flora and pine flora, on plant-associated microbes (fungi and 
bacteria) is scarcely studied. Therefore, the study of plant–
microbe–plant interactions is of more significance to the 
assembly mechanism of plant-related microbes (fungi and 
bacteria), especially the transmission of plant-
related microbes.

Agroforestry, as one of the land use conversion practices, is 
not only an important factor in the change in microbial 
composition and structure, but also a sustainable strategy to 
alleviate the shortage of cultivated land resources and the 
environmental burden (Anderson and Sinclair, 1993; 
Montagnini and Nair, 2004). Previous studies on the variation 
in soil microbial communities under agroforestry management 
have yielded different results. Several studies have found that 
the soil microbial diversity of agroforestry systems is richer than 
that of forests (Edy et al., 2019; Beule et al., 2020), and, some 
studies have found that soil microbial diversity remains stable, 
but community composition is significantly altered when forests 
are converted to agroforestry systems (Banerjee et  al., 2016; 
Wang et  al., 2017), while some others have concluded that 
native forests can maintain microbial richness and diversity 
better than agroforestry systems (Belay et al., 2020). In addition, 
agroforestry is also one of the determinants of plant endophytes. 
For example, some studies have shown that agroforestry 
increases the diversity of moso bamboo endophytes and 
significantly alters their community composition (Zhang 
H. Z. et al., 2019; Zhang X. et al., 2019). Similarly, studies have 
found that the richness and the colonization rate of arbuscular 
mycorrhizal fungi of crops increase under agroforestry 
management (Sousa et al., 2013; Edy et al., 2019). In fact, the 
changes in endophytic bacteria in crops are closely related to 
soil microbiomes. Studies have examined those endophytic 
fungi of trees and crops that are transmitted to the soil (Ingleby 
et  al., 2007). Therefore, the combination of soil microbial 
changes and plant endophytic changes in agroforestry systems 
is of great significance for further understanding the dynamics 
of plant microbes within the systems.

Panax notoginseng (P.n., Araliaceae) is a precious 
traditional medicinal herb in China (Yang et al., 2019; Wang 

et  al., 2020). However, under traditional agricultural 
management, the serious continuous cropping obstacle of P.n. 
results in a shortage of arable land and a decline in yield and 
quality (Liu et  al., 2011; Wang et  al., 2019). The P.n.-pine 
agroforestry system, as an organic cultivation strategy for 
medicinal plants to restore their native habitat, is a necessary 
approach to ensuring the quality and pharmacological activity 
of P. n. and soil fertility. The success of this organic cultivation 
depends on the interplay between P.n., pine trees, and the 
environment (Yu and Zhang, 2019; Wu et al., 2021). However, 
the relationship between plants and microbiomes in the P.n.-
pine agroforestry systems is still unclear. Therefore, in this 
study, four land types including pure pine forests (Pinus kesiya 
var. langbianensis and Pinus armandii) and agroforestry 
systems (Pinus kesiya var. langbianensis - Panax notoginseng 
and Pinus armandii  - Panax notoginseng) were targeted to 
analyze the changes and influencing factors of microbiomes 
associated with P.k., P.a. and P.n. using 16S amplicons and 
fungal ITS sequencing techniques. Based on the experimental 
design, the following hypotheses were made: (I) P.n. cultivation 
in agroforestry systems can alter pine-related microbiomes; 
(II) different agroforestry systems (Lancang and Xundian) 
would drive different assemblies of P.n.-related microbiomes; 
(III) microbial transmission would exist within the 
agroforestry systems between pine and P.n. This studyaim to 
reveal the characteristics and driving mechanisms of plant 
microbial variation in the P.n.-pine agroforestry systems.

Materials and methods

Study site

The research was mainly carried out in the pure forest of 
Pinus kesiya var. Langbianensis (P.k.) in Lancang Lahu 
Autonomous County, Pu′er City, Kunming, Yunnan Province 
(99.82°E, altitude of 1457.39 m, mean annual temperature of 
19.2°C, mean annual precipitation of 1008.6 mm) and the pure 
forest of Pinus armandii (P.a.) in Dadishui Village, Xundian 
Hui Autonomous County, Kunming, Yunnan Province 
(103.21°E, 25.47°N, altitude of 2247.81 m, mean annual 
temperature of 15.5°C, mean annual precipitation of 
1624.0 mm). Both forests are located in the central and 
western parts of the Yunnan-Guizhou Plateau and are fallow 
forest stands with a regular plant spacing of about 3 m. The 
vegetation types are shown in the following table 
(Supplementary Table S1).

Experimental design and sample 
collection

Forested areas of P.k. and P.a. were selected as mentioned 
in 2.1 respectively, for P.n. understory cultivation. Before the 
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cultivation., weeds, small shrubs, and dead leaves were 
removed from the understory planting area. P.n. were planted 
in a ridge along the contour of each forest, with a height/
bottom/top size of the ridge of 40 cm x 120 cm x 80 cm. The 
ridges were covered with 3 cm pine needles to retain water 
and heat (the specific planting process is shown in Figure 1). 
P.n. seedlings (two genotypes: trifurcated five-leaf and 
bifurcated seven-leaf) had been obtained after greenhouse 

cultivation in November 2018 before they were transferred to 
the forests in November 2019, with a plant spacing of 
10 cm × 10 cm. The P.n.-pine agroforestry systems were 
constructed using a typical low-input “eco-agriculture” 
model, by which the use of pesticides and fertilizers was 
prohibited and only daily irrigation (a small amount) was 
provided to avoid drought. In addition, shelters were built 
during the rain season to prevent flooding.

A

B a b

c d

FIGURE 1

Specific planting process of the Panax notoginseng - pine agroforestry systems (A) and experiment design (B). Experiment one (①) compared the 
pure forests of P.k. (a) and P.a. (c) with the corresponding P.n.-pine agroforestry systems (b,d) for the difference of pine-associated microbes. 
Experiment two (②) compared two P.n. -pine agroforestry systems (b,d) for the differentence of P.n. -associated microbes.
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The experiments were divided into two parts, Experiment 
One compared pure pine forests with the corresponding P.n.-pine 
agroforestry systems to explore the effect of land conversion on 
pine-associated microbiomes. Experiment Two compared P.n.-
pine agroforestry systems with different pine species to explore the 
effect of different pine species on the assembly of P.n.-associated 
microbiomes (Figure 2). Therefore, four types of sampling plots 
(10 m × 10 m, plot spacing is more than 5 m) were set up in 
Lancang (L) and Xundian (X), i.e., P.n.-P.k. plots, pure P.k. forest 
plots, P.n.-P.a. plots and pure P.a. forest plots, and were replicated 
three times, totaling 12 plots (Figure 2; the samples within the 
pure forest plots were noted as PP, and the samples of P.n.-pine 
plots were noted as GP or PG). In Experiment One, pine root 
samples (named L_GP_Ro, L_PP_Ro, X_GP_Ro, and X_PP_Ro, 
respectively) and pine rhizosphere soil (named L_GP_Rh, L_PP_
Rh, X_GP_Rh, X_ PP_Rh, respectively) in P.n.-P.k. plots, pure P.k. 
forest plots, P.n.-P.a. plots and pure P.a. forest plots; soil at the 
locations where the pine trees and the ridges meet (named L_GP_
Be, X_GP_Be, respectively) in the P.n.-pine plots (P.k., P.a.) and 
bulk soil of pine trees at the corresponding locations (named 

L_PP_Bu, X_PP_Bu, respectively) in the pure forest plots (P.k., 
P.a.) were collected. In Experiment Two, roots, stems, and leaves 
of bifurcated seven-leaf and trifurcated five-leaf P.n. (named L_
SL_Ro, L_SL_St, L_SL_Le, L_FL_Ro, L_FL_St, L_FL_Le, X_SL_
Ro, X_SL_St, X_SL_Le, X_FL_Ro, X_FL_St, X_FL_Le, 
respectively), rhizosphere soil of bifurcated seven-leaf and 
trifurcated five-leaved P.n. (named L_FL_Rh, L_SL_R, X_FL_Rh, 
X_SL_Rh, respectively) in P.n.-pine (P.k., P.a.) plots, and bulk soil 
of P.n. (named L_PG_Bu, X_PG_Bu, respectively) in P.n.-pine 
(P.k., P.a.) plots and soil at the locations where the pine trees and 
ridges meet (L_PG_Be/X_GP_Be) in P.n.-pine (P.k., P.a.) plots 
were collected.

P.n. is planted in the forest for 1 year and then stalked and 
regrown for another year, so sampling was conducted before the 
harvest of P.n. on November 20, 2020. The collection of plant 
samples in each sampling plot was divided into two parts: the 
collection of pine roots and P.n. plants. Pine root sampling: Five 
pine trees more than 50 cm away from the four sides of a sampling 
plot were randomly selected, and 15–20 young healthy roots (root 
diameter < 2 mm) of each pine tree were collected and mixed as a 

A E

B

C

D

FIGURE 2

Four types of sampling plots and sampling plot design. [sample plots of P.n.-P.k. agroforestry system (A), P.n.-P.a. agroforestry system (C), and two 
types of pine pure forest (B,D) and sample plots design (E)].
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plant sample. P.n. sampling: Ten P.n. Plants of two genotypes with 
similar growth performance were collected from the ridges 
adjacent to the selected pine trees in a P.n.-pine sampling plot, and 
the roots, stems, and leaves were separated. Soil sampling adopted 
the five-point method, which removed plant litter from the soil 
surface, collecting four soil cores (sampling depth 0–20 cm) at 
approximately 50 cm from the four corners of the sampling plot, 
collected one soil core at the center of the sampling plot, and 
thoroughly mixed them into one soil sample. The rhizosphere soil 
was the soil immediately attached to the plant roots (0–2 mm from 
the root surface). The sample size of pure forest plots in this 
experiment was 18 (3 samples of the individual plot × 2 (two pine 
species) × 3 replicates), and the sample size of P.n.-pine plots was 
72 (12 samples of the individual plot × 2 (two agroforestry 
systems) × 3 replicates), which added up a total of 90. Plant and 
soil samples were stored in liquid nitrogen and dry ice, 
respectively, and then immediately transported back to the 
laboratory and stored at −80°C for further analysis.

Plant and soil physicochemical 
properties

The fresh soil samples were passed through a 0.298 mm sieve 
to determine the physical and chemical properties. The soil water 
content was measured by drying the soil at 85°C for 48 h to 
constant weight, and the soil pH and EC were determined by a 5:1 
water/soil suspension with a pH meter and a conductivity meter, 
respectively. Total nitrogen (TN), total phosphorus (TP), 
NH4

+ − N, and NO3
−−N were measured by a SmartChem200 

analyzer using standard methods. TK was analyzed by atomic 
emission spectrometry on an AA-6300C flame photometer.

After the plants were collected, they were rinsed with pure 
water, dried with filter papers, and measured for fresh weight. 
They were then dried at 70° to constant weight, and measured for 
dry weight and water content. Afterwards, they were milled and 
0.5 g of the milled plant samples was digested by Kjeldahl 
decoction (10 ml 95.5%H2SO4 and 3%H2O2), and the digestion 
solution was used to determine the TN and TP of plants (Lv et al., 
2004; Wang et al., 2022) by a SmartChem200 analyzer.

DNA extraction, PCR amplification, and 
sequencing

The plant samples for endophyte collection were soaked and 
rinsed with sterile water, 70% ethanol, and 2.5% NaClO for 1 min, 
90 s, and 30 s, respectively. Then sonication procedures were 
performed twice with phosphate-buffered saline and observed 
under a scanning electron microscope to ensure that all microbes 
were removed from the plant surface. DNA extraction from soil 
samples (0.5 g each) used No, 12888.100 Qiagen DNeasy 
PowerSoil Kit (MP Biomedicals, Solon, CA, United States) and 
from 0.5 g of the plant tissue samples (the pine roots and the roots, 

stems, and leaves of P.n.) used the Qiangen DNeasy Plant Kit 
following the manufacturer’s instructions. The PCR amplification 
procedure and sequencing process are detailed in the 
Supplementary material. The bacterial 16S rRNA and fungal ITS 
gene sequencing was performed on the Illumina MiSeq PE300 
platform. We  filtered the OTUs assigned to chloroplasts and 
mitochondria from the OTU table before further analysis. 
Sequences have been deposited in the National Center for 
Biotechnology Information Sequence Read Archive under 
Accession No. PRJNA821648 (16S RNA data) and No. 
PRJNA821834 (ITS data).

Statistical analysis

Differences in the physicochemical properties of the plants 
(P.n., pine roots) and the soil, microbial alpha diversity, and 
the relative abundance of major phyla/genera in this study 
were analyzed using various ANOVA methods. For 
comparisons between two groups, either the one-way Student’s 
t test (normally distributed variables) or the Mann–Whitney 
nonparametric test (other variables) was used. For 
comparisons between multiple groups, the one- to multi-way 
ANOVA with a p value less than 0.05 was considered to be a 
significant difference. The microbial diversity (Shannon 
index), richness (Chao1), and evenness (Shannon even index) 
were selected to characterize the microbial alpha diversity. 
Alpha diversity was assessed in relation to soil and plant 
physicochemical properties using Pearson correlation analysis. 
These analyses were all performed using SPSS 25.0 (IBM, 
Armonk, NY, United States).

Venn diagrams and stacked bar charts were based on 
microbial OTU Tables (97% similarity level)were implemented 
using R (version 3.3.1) to visualize microbial community 
composition and differences. Microbial beta diversity was 
calculated in QIIME (1.9.1) based on weighted UniFrac 
distance. PCoA plots made with the vegan and ggplot2 packages 
in R were used to visualize differences in community 
composition. Permutational multivariate analysis of variance 
(PERMANOVA, 999 permutations calculated) was used to 
examine the effects of planting P.n. (pine species), compartment, 
genotype, and their interactions effects on the community 
composition of pine (P.n.)-associated microbiomes. Pairings 
between planted P.n. (pine species) and genotypes were also 
calculated to compare effects between different compartments 
(bulk, between, rhizosphere, root, stem, leaf for P.n. and bulk, 
rhizosphere, root for pine). Detrended correspondence analysis 
(DCA) was performed with microbial sample OTU tables (from 
the first axis of the length of the gradient) to determine RDA/
CCA (redundancy analysis/Canonical correspondence analysis) 
and was used to further assess the effect of plant soil 
physicochemical properties on bacterial and fungal 
communities. These were analyzed and plotted using the Vegan 
package in R.
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Results

Variations in plant-assoicated microbial 
richness and diversity

Compared to pine forests, the α-diversity of pine-associated 
fungi in agroforestry systems increased, while there was no 
significant change in bacteria. Main effect analysis showed that 
compartment and P.n. cultivation rather than pine genotype 
significantly affected the α-diversity (Chao1 and Shannon index 
and Shannoneven index) of pine-associated microbiomes 
(Figure 3). In general, the α-diversity of pine-associated microbes 
showed a decreasing gradient from the soil (bulk and rhizosphere) 
to the roots. In addition, significant genotype and compartment 
(G × C) interactions were found in α-diversity of pine-associated 
fungi but not bacteria. The interaction between planting P.n. and 
compartment (Pn × C) increased the fungal α-diversity in the 
rhizosphere of pine, while it had no significant effect on the 
intraroot and bulk soil (Figure  3; Supplementary Table S2). 
Significant (G × Pn) interactionsexsited in bacteria (rhizosphere 
and bulk soil) but not in fungi. The indicators that were most 
closely related to the microbial diversity of the rhizosphere soil of 

pine were total nitrogen, pH and soil water content. However, the 
correlations between root endophytes (P.k., P.a.) and 
environmental indicators were not significant, except for the 
correlation between root endophytes and root nitrogen content 
(Supplementary Table S3).

In agroforestry systems, different pine tree species had no 
significant effect on the α-diversity of P.n.associated microbiomes 
(bacteria and fungi). Main effect analysis showed that 
compartment, rather than genotype or pine species, significantly 
affected the α-diversity of P.n.- associated microbiomes (Figure 4). 
In general, the α-diversity of P.n.-associated microbes exhibited a 
decreasing gradient from the soil (bulk and rhizosphere) to 
intraplant. As for endophytes, endophytic bacteria were the most 
abundant in roots, and endophytic fungi were the most abundant 
in leaves. The interaction effect (Pn × C) between planting P.n. and 
compartment was reflected by the species richness (Chao1) in the 
rhizosphere soil and leaves of P.n. but not in its roots and stems 
(Supplementary Table S4). Among the morphological and 
physiological indicators of plants, fresh weight was most closely 
related to microbiomes (Supplementary Table S5) and soil nitrate 
nitrogen was more closely related to the α-diversity of P.n.-
associated microbes. In addition, bacterial α-diversity was also 

FIGURE 3

Boxplots of indices of bacterial and fungal alpha diversity of microbes in samples from different compartments (between (bulk) and rhizosphere 
soils, and root of pine trees), genotype and planting P.n. or not. Different letters showed significant difference (p < 0.05). The Significance of effects 
of genotype (G), compartment (C) and planting P.n. or not (Pn) and their interactions on microbial diversity was evaluated by multi-way ANOVA. *, 
p < 0.0 5, and ***, p < 0.001, ns, no significance.
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significantly related to the total phosphorus of the soil, and fungal 
α-diversity was closely related to the TN and EC of the soil.

Changes in the composition of 
plant-related microbial communities

Land conversion did not change the community composition 
of pine and P.n.-associated microbiomes (Figures 5, 6).

The dominant phyla of pine-associated bacteria (bulk soil, 
rhizosphere, root of P.k. and P.a.) were Proteobacteria, 
Actinobacteria, Acidobacteria, and Chloroflexi (Figure 5). The 
main groups of bacteria in roots were similar to those in the soil, 
but the proportion of Proteobacteria and Actinobacteria in pine 
roots was larger (more than 90%). The fungal community of pine 
(bulk soil, rhizosphere, root) was mainly composed of 
Basidiomycota, Ascomycota, and Mortierella. Land conversion 
increased the proportion of Ascomycota and Mortierella, and 
decreased that of Basidiomycota.

At the genus level, the endophytic bacteria of pine roots were 
mainly composed of Pseudomonas and bacterial genera in the 
family Alcaligenes, which accounted for more than 40% of 
bacteria. The rhizosphere bacteria were mainly composed of the 
genera in the families of Xanthobacteraceae, Bradyrhizobium, 
Burkholderia-Caballeronia-Paraburkholderia, Acidobacter and 

genera in the phylum of Chloroflexi, which accounted for 45% 
above. The endophytic fungi of pine were dominated by Russula, 
Sabacina, Thozetella, and Lactarius. Soil fungi were dominated by 
Saitozuma, Sebacina, and Mortierella, accounting for 30%.

In all sequenced samples, the majority of the pine root 
endophytic microbes were also existed in the soil (rhizosphere and 
bulk soil), including bacteria (93.82%) and fungi (88.73%), and 
the number of OTUs of the roots shared by the rhizosphere soil 
was higher (93.07% of bacteria and 85.5% of fungi) compared with 
the bulk soil. This result indicated that most of the root endophytic 
microbes were recovered from the soil environment. Land 
conversion. Increased the proportion of OTUs specific to pine 
roots, and the proportion of OTUs specific to fungi was greater 
than that of bacteria (bacteria increased by 2.2%, fungi increased 
by 6.84%).

The main composition of P.n.-associated soil bacteria was 
largely similar to that of pine-associated soil bacteria. 
Proteobacteria (more than 90%) dominated the endophytic 
bacteria (roots, stems, leaves) of P.n. The fungal communities of 
P.n. (soil and root) were mainly composed of Basidiomycota and 
Ascomycota (accounting for more than 80%). Basidiomycota 
dominated in the soil, and Ascomycota dominated in the 
endosphere of P.n.

At the genus level, soil bacteria were dominated by the 
genera in the family Xanthobacteraceae, genera in the phyla 

FIGURE 4

Boxplots of indices of bacterial and fungal alpha diversity of microbes in samples from different compartments (bulk, between, rhizosphere soils, 
and roots, stems, leaves of P.n.), genotype and pine trees species. Different letters showed significant difference (p < 0.05). The Significance of 
effects of genotype (G), compartment (C) and pine trees species (Ps) and their interactions on microbial diversity was evaluated by multiway 
ANOVA. *, p < 0.0 5, **, p < 0.01, ***, p < 0.001, ns, no significance.
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Chloroflexi, Bradyrhizobium and Acidothermus, and 
endophytic bacteria of P.n. are dominated by Pseudomonas and 
the genera in the family Alcaligenaceae. Soil fungi were 
dominated by Saitozyma, Cladophialophora, Mortierella, and 
unclassified fungi. Unclassified fungi accounted for the largest 
proportion of endophytic fungi of P.n. A Venn diagram showed 
that the root endophytic microbial OTUs of P.n. overlapped 
with those of the rhizosphere the most (fungi 28.48%, bacteria 
47.99%), while leaf endophytic fungi had more unique OTUs 
(45.63%).

The assembly of pine-related microbes 
and P.n.-related microbes is driven by 
different factors

Pine-associated microbial community 
assembly

There were no significant changes in the community structure 
of pine microbiomes (bacteria, fungi) in agroforestry systems 
compared to pure forests (Figure 7). PERMANOVA showed that 
compartment significantly affected the community structure of 

A B

C D

E F

FIGURE 5

The relative abundance of the most abundant bacterial (A,C) and fungal (B,D) communities of pine at the phylum and genus level (means, n = 6), 
Venn diagram showing the number of shared and unique bacterial (E) and fungal (F) communities at the OTU level.
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pine microbiomes, and the pine genotype significantly affected the 
community structure of pine fungi, and planting P.n. had limited 
effects (Supplementary Table S6).

PCoA showed that soil microbes and pine root endophytes 
were clustered into two groups along principal coordinate 1, 
indicating that the recruitment of pine endophytes was distinctive. 

However, both rhizosphere fungi and bulk soil bacteria had a 
noted distinction between land use types (P.n.-pine agroforestry 
systems vs. pure pine forests), indicating that planting P.n. was one 
of the sources of the β-diversity of the rhizosphere fungal and bulk 
soil bacterial communities. In addition, the fungal composition in 
pine roots was only affected by genotype.

A B

C D

E F

FIGURE 6

The relative abundance of the most abundant bacterial (A,C) and fungal (B,D) communities of P.n. at the phylum and genus level (means, n = 3), 
Venn diagram showing the number of shared and unique bacterial (E) and fungal (F) communities at the OTU level.
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When determining the effects of biotic and abiotic factors 
on community composition, the longest lengths for the DCA 
(detrended correspondence analysis) on the 16S rDNA and 
ITS datasets were 1.47 and 3.23, respectively. Therefore, RDA 
was chosen for the analysis of bacterial and fungal 
communities. Overall, bacterial RDA1 and RDA2 (total 
explanatory variance: 96.19%) explained more variance in 
community composition than fungi (total explanatory 
variance: 58.49%). RDA indicated that ammonium nitrogen, 
soil water content and total potassium were more correlated 
with bacterial community composition (Figure  8) and soil 

water content, nitrate nitrogen and root nitrogen were more 
correlated with to fungal community composition.

Assembly of P.n.-related microbial 
communities

The community structure of P.n. fungi was significantly 
altered in the two agroforestry systems with different pine species 
(Figure 9). PERMANOVA showed that compartment and pine 
species, rather than P.n. genotype, significantly affected the 
community structure of P.n.-associated microbiomes 
(Supplementary Table S7).

FIGURE 7

Principal co-ordinates analysis (PCoA) plots based on the weighted UniFrac distance (WUF) of pine-asscioated microbes. Pk, samples of Pinus 
kesiya var. Langbianensis, Pa, samples of Pinus armandii Franch., GP, P.n.-pine agroforestry systems, PP, pure pine forests.
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PCoA showed that soil microbes and plant endophytes 
were grouped separately along the principal coordinate 1, 
indicating that the recruitment of P.n. endophytes was specific. 
In addition, the response of P.n.-associated fungi to pine 
species were different among compartments, and those in the 
rhizosphere and the root were the most significant 
(Supplementary Figures S1, S2).

The longest gradients for the DCA of the 16S rDNA and 
ITS datasets were 1.32 and 2.04, respectively. Therefore, RDA 

was chosen for the analysis of the microbial communities. 
Overall, RDA1 and RDA2 of bacteria (total explanatory 
variance: 96.99%) explained more variance in community 
composition than fungi (total explanatory variance: 51.73%). 
RDA showed that the indicators with greater correlations with 
bacterial community composition were total soil potassium 
and plant water content (Figure  8), and, plant TN and  
soil water content were more closely related to fungal  
composition.

A B

C D

FIGURE 8

The RDA analysis plots showing the relationship between environmental factors and pine associated bacterial (A) and fungal (B) communties at 
the OTU level and the relationship between environmental factors and P.n.-associated bacterial (C) and fungal communties (D) at the OTU level. 
Soil traits: SWC, soil water content, STN, soil total nitrogen, STP, soil total phosphorous, STK, soil total potassium, NH4

+-N, soil ammonium 
nitrogen, NO3

−-N, soil nitrate nitrogen, EC, soil conductivity. Plant traits: RN, Root nitrogen, Dry weight, plant dry weight, Fresh weight, plant fresh 
weight, PWC, plant water content, PTP, plant total phosphorous, PTN, plant total nitrogen.
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Partial overlap and differential microbial 
analysis of pine roots and P.n roots in 
different P.n.-pine agroforestry systems

There were variations in microbial taxa within pine roots in 
agroforestry systems compared to pure forests, and the taxa 
originated from endophytic bacteria of P.n. (Figure  10; 
Supplementary Figure S3). Fungal taxa varied more than bacteria 

in the rhizosphere of pine and bacterial taxa varied more than 
fungi in pine roots (Supplementary Figures S4–S7).

In the roots of P.k., the bacteria increased by 23 genera and 
decreased by 48 genera; the fungi increased by 48 genera and 
decreased by 31 genera. In the root of P.a., the bacteria increased 
by 30 genera and decreased by 66 genera, the fungi increased by 
82 new genera and decreased by 27 genera. Interestingly, 73.9% of 
the new bacterial genera and 68.75% of the new fungal genera in 

FIGURE 9

PCoA plots based on the WUF of P.n.-associated microbes. Pk_Pn, samples of P.n. under P.n.-P.k. agroforestry system, Pa_Pn, samples of P.n. 
under P.n.-P.a. agroforestry system, FL, P.n. of three palmately compound leaves and five leaflets, SL, P.n. of two palmately compound leaves and 
seven leaflets.
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the roots of P.k., and 93.3% of the new bacteria and 93.9% of the 
new fungi in the root of P.a. overlapped with the endophytes of 
Panax notoginseng (roots, stems and leaves).

Compared with the pure forests, the microbial changes 
among each compartment of the pine trees in the P.n.-pine 
agroforestry systems, are shown in the figure 
(Supplementary Figures S5–S8). The proportions of 
Acidobacteriales and Acidimicrobiia in the P.k. roots were 
significantly decreased, Biastococcus was significantly increased. 
However, in the rhizosphere bacteria, the proportion of 
Acidobacteriaceae was significantly decreased, and norank_c_
AD3 and Acidothermus were significantly increased. For the P.k. 
rhizosphere fungi, the proportion of Amphinema and 
Cenococcum increased significantly, and Tricholoma, 

Clavulinaceae, and Helvellosebacina genera decreased 
significantly. Correspondingly, after planting P.n., the proportions 
of Rhodanobacter and Methylovirgula were significantly 
increased for endosphere bacteria in the P.a. roots. In P.a. 
rhizosphere bacteria, the genera norank_o_TK10 and ADurb_
Bin063_1 were significantly increased, and Mycobacterium, 
Granulicella, and Flavobacterium were significantly decreased. In 
P.a. root fungi, Venturia was significantly reduced. However, the 
proportions of the Mortierella, Thelephoraceae and Talaromyces 
genera increased significantly, while those of the Inocybe, 
Sagenomella, and Tomentella genera decreased significantly in 
the P.a. rhizosphere fungi.

In agroforestry systems with different pine species, the P.n.-
associated fungi responded to a greater degree than bacteria, and 

FIGURE 10

Venn diagram showing the overlap and possible transmission of colonies in the P.n.-pine agroforestry system. (Pk/Pa) GP_Ro, the pine root 
microbes of P.n.-(P.k./P.a) agroforestry system, (Pk/Pa) GP_Rh, the rhizosphere microbes of P.n.-(P.k./P.a) agroforestry system, GP_Be, the middle 
of the planting P.n. and adjoining pine tree, PG_Rh, the P.n. rhizosphere microbes, PG_Ro, the endosphyte of P.n. root. Pk(Pa)_GP_Ro ov P.n., 
Overlap of the endophytic microbes of P.k. (P.a.) roots with the endophyte of P.n.
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rhizosphere microbes responded to a greater degree than 
endophytes (roots, stems, leaves of P.n.), while stem endophytes 
were the most stable (Supplementary Figures S8, S9).

Under P.n.-pine agroforestry systems of different pine species, 
Acidothermus, Conexibacter, Rhodanobacter, etc., changed 
significantlyamong the P.n. rhizosphere bacteria, 
Paraburkholderia, Rhodanobacter MND1, etc., were significantly 
changed among the P.n. root bacteria, Alorhizobium, 
Pararhizobium and Tardiphaga were significantly changed among 
the P.n. stems bacteria, and Soilbacter and Patulibacter were 
significantlychanged among the P.n. leaf bacteria.

The rhizosphere fungi of P.n. changed significantly in the 
genera Saitomyza and Cladophialophora. In the P.n. roots, the 
genera Trichophaea, Paraglomerales, Sebacina, Phialophora, etc., 
changed significantly. The unclassified_fungi of 
Teratosphaeriaceae, Aureobasidium, Papiliotrema, etc., changed 
significantly in the P.n. stems. In the P.n. leaves, Aureobasidium, 
Lapidomyces and Genolevuria changed significantly.

Discussion

Plant-associated microbiomes influence the health and yield 
of crops and the functioning of agroforestry ecosystems. The 
community diversity and composition of plant-associated 
microbiomes are important indicators of the stability of 
agroforestry ecosystems. Additionally, tissue type (Dong et al., 
2018; Alibrandi et al., 2020), plant introduction (Zhang X. et al., 
2019; Beule et al., 2020), plant genotype (Bonito et al., 2014; David 
et al., 2016), and soil conditions (Qiao et al., 2017; Long and Yao, 
2020) are important factors for the assembly of plant-associated 
microbiomes. In this study, a systematic investigation of the 
variation and assembly of plant-associated microbiomes under the 
P.n.-pine agroforestry systems has revealed differences in the 
microbial driving factors associated with P.n. and pine.

Compartment, cultivation of P.n., and 
pine genotype drive the diversity and 
community structure of pine-related 
microbiomes

Compared to pure forests, the α-diversity of pine-
associated fungi in the agroforestry systems showed an 
increasing trend, while bacteria did not change significantly. 
In addition, there were no significant changes in community 
structure (β-diversity) and community composition (bacteria 
and fungi). This is consistent with the results of Manihot 
glaziovii-Gliricidia sepium agroforestry system (Sousa et al., 
2013). Main effects analysis showed that compartment, P.n. 
cultivation and pine genotype significantly affected the 
diversity of pine-related microbiomes (α-diversity and 
β-diversity). The effect of compartment on plant microbial 
diversity has been demonstrated by many studies (Dong et al., 

2018; Alibrandi et  al., 2020), and we  have found that 
compartment is the most important factor in the microbial 
assembly of pine trees in agroforestry systems. Microbial 
diversity of different compartments (root, rhizosphere, bulk) 
of pine trees showed that the soil (bulk, rhizosphere) microbes 
were greater than endophytes (root), which is similar to the 
results obtained in previous studies on poplar systems (Gottel 
et  al., 2011). This suggested a hierarchical filtering effect 
(Chen et al., 2016) on the assembly of pine root-associated 
microbiomes. The root epidermis constituted a natural barrier 
that creates a filtering effect on the microbiomes that spread 
to the plant (Bulgarelli et al., 2013). Additionally, the critical 
influence of compartment might arise from the complex 
interactions of microbiomes and the ecological differentiation 
due to the different proportions of substrate and genotype 
drivers further leading to the formation of different structures 
of microbiomes in different compartments of pine (Bulgarelli 
et  al., 2013). Planting P.n. increased the diversity of fungi 
associated with pine trees but had no significant effect on 
bacteria (associated with pine).

As the second important factor, P.n. cultivation significantly 
affected the α-diversity of pine fungi, but not the community 
structure (bacteria, fungi). Land use conservation, such as forest 
conservation in the cacao agroforestry system, can significantly 
affect fungal diversity but not bacterial diversity (Edy et al., 2019). 
Previous studies have shown that the effect of land conservation 
on fungi is mainly due to variations in soil organic matter content 
and plant root vigor (Beule et al., 2020). The introduction of P.n. 
and factors such as tillage and covering with plant litter during 
the cultivation may have changed the soil chemical and physical 
properties, thereby affecting the fungal diversity. In addition, 
there was very little effect of P.n. cultivation on the community 
structure of pine-associated microbiomes, which is different from 
the result that the invasive plant Spartina alterniflora (S.a.) 
significantly changed the root-related microbiomes of Kandelia 
obovata (Hong et  al., 2015). This may be  because S.a. as an 
invasive plant, was in competition with K.o. for nitrogen sources. 
Although P.n. replaced the original herbaceous plants in the pine 
forests, the nitrogen demand of the whole forest system did not 
increase, and at the same time, the coveringwith plant litter 
during the cultivation of P.n. also provided a certain nitrogen 
for P.n.

Pine genotype did not have a significant effect on the 
α-diversity of pine-associated microbiomes (bacteria and fungi), 
but significantly changed the community structure of fungi 
(associated with pine). The finding differed from some previous 
studies which have found a significant effect of host genotype on 
root-associated bacteria (Bonito et al., 2014), probably because 
both P.k. and P.a. belong to the family Pinus spp. and their 
difference at the taxonomic level is slight. In addition, the 
differences in fungal community structures may because pine 
trees, as typical trophic species with ectomycorrhizal symbiosis, 
are often symbiotic with different fungi and are largely influenced 
by genotype (Peršoh, 2013).
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Compartment and pine species rather 
than P.n. genotype drive the changes in 
P.n.-associated microbiomes

In the agroforestry systems, different pine species did not 
significantly affect the α-diversity of P.n.-associated microbiomes 
(bacteria and fungi) but significantly altered the fungal community 
structure, which is partially consistent with the results obtained in 
poplar-based alley cropping systems (Beule and Karlovsky, 2021). 
Main effects analysis showed that compartment and pine species 
rather than P.n. genotype significantly affected the diversity of P.n. 
related microbiomes (α-diversity and β-diversity). Compartments 
significantly affected the α-diversity of P.n.-associated 
microbiomes, which is consistent with the result for pine trees in 
this study, suggesting that compartment is an important 
influencing factors of plant-associated microbial diversity in both 
herbaceous and woody species. The α-diversity in different 
compartments of P.n. showed that soil microbiomes were greater 
than endophytes, and endophytes showed P.n. root bacteria were 
more abundant and leaf fungi were more abundant. Moreover, the 
hierarchical filtering effect of plants was significant in P.n.-
associated bacteria but not in fungi, and it is possible that 
endophytic fungi are more relevant to bioactive metabolites in 
medicinal plants (Jalgaonwala et  al., 2011; Jia et  al., 2016). In 
addition, compartment significantly affected the community 
structure of P.n.-associated microbiomes, which is consistent with 
previous results obtained in medicinal plants such as Panax 
ginseng, Macleaya cordata, and Pseudowintera colorata 
(Chowdhury et al., 2017; Purushotham et al., 2020; Lei et al., 2021) 
and may stem from the fact that the synthesis and transformation 
of secondary metabolites in different organs of medicinal plants 
are closely related to endophytes (Zhao et  al., 2016; Song 
et al., 2017a).

Pine species, as a factor second to compartment had no 
significant effect on the diversity of microbiomes (bacteria and 
fungi) of P.n., but changed the community structure of P.n. fungi. 
The differences in community richness (Chaos index) of P.n.-
associated microbiomes in different pine species systems indicated 
that pine species changed rare populations rather than abundant 
microbial species (Shannon, 1948; Chao and Yang, 1993). Previous 
studies showed that tree rows in agroforestry systems significantly 
affected fungi rather than bacteria (Beule and Karlovsky, 2021), 
which is consistent with this study. This may be because soil fungi 
are more sensitive to changes in plant litter than bacteria (Yang 
et al., 2017), and bacteria are more resistant to disturbance than 
fungi in terms of structure, diversity, and biomass (Uroz et al., 
2016). Additionally, endophytic bacteria are more easily 
influenced by the host plants than the soil source, and therefore 
plant-associated bacteria are more stable (Bonito et al., 2014).

P.n. genotype did not significantly affect the diversity and 
community structure of P.n.-associated microbiomes, which is 
consistent with the results obtained from previous studies on the 
assembly of quinoa-associated microbiomes (Cai et al., 2020). 
Some studies showed that the effect of host genotype on microbial 

community structure was more pronounced when plants have 
distant phylogenetic affiliations (Brassicaceae and Poaceae, for 
example) (Glynou et al., 2018), whereas the two P.n. genotypes in 
this study differ slightly, so the effect of genotype was limited.

Pine and P.n.-associated microbial 
assembly driven by different factors

Microbial assembly associated with P.n. and pine were 
influenced by different factors. Correlation analysis and RDA 
analysis showed that the main influencing factor for both pine and 
P.n. bacterial assembly was total potassium in the soil, while those 
for fungal community assembly of pine and P.n. were plant N and 
soil water content. Water content affects the community structure 
of fungi and has been verified in many studies (Kaisermann et al., 
2015; Supramaniam et al., 2016), and some microbiomes involved 
in the potassium cycle related to potassium may play an important 
role in plant potassium uptake (Meena et al., 2014). Additionally, 
plant microbial community composition was significantly 
corrlated not only with soil N content (Harrison et  al., 2007; 
Lagomarsino et al., 2007; Farrer and Suding, 2016), but also with 
plant N, because fungi can assist plants in accessing soil N 
(Adesemoye et al., 2008; Hardoim et al., 2015). However, bacterial 
community assembly of pine was also affected by ammonium 
nitrogen and soil water content, while P.n. bacterial assembly was 
influenced by nitrate nitrogen and plant water content. Previous 
studies showed that variations in soil water content were more 
likely to affect the bacterial community associated with oaks than 
with grasses (Fierer et al., 2003), which is consistent with this 
study. This is probably because bacteria associated with woody 
plants are less exposed to drought stress (Fierer et al., 2003), while 
P.n. as an understory herb itself is less susceptible to water loss 
(Chen and Cao, 2014), and the associated bacteria are more 
sensitive to the water content. The nitrogen preferences of pine- 
and P.n.-associated bacteria may stem from the different choices 
of woody and herbaceous plants in decomposing and utilizing 
nitrogen sources. Pine, as a coniferous species, has a large 
accumulation of lignin and secondary metabolites in the 
understory layer, which limits nitrogen nitrification (Peng et al., 
2006), whereas herbaceous plants prefer to absorb nitrate nitrogen, 
a directly available nitrogen source (Bedell et al., 1999).

Composition of microbiomes associated 
with pine trees and P.n. under 
agroforestry systems

Land conversion did not change the community composition 
of pine- and P.n.-associated microbiomes. The pine-associated 
bacteria were mainly composed of Proteobacteria, Actinobacteria, 
Acidobacteria, and Chloroflexi, while the pine-associated fungi 
were mainly composed of Basidiomycota and Ascomycota, which 
was consistent with the results obtained by previous studies on 
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pine-dominated forest soil microbiomes (Jiang et  al., 2021; Li 
et  al., 2021). The different compartments of the pine trees 
presented a greater proportion of the Proteobacteria in the roots 
and Actinobacteria in the soil. Probably because Proteobacteria, 
as a fast-growing eutrophic group in bacteria, can survive 
sufficient instability and rapidly propagate in substrates, its relative 
dominance is particularly pronounced in the root, an important 
organ of plant nutrient uptake (Lundberg et al., 2012; Edwards 
et al., 2015; Zhang et al., 2016). In contrast, actinomycetes were 
able to assist in the decomposition of the more massive plant litter 
through hyphae, and soil is more conducive to their reproduction 
than the internal plant environment (Dang et  al., 2017). 
Additionally, the Ascomycota abundance of the pine fungi 
increased, while the Basidiomycota abundance decreased. This 
may be because of an increase in the herbaceous component of the 
plant litter and a relative decrease in the low-quality litter 
components with high lignification during land conversion 
(Purahong et al., 2016).

In addition, bacteria associated with P.n. included 
Proteobacteria, Actinobacteria, and Acidobacteria, while fungi 
mainly included Basidiomycota and Ascomycota. Ascomycota 
was dominant in the endosphere of P.n., and the results were 
consistent with previous studies in which the most abundant 
genera of endophytic fungi of 29 medicinal herbs were all 
Ascomycota. This may be because the synthesis of antioxidant 
and antimicrobial active metabolites in medicinal herbs is 
associated with some species of Ascomycota (Huang 
et al., 2008).

Possible transmission of endophytes 
between pine and P.n. in P.n.-pine 
agroforestry systems

There were new taxa of endophyte species added to pine trees 
in the P.k./P.a. -P.n. agroforestry systems. The increased species of 
endophytes of P.k. and P.a. share common populations with 
endophytes of P.n. (bacteria: 73.9, 93.3%, fungi: 68.75, 93.9%). The 
results showed that the endophytes (roots, stems, and leaves) of 
P.n. spread to the pine roots, which is consistent with the 
Calliandra calothyrsus-Phaseolus vulgaris agroforestry system and 
Spartina alterniflora-Kandelia obovata agroforestry system 
(Ingleby et al., 2007; Hong et al., 2015). This is because interplant 
interactions are critical for shaping the plant flora (Hong et al., 
2015). Additionally, the existence of complex plant-microbial-
plant networks within agroforestry systems formed by 
interplanting trees and crops can significantly reshape the 
composition of endophytes (Mei et al., 2022). We speculated that 
most of the transferred taxa are opportunistic endophytes, which 
have a certain probability of vertical transmission by factors such 
as plant internal factors (material transport, metabolism) and 
environmental factors (rain, wind) or horizontal diffusion (Tadych 
et al., 2007; Hardoim et al., 2015).

In addition, the endophyte that P.n. transferred to pine 
trees include multiple species of beneficial microbiomes. Some 
bacterial strains of Massilia and Marmoricola have the 
capacity to produce IAA, provide siderophores and antagonize 
pathogenic microbes in vitro (Ofek et al., 2012; Jiang et al., 
2017), and strains of Herbaspirillum, Tardiphaga and 
Telmatospirllum are involved in biological nitrogen fixation 
(Monteiro et al., 2012) and slow-growing nitrogen fixation and 
participate in the sulfur cycle (Perley and Stowe, 1966; 
Hausmann et al., 2018), respectively. The increased beneficial 
fungi included Umbelopsis, Xylara, Geminibasidium, Inocybe, 
Alatospora, and Pleotricholadium, with the functions of 
participating in the transformation of lipids and 
polysaccharides (Dourou et al., 2017), synthesizing antioxidant 
active compounds (Liu et  al., 2007), participating in the 
carbon and nitrogen cycle (Pulido-Chavez et al., 2021) and 
decomposing and utilizing functions of organic matter 
(Feckler et al., 2017; Wang et al., 2021). In summary, these 
beneficial microbiomes were delivered by P.n. to pine trees 
were favorable to the growth of pine trees. Therefore, the 
agroforestry organic economic cultivation of P.n.-pine trees 
is sustainable.

Conclusion

In conclusion, the conversion of the two pure pine forests 
(P.k. and P.a.) to the P.n.-pine agroforestry systems 
significantly changed the diversity, but not the community 
structure, of pine-associated fungi. The community structure, 
but not the diversity, of P.n.-associated fungi was significantly 
changed. Fungi were more sensitive to alterations in both 
plant-associated factors than bacteria. Main effect analysis 
showed that compartment but not genotype was the driving 
factor affecting Panax notoginseng and pine, but Panax 
notoginseng cultivation also significantly influenced the 
assembly of pine related microbiomes. In addition, a diffuse 
spread of P.n. endophytes into the pine roots, and beneficial 
microbiomes (Massilia, Marmoricola, Herbaspirillum, etc.) 
increased in pine roots. Therefore, the different assembly 
mechanisms of Panax notoginseng and pine microbiomes 
functioned as an important role in the Panax notoginseng-pine 
agroforestry systems and were the basis for the sustainable 
development of the Panax notoginseng-pine 
agroforestry systems.
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PerMANOVA (Permutational multivariate analysis) indicated the relative 
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interactions on bacterial and fungal alpha- diversity among different 
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Significant effects (p<0.05) are shown in bold. p < 0.05, **p < 0.01, 
***p < 0.001.
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PerMANOVA (Permutational multivariate analysis) indicated the relative 
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P.n.-associated microbes (Shannon, Chao 1, Shannoneven) and plant and 
soil variables. Significant effects (p < 0.05) are shown in bold. 
Abbreviations of soil variables are as defined in Supplementary Table S3. 
Abbreviations: F-sha, shannon index of fungi; F-Chao1, Chao1 of fungi; 
F-even, shannoneven index of fungi; B-sha, shannon index of bacteria; 
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PerMANOVA based on WUF revealing the relative contributions of 
genotype (G), compartment (C) and planting P.n. or not (Pn) on bacterial 
and fungal variations across all samples and in each compartment of 
pine-associated microbes. Significant levels: p < 0.05, **p < 0.01, 
***p < 0.001.

SUPPLEMENTARY TABLE S7

PerMANOVA based on WUF revealing the relative contributions of 
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and fungal variations across all samples and in each P.n.-asscioated 
compartment (rhizosphere, root, stem, leaves). Significant levels: *p < 0.05, 
**p < 0.01, ***p < 0.001.

SUPPLEMENTARY FIGURE S1

PCoA plots based on WUF (weighted unifrac distance) of bacterial and 
fungal OTU showing the variation in each compartment of pine-
associated microbes (root, rhizosphere, between).

SUPPLEMENTARY FIGURE S2

PCoA plots based on WUF of bacterial and fungal OTU showing the 
variation in each compartment of P.n.-associated microbes (rhizosphere, 
root, stem, leaves).

SUPPLEMENTARY FIGURE S3

Venn Diagram exhibiting the overlap among the P.n. endophyte and the 
pine root endophyte of P.n.-pine agroforestry systems and the root 
endophyte of pure pine forests.

SUPPLEMENTARY FIGURE S4

Student t-test bar plots for different compartments of bacterial 
community of P.k. on genus level. PP, pure pine forest, GP, 
agroforestry system.

SUPPLEMENTARY FIGURE S5

Student t-test bar plots for different compartments of bacterial 
community of P.a. on genus level. PP, pure pine forest, GP, 
agroforestry system.

SUPPLEMENTARY FIGURE S6

Student t-test bar plots for different compartments of fungal community 
of P.k. on genus level. PP, pure pine forest, GP, agroforestry system.

SUPPLEMENTARY FIGURE S7

Student t-test bar plots for different compartments of fungal 
community of P.a. on genus level. PP, pure pine forest, GP, 
agroforestry system.
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SUPPLEMENTARY FIGURE S8

Student t-test bar plots for different compartments of fungal community 
of P.n. on genus level. Pk, P.n.-P.k. agroforestry system, Pa, P.n.-P.a. 
agroforestry system.

SUPPLEMENTARY FIGURE S9

Student t-test bar plots for different compartments of fungal community 
of P.n. on genus level. Pk, P.n.-P.k. agroforestry system, Pa, P.n.-P.a. 
agroforestry system.
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