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Soil salinization and heavy metal (HM) contamination are major challenges 

facing agricultural systems worldwide. Determining how soil microbial 

communities respond to these stress factors and identifying individual 

phylotypes with potential to tolerate these conditions while promoting plant 

growth could help prevent negative impacts on crop productivity. This study 

used amplicon sequencing and several bioinformatic programs to characterize 

differences in the composition and potential functional capabilities of soil 

bacterial, fungal, and archaeal communities in five agricultural fields that varied 

in salinity and HM concentrations within the Indus basin region of Pakistan. 

The composition of bacteria with the potential to fix atmospheric nitrogen 

(N) and produce the enzyme 1-aminocyclopropane-1-carboxylic acid (ACC) 

deaminase were also determined. Microbial communities were dominated by: 

Euryarchaeota (archaea), Actinobacteria, Proteobacteria, Planctomycetota, 

Firimicutes, Patescibacteria and Acidobacteria (bacteria), and Ascomycota 

(fungi), and all soils contained phylotypes capable of N-fixation and ACC-

deaminase production. Salinity influenced bacterial, but not archaeal or fungal 

communities. Both salinity and HM altered the relative abundance of many 

phylotypes that could potentially promote or harm plant growth. These stress 

factors also appeared to influence the potential functional capabilities of the 

microbial communities, especially in their capacity to cycle phosphorous, 

produce siderophores, and act as symbiotrophs or pathotrophs. Results 

of this study confirm that farms in this region are at risk due to salinization 

and excessive levels of some toxic heavy metals, which could negatively 

impact crop and human health. Changes in soil microbial communities and 

their potential functional capabilities are also likely to affect several critical 

agroecosystem services related to nutrient cycling, pathogen suppression, and 

plant stress tolerance. Many potentially beneficial phylotypes were identified 

that appear to be  salt and HM tolerant and could possibly be  exploited to 
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promote these services within this agroecosystem. Future efforts to isolate 

these phylotypes and determine whether they can indeed promote plant 

growth and/or carry out other important soil processes are recommended. At 

the same time, identifying ways to promote the abundance of these unique 

phylotypes either through modifying soil and crop management practices, or 

developing and applying them as inoculants, would be helpful for improving 

crop productivity in this region.

KEYWORDS

salinization, metagenomics, PGP microbes, heavy metals, metabolite profiling, 
ACC-deaminase

Introduction

One of the biggest challenges facing agriculture in Pakistan 
and other arid agricultural regions worldwide is soil salinization, 
and models predict that this challenge is growing rapidly (Wang 
et al., 2020). When soils become saline, they contain excessive 
levels of various types of soluble salts that can stress crop plants. 
Adverse effects of soil salinity include reductions in soil fertility 
and inefficient plant metabolism, which can result in lower plant 
growth and reduced crop yields (Nawaz et al., 2020). The main 
causes of soil salinization in agricultural systems include water 
deficits, especially in areas with high rates of evapotranspiration, 
and the use of poor-quality irrigation water. One practice that is 
commonly used to alleviate adverse effects of soil salinity is to 
apply gypsum, however, this practice is not sustainable because of 
the high price of this amendment and negative effects that 
repeated applications can have on soil health over time (Nouri 
et  al., 2017). Another way that has been suggested to try and 
overcome this challenge is to develop salt tolerant crops using 
transgenic approaches. However, this will be challenging since salt 
tolerance is likely controlled by quantitative traits, and it is 
currently difficult to correlate individual genetic elements with salt 
tolerance mechanisms (Ashraf and Foolad, 2013; Ben-Laouane 
et al., 2020). Consequently, alternative approaches to overcome the 
challenge of soil salinization in agricultural systems are needed 
(Machado and Serralheiro, 2017).

Another challenge facing agricultural systems in Pakistan and 
other areas of the world is the presence of elevated concentrations 
of heavy metals and metalloids in soil (HM). In particular, high 
concentrations of lead (Pb), chromium (Cr), zinc (Zn), cobalt 
(Co), arsenic (As), copper (Cu), nickel (Ni), cadmium (Cd), and 
mercury (Hg) are considered contaminants in soil (Batool et al., 
2017; Rodríguez-Eugenio et  al., 2018; Zea et  al., 2022). High 
concentrations of these HM can be naturally present in some soils 
due to parent materials, and they can become elevated in others 
due to anthropogenic activities such as industrialization and 
mining (Shakir et al., 2016; Moryani et al., 2020; Marghoob et al., 
2022). In addition to negatively impacting plant and human 
health, the presence of elevated concentrations of these HM can 

have devastating effects on critical agricultural and ecological 
processes in soil such as nutrient cycling and pathogen dynamics 
(Rodriguez-Sanchez et  al., 2022). The presence of elevated 
concentrations of HM may be even more problematic in saline 
soils. For example, Cd bioavailability in soil and uptake into plants 
was increased in the presence of higher levels of soil salinity 
(Wang et al., 2014; Han J. et al., 2021), which would be highly 
problematic in agricultural systems growing edible crop plants.

One way to help overcome these challenges is to exploit 
beneficial soil microorganisms (Reeve et al., 2016). For example, 
some soil microbes can form intimate associations with plants, 
increasing their capacity to tolerate salinity and HM stress, 
resulting in greater crop productivity (Nawaz et al., 2021). One of 
the mechanisms responsible for these benefits is the capacity of 
some microbes to produce the enzyme, 1-aminocyclopropane-1-
carboxylic acid (ACC) deaminase, which breaks down ACC, the 
main precursor for stress ethylene which reduces plant growth 
(Ben-Laouane et al., 2020). Other plant-associated microbes can 
promote the health and productivity of plants in high stress 
environments by fixing atmospheric nitrogen (N), solubilizing 
nutrients such as phosphorous (P), and acting as biocontrol agents 
against phytopathogens (Abdelrazek et al., 2020; Ben-Laouane 
et  al., 2020; Mukhtar et  al., 2020). As a result, many of these 
so-called “plant growth promoting” (PGP) microbes have been 
isolated and developed for use as inoculants to help address 
environmental and agricultural issues (Rilling et al., 2019).

Microbes with novel characteristics such as the capacity to 
promote plant growth under stress are often isolated from harsh 
environments. These microbes are known as extremophiles. Those 
with the potential to live in environments with high concentrations 
of soluble salts are called halophiles (Mukhtar et  al., 2018). 
Learning more about ecological factors that influence the 
composition and potential functional role of halotolerant 
microbes with potential PGP activities could lead to the 
identification of practices that can help address critical agricultural 
challenges like salinity and HM stress. By leveraging new culture 
independent techniques and bioinformatics tools, it will 
be possible to overcome the challenge of identifying microbes that 
are difficult to culture and learn more about their potential 
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functional roles in soil (Almeida and De Martinis, 2019). 
Therefore, the primary aim of this study was to characterize the 
diversity of microbial communities residing in the salt- and 
HM-affected agricultural lands of the Indus Basin in Pakistan. 
We also sought to determine how these stress factors can influence 
the composition of microbial communities with the potential to 
fix atmospheric N and produce ACC-deaminase, critical in 
agricultural systems. The Indus Basin is an ideal place to study 
these dynamics since this is an important agricultural region, it is 
suspected to contain soils with contrasting concentrations of 
soluble salts, and some fields have been reported to contain high 
concentrations of HM. To date, metagenomic surveys of soil 
microbial communities in salt- and HM-affected agricultural 
zones of Pakistan are scarce, and to the best of our knowledge, this 
will be the first report of soil microbial diversity and potential 
function in agricultural fields within the Mirpur Mathelo and 
Dhairk regions of the Indus Basin.

Materials and methods

Soil sampling

Soils were collected from five agricultural fields within the 
Indus Basin region and provinces of Punjab and Sindh, Pakistan 
expected to contain variable levels of soluble salts and possibly 
HM: Choa Saidan Shah (CSS), Chakwal, Punjab, 32.7485, 72.7574; 
Khewra Salt Mine Range (KSMR), Jhelum, Punjab; 32.6134, 
73.0239, Pakka Anna (PA), Faisalabad, Punjab; 31.2435, 72.7998, 
Dhairki (D), Ghotki, Sindh; 27.945195, 69.671935, Mirpur 
Mathelo (MM), Ghotki, Sindh; 28.0211, 69.5490. The individual 
farm fields within each region were selected because they have 
similar crop rotations: specifically, wheat (Triticum aestivum) is 
cultivated in winter, and cotton (Gossypium hirsutum), maize (Zea 
mays), rice (Oryza sativa) and various pulse crops are cultivated 
in summer. Samples were collected at the land preparation stage 
for wheat cultivation during the months of October and November 
2019. Soils were collected using a sterile soil sampling probe (2-cm 
width and 30.5-cm long) to a depth of 15-cm, placed in sterile 
containers, and transferred on ice to cold storage (4°C). At each 
location, three soil samples were collected, each consisting of 
multiple cores collected in a zig-zag pattern and pooled to account 
for heterogeneity at the site. The three fresh soil samples from each 
field were shipped on ice to the Microbial Physiology Lab, 
National Institute for Biotechnology and Genetic Engineering, 
Pakistan for chemical analysis, and to the Soil Microbial Ecology 
Lab, Purdue University, IN, United States, for DNA isolation and 
amplification in preparation for sequencing.

Soil chemical characterization

Soil texture and basic chemical parameters including pH, 
electrical conductivity (EC), total soil organic matter (SOM), 

exchangeable phosphorous (P), total N, and ionic concentrations 
of Cl− and water-soluble sodium (Na) and potassium (K) were 
determined using standard procedures previously described in the 
literature (Walkley and Black, 1934; Olsen, 1954; Richard, 1954; 
Imran et al., 2021; Khalid et al., 2021). Total concentrations of a 
wide range of elements including toxic heavy metals like Cr were 
quantified using a portable X-ray fluorescence analyzer (pXRF; 
Vanta M pXRF, with a Rh and W x-ray tube, Olympus, Waltham, 
Ma, United States). Briefly, 5 g of each soil were ground in a UDY 
grinder (3010SM/C, Seedburo, United States), packed into XRF 
sample cups and covered with 4.0 μm prolene film before being 
scanned with the pXRF. All analyses were conducted in triplicate.

Soil DNA extraction and amplification 
through PCR

Total genomic DNA was extracted from each soil sample (10 g 
each) using DNeasy PowerSoil Kits (QIAGEN, Germantown, MD, 
United States) per manufacturer’s instruction. The quality and 
quantity of the final product was checked using a NanoDrop 2000c 
spectrophotometer (Thermo Scientific, Waltham, MA, 
United  States), and stored at −20°C until use in PCR. The 
following primer pairs were used to amplify specific microbial 
taxa: 42F-376R targeting the V3-V4 region of the 16S rRNA gene 
for bacteria, ITS1F-ITS2 for fungi, 340F-806rB targeting the 16S 
rRNA gene for archaea, PolF-PolR for the nifH region of bacteria, 
and acdSF5-acdSR8 for the acdS gene of bacteria. PCR protocols 
(see Supplementary Table S1) were optimized based on previous 
studies conducted using the same primer sets (Op De Beeck et al., 
2014; Bouffaud et  al., 2018; Bahram et  al., 2019; Wasimuddin 
et al., 2019; Yang et al., 2019). PCR products with desired band 
lengths were confirmed on 1% agarose gel using electrophoresis. 
After the first PCR, a 2nd PCR reaction was conducted to attach 
the CS1 and CS2 linkers in preparation for Illumina sequencing 
using the same conditions, but only 8 cycles. The final PCR 
products were stored at −20°C before shipping to the Core 
Genome Laboratory, Chicago, IL, United  States1 where the 
products were diluted, tagged and subject to paired-end 
sequencing using Illumina NovaSeq.

Screening of raw sequences

A total of 20,932,024 raw sequences were received after 
sequencing for bacteria, 2,381,416 for archaea, 979,543 for fungi, 
15,288,910 for nifH, and 25,929,149 for acdS. To ensure that only 
high-quality reads were used, the sequences were subject to the 
following screening methods: (1) contigs assembly, (2) elimination 
of homopolymers, chimeric sequences and ambiguous bases, and 

1 https://rrc.uic.edu/cores/genome-research-core/
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(3) additional screening, OTU clustering, and processing of the 
refined data.

Contigs assembly
Paired-end reads were merged into contigs using mothur v 

1.44 (Schloss et al., 2009). Local alignment of paired-end reads 
was conducted using Needleman conditions, and differences in 
nucleotides in the same alignment position were resolved with an 
ambiguous base when the difference in Phred score was 6 or lower. 
For the acdS gene, only the overlap region was selected for further 
analysis (Bouffaud et al., 2018).

Elimination of ambiguous bases, 
homopolymers, and chimeric sequences

Contigs with ambiguous bases or those with homopolymers 
>8 bp were removed. VSEARCH (Rognes et al., 2015) de novo 
identification was used to remove contigs of chimeric nature, 
using 1.9 as the abundance skew, 0.3 score for chimera 
characterization, and 0.5 as the minimum divergence ratio. In 
addition, a minimum of three differences was allowed when 
comparing segments, 8 was used as a weight of no-votes, and 1.4 
was used as a pseudo-count on no-votes.

Additional quality screening
Non-chimeric contigs were aligned against the SiLVA SEED 

v138 database using Needleman conditions in both directions as 
an additional tool for quality screening of bacterial and archaeal 
16S rRNA gene regions. Contigs having different start and end 
positions from expected positions of the primers were eliminated 
for further processing. Next, hierarchical preclustering allowing 1 
error/100 bp length was used to achieve denoised contigs and 
generate Amplicon Sequence Variants (ASV; Huse et al., 2010; 
Schloss, 2020). The SiLVA NR v138 database was used as a 
reference to classify ASVs against specified portions of the 
bacterial and archaeal 16S rRNA sequences. The K-nearest 
neighbor algorithm and a k-mer search of 8-bp length with a 
cutoff of 80% were used as quality checks. Only sequences that 
were successfully classified at phylum or lower levels were retained 
for further analysis.

For quality screening of the fungal ITS region and acdS and 
nifH genes, hierarchical preclustering approaches allowing 1 
error/100 bp length was used to denoise non-chimeric contigs into 
ASVs. For taxonomic screening purposes, fungal ASVs were 
classified using the full public UNITE database (10/05/2021) with 
the k-nearest neighbor algorithm and a k-mer search of 8 bp 
length. Contigs that were unsuccessfully classified at the phylum 
or lower level were eliminated.

OTU clustering and postprocessing of 
high-quality sequencing data

We obtained a total of 8,529,291 high quality reads for 
bacteria, 179,893 for archaea, 1,103,290 for fungi, and 36,638 and 
4,408,719 for the nifH and acdS bacterial genes, respectively, after 
initial processing into AVSs. These high quality ASVs were subject 

to OTU clustering to better classify the sequences (Schloss, 2020) 
using the abundance-greedy clustering algorithm in VSEARCH 
(Westcott and Schloss, 2015). Matthew’s correlation coefficient 
was used to determine the accuracy of clusterization (Schloss 
et al., 2016). 97% similarity thresholds were used for the 16S rRNA 
and acdS genes of bacteria, 95% for the 16S rRNA gene of archaea 
and ITS gene of fungi, and 94% for the nifH bacterial gene. 
Elimination of singleton OTUs was performed and the most 
abundant sequence in each OTU was used as a representative 
sequence for that OTU.

Each representative sequence of bacterial and archaeal 16S 
rRNA genes was taxonomically classified using the SiLVA NR 
v138 database and the full public UNITE database (10/05/2021). 
For the fungal ITS region, the k-nearest neighbor algorithm and 
a k-mer search of 8 bp length conditions were applied. For the 
acdS and nifH genes, representative sequences of each OTU were 
classified against a selected group of sequences retrieved from the 
GenBank NT database. The collection of acdS sequences ranged 
from 160 to 1,500 bp in length, and for nifH, the collection ranged 
from 300 to 1,500 bp in length; both collections were retrieved 
from GenBank on 11/15/2021, and these databases were used to 
taxonomically classify each representative OTU using BLAST 
software (Altschul et al., 1991). A BLAST search was conducted 
using blastn default parameters and the best match retrieved for 
each sequence was considered an accurate taxonomic 
classification. After screening and assigning only good quality 
reads into OTUs on the basis of maximum similarity, there were 
a total of 71,737, 2,529, 1,693, 1,098 and 27,581 OTUs for bacteria, 
archaea, fungi and nifH, and acdS bacterial genes, respectively.

Ecological analysis of soil microbiomes

Hill-diversity indices of order 1 (Shannon index) and order 2 
(Simpson index) were used to characterize α-diversity for the 
marker genes used in the study (Haegeman et  al., 2013). 
Observations were made using mothur v1.44 (Schloss et al., 2009). 
Pairwise comparisons among soils from the five locations were 
conducted by computation of ANOVA-based Tukey’s post-hoc test 
over the mean values for the Shannon and Simpson indices using 
the software PAST (Rodriguez-Sanchez et al., 2022). Correlations 
between hill-diversity indices and soil chemical parameters were 
investigated by calculation of Pearson’s ρ correlation computed by 
PAST (Rodriguez-Sanchez et al., 2022).

For β-diversity analyses, PERmutational ANalysis Of Variance 
(PERMANOVA; Weiss et  al., 2017), Principal Coordinates 
Analysis (PCA; Bian et al., 2017) and cluster analysis, were used 
as examples of quantitative and qualitative assessments for 
microbial community differences among the five soil samples. For 
all of these analyses, the ecological information was corrected to 
avoid zero values by the Bayesian Multiplicative replacement 
method using the package zCompositions implemented in R, and 
then centered-log ratio (CLR) transformed using the package 
robCompositions implemented in R. For PERMANOVA 
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calculation, a Aitchison distance was used. For cluster analysis, the 
Unweighted Pair Group Method with Arithmetic mean (UPGMA) 
algorithm over the Aitchison distance were used for computation.

Distinct or unique phylotypes within each of the five soils 
were established based on their classification as an indicator 
species with significant differential abundance as compared to the 
other soils (Hartman et al., 2018). Phylotypes were classified as an 
indicator for one or more soils by computation of multilevel 
pattern analyses based on point biserial generalized correlation 
coefficient using 10,000 bootstrap permutations and the package 
indicspecies implemented in R (Hartman et al., 2018). Differential 
abundance of a phylotype was calculated using the 
CLR-transformed Kruskal-Wallis tests over the abundance of each 
phylotype using 128 Dirichlet-Monte Carlo simulations for 
correction of zero values and CLR transformation through the 
package ALDEx2 implemented in R.

Trophic modes and functional guilds within the fungal 
domain were classified using FUNGuild v1.1 with similar 
methodology reported before (Nguyen et al., 2016; Rodriguez-
Sanchez et al., 2022). Briefly, taxonomic classification retrieved 
from the UNITE database (Köljalg et al., 2013) was used as input 
for FUNGuild v1.1. β-diversity analyses and determination of 
characteristic trophic modes were computed similar methods as 
described above.

Correlations between dominant 
microbial phylotypes and soil chemical 
parameters

Microbial phylotypes were considered dominant in a 
particular soil sample if their average relative abundance for all 
replicates was >0.5%. Dominant phylotypes were linked to soil 
chemical parameters through PCA. For this purpose, the fraction 
of the zero-corrected, centered log-ratio transformed OTU table 
was used. Computations were done for individual heavy metals 
concentrations and other chemical parameters separately. Soil 
chemical parameters were previously transformed through the 
LOG(X + 1) equation. Similar calculations were conducted for the 
fungal domain classified in trophic modes.

Functional metabolite prediction

The representative sequence for each bacterial OTU generated 
above was used for metagenome prediction using the PICRUSt2 
methodology (Douglas et  al., 2020). Briefly, representative 
sequences were clustered de novo against a phylogenetic tree 
containing information of 20,000 unique bacterial genomes 
retrieved from the IMG database (11/08/2017). Sequences were 
clustered on this tree using HMMER2 software. Next, evaluation 

2 www.hmmer.org

of clustering was assessed using EPA-ng software (Barbera et al., 
2019), and then GAPPA software (Czech et al., 2020) was used to 
provide a new tree accounting for newly-added sequences. All 
parameters for calculation were default. For each representative 
sequence, both strands were used for calculation and the best 
result for each was kept for analyses.

Results

Soil chemical properties

Details of soil texture and standard soil chemical properties 
are provided in Table 1. Briefly, all soils were mildly (pH 7.4–7.8) 
to moderately (pH 8.5–9.0) alkaline in nature, ranging from pH 
7.5 in the Khewra Salt Mine Range (KSMR) to pH 8.5 in Pakka 
Anna (PA). EC values confirmed that the soils varied in soluble 
salt concentrations, increasing from the upper toward the lower 
course of the river. KSMR and Choa Saidan Shah (CSS) fall under 
the category of moderately saline (EC 4–8), PA was on the low end 
of very strongly saline (EC > 16), and Dhairki (D) and Mirpur 
Mathelo (MM) were very strongly saline, according to Abrol et al. 
(1988). All soils had typical characteristics of saline soils (e.g.: they 
were low in OM and N, and had high ionic concentrations of K+, 
Na+, Cl−). Available P was below normal range for this region in 
CSS, while, PA and D met the recommended criteria, and KSMR 
and MM had higher than normal values.

Results of the pXRF analysis and FAO safety thresholds 
(Rodríguez-Eugenio et al., 2018) for a select set of heavy metal and 
metalloid concentrations are provided in Table 2. All soils had 
concentrations of Ni and Co that were above safety thresholds for 
agricultural soils. With the exception of KSMR, all soils also had 
concentrations of Cr that exceeded FAO safety thresholds. Only 
PA had As and Cu concentrations that were above the FAO safety 
threshold. All soils had concentrations of Pb, Cd and Zn below 
safety thresholds.

Soil microbial composition at the phylum 
level

The relative abundance of archaeal, bacterial and fungal 
communities at the phylum levels are reported in Figure 1. The 
dominant archaeal phylum in all soils was Euryarchaeota 
(80.10%–95.28%) followed by Crenarchaeota (3.28%–19.23%). 
Other archaeal phyla such as Haloarchaeota Thermoplasmata and 
Hadaarchaeota represented <3% of all samples. The dominant 
bacterial phyla included Actinobacteria (9.22%–27.15%), 
Proteobacteria (9.83%–18.44%), Planctomycetota (4.78%–13.29%), 
Acidobacteria (4.96%–14.71%) and Patescibacteria (3.52%–
12.12%). Other bacterial phyla such as Chloroflexi or 
Gemmatimonadota represented less than 10% of the total relative 
abundance in all of the soils. Fungal communities were dominated 
by the Ascomycota (54.26%–89.97%) and Chytridiomycota 
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(1.14%–27.03%). The relative abundance of the fungal phylum 
Blastocladiomycota was present at a substantial level (16.88%) in 
the CSS soil only. Glomeromycota and Basidiomycota were present 
at low relative abundances in all soils (1.06%–8.10% and 
0.77%–11.00%).

α- and β-diversity

Results of Shannon (diversity) and Simpson (evenness) 
α-diversity indices are shown in Figures  2 and 
Supplementary Figure S1, respectively. There were no significant 
differences in diversity or evenness between the archaeal and 
fungal domains (p < 0.05). In contrast, there were differences in 
diversity and evenness within the bacterial domain and the nifH 
gene, and in the diversity of the acdS functional gene. In general, 

CSS had higher diversity for all marker genes, followed by 
KSMR, PA, MM and D; differences in evenness followed the 
same order. Pearson’s ρ correlations indicated that lower 
bacterial, acdS, and nifH diversity were negatively correlated, 
and evenness was positively correlated, with salinity parameters 
(EC, Cl−, K+, Na+).

Results of the qualitative β-diversity analyses are shown in 
Figures  3 and Supplementary Figure S2, and results of the 
quantitative β-diversity analyses are shown in 
Supplementary Figure S3. CLR-transformed PCA analyses 
indicated that within the archaeal domain, MM and PA had 
distinct clusters, there was overlap between D and CSS, and no 
pattern for KSMR (Supplementary Figure S2). The bacterial 
domain clearly differentiated into three groups, with KSMR 
communities clustering apart from those in CSS, and 
communities from the other three locations clustered very 

TABLE 1 Texture and chemical properties of soil samples collected from five farms in the Indus Basin Region, Pakistan.

Soil 
texture

pHs Organic 
matter 
(%)

Nitrogen 
(%)

Available 
phosphorous 
(mg kg−1 soil)

Electrical 
conductivity 
(dS m−1)

Total 
chlorides 
(meq L−1)

Water 
soluble 
sodium 
(g L−1)

Water 
soluble 
potassium 
(g L−1)

Choa 

Saidan 

Shah 

(CSS)

Stony-clay 7.68 ± 0.03 1.03 ± 0.09 0.07 ± 0.01 7.31 ± 0.29 5.76 ± 0.12 2.33 ± 0.57 0.10 ± 0.02 0.02 ± 0.01

Khewra 

Salt Mine 

Range 

(KSMR)

Clay 7.52 ± 0.01 1.22 ± 0.12 0.06 ± 0.01 89.29 ± 4.28 6.09 ± 0.06 73.33 ± 8.02 1.66 ± 0.21 0.06 ± 0.02

Pakka 

Anna 

(PA)

Sandy loam 8.58 ± 0.04 0.65 ± 0.07 0.06 ± 0.01 31.78 ± 0.26 17.16 ± 1.17 244.00 ± 7 14.46 ± 0.48 0.22 ± 0.04

Dhairki 

(D)

Sandy clay 7.71 ± 0.06 1.28 ± 0.14 0.06 ± 0.01 24.79 ± 2.15 34.36 ± 1.20 2312.67 ± 19.01 91.33 ± 2.52 0.97 ± 0.10

Mirpur 

Mathelo 

(MM)

Sandy clay 8.06 ± 0.13 0.92 ± 0.09 0.05 ± 0.01 70.31 ± 4.41 32.90 ± 0.35 1063.33 ± 23.03 47.91 ± 2.73 0.50 ± 0.05

TABLE 2 Concentrations of heavy metals and metalloids in soil samples collected from five farms in the Indus Basin Region, Pakistan.

Safety threshold 
(FAO)

Choa Saidan 
Shah (CSS)

Khewra Salt 
Mines Range 
(KSMR)

Pakka Anna (PA) Daharki (D) Mirpur Mathelo 
(MM)

As 20–30 5.33 ± 0.47 7.67 ± 0.47 37.67 ± 0.47↑ 18.67 ± 0.47 13 ± 1.41

Cd 01-March n.d. n.d n.d. n.d. n.d.

Co 20–30 41.33 ± 4.71↑ 34 ± 24.06↑ 76.33 ± 10.4↑ 89 ± 21.23↑ 60.67 ± 8.99↑

Cr 20–50 84.67 ± 3.86↑ 43 ± 5.35 84.33 ± 8.22↑ 92.33 ± 0.94↑ 63.33 ± 10.21↑

Cu 100 46.67 ± 0.94 59.33 ± 1.25 161.67 ± 1.25↑ 90.67 ± 0.94 47 ± 2.16

Ni 50–100 202.67 ± 3.4↑ 229.67 ± 3.86↑ 628 ± 1.63↑ 430.33 ± 3.3↑ 462 ± 4.08↑

Pb 50–100 20.67 ± 0.94 14.33 ± 0.47 18.67 ± 0.94 26.67 ± 0.47 22 ± 1.63

Zn 300–500 41 ± 2.16 49.67 ± 1.89 60 ± 1.41 92.33 ± 1.7 73.33 ± 1.25

Values are provided in ppm (part per millions); not detected (n.d.); above threshold values:↑; Food and Agriculture organization [FAO; Rodriguez-Sanchez et al., 2022; i9183en.pdf  
(fao.org)].
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closely together (Figure 3). For fungi, microbial communities 
within CSS were clearly separated from the rest of the samples, 
and fungal communities clustered with respect to trophic 
mode within MM clustered separately from the other soils 
analyzed (Supplementary Figure S2). Bacterial communities 
containing the acdS gene had a similar pattern of clustering to 
the bacterial domain, while those containing the nifH 
functional gene clustered in samples from CSS and MM, and 
communities in the other three soils overlapped (Figure 3). 
However, it is important to note that none of these were 
significantly different at the 95% confidence interval when 
evaluated using CLR-transformed PERMANOVA analyses 
(Supplementary Figure S3), so the results of the β-diversity 
analyses must be interpreted with caution. Cluster analyses 
showed similar patterns to those of PCA and PERMANOVA 
(Supplementary Figure S4).

Indicator phylotypes within each soil

Within the bacterial domain, there were many dominant 
phylotypes that were distinct and therefore could be considered 
an indicator species within the five soils (Figure  4B; 
Supplementary Figure S4B). For example, within CSS and KSMR, 
Bryobacter and Gemmatimonas were distinct; within D, Fusibacter 
and members of Isospheraceae, Fibrobacteraceae and 
Acidobacteridota were distinct; within MM, Parcubacteria, 
Nocardiodaceae, Limnochordia and Polyangiales phylotypes were 
distinct; and finally, within PA, Saccharimonadales, Actinobacteria, 
Sphingobacterales and Acidimicrobiia members could 
be considered distinct or unique for the soils. There were fewer 
differences among the archaeal and fungal domains (Figures 4A,C; 
Supplementary Figures S4A,C). For example, within the archaea, 
individual Methanocaldococcus phylotypes were distinct among 

A B C

FIGURE 1

Relative abundance of dominant archaeal (A), bacterial (B), and fungal (C) phyla in five soil samples collected from agricultural fields in the Indus 
Basin Region, Pakistan.

A B

FIGURE 2

Differences in the alpha diversity of soil microbial communities in five soils collected from agricultural fields within the Indus River Basin, Pakistan, 
calculated using the Shannon Index (p < 0.05) (A), and Pearson’s ρ correlations between the Shannon index and select soil chemical properties (B). 
EC, Electric conductivity; OM, total organic matter; P, exchangeable phosphorous; CL, total concentrations of chloride; K, potassium; Na, sodium; 
N, nitrogen.
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the soils, however, only CSS and KSMR had Crenarchaeota 
members as unique phylotypes. For fungi, the dominant phylotype 
Curvularia was unique to CSS and KSMR, one Aspergillus 
phylotype was unique for PA, and Ceratocystis adiposa, Microascus 
and a Xylariaceae member were unique in MM. No fungal trophic 

modes were characteristic of any of the sites analyzed (data 
not shown).

Interestingly, all of the five soils had acdS gene-containing 
microorganisms that were distinct (Figure  4D). In particular, 
KSMR hosted several unique Burkholderia Streptomyces, and 

A

B

C

FIGURE 3

Differences in beta-diversity of soil microbial communities in five soils collected from agricultural fields within the Indus River Basin, Pakistan and 
correlations with chemical properties quantified using principal coordinates analyses (PCA). (A) bacteria; (B) nifH-containing bacteria; (C) acdS-
containing bacteria; EC, electric conductivity; OM, organic matter; P, exchangeable phosphorous; CL, total concentrations of chloride; K, 
potassium; Na, sodium; N, nitrogen.
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Bradyrhizobium phylotypes; Bradyrhizobium, Haererehalobacter, 
Burkholderia, Streptomyces and Brevibacterium were unique in 
CSS; Brevibacterium and Zhihengliuella were unique in MM; 
Brevibacterium was unique in D; and, several unknown 
phylogenies were unique in PA.

For the nifH gene, surprisingly there were no dominant 
phylotypes that could be considered characteristic for any of the 
five soils, however, CSS, KSMR and PA had several unique 
indicator species among the dominant OTUs such as Calothrix or 
Rhodobacter (Figure 4E). Two phylotypes of Bradyrhizobium were 
unique in MM, and Azospirillum and Agrobacterium were unique 
in PA and D, respectively.

Correlations between dominant 
microbial phylotypes and soil chemical 
parameters

A PCA plot linking dominant bacterial phylotypes with soil 
chemical parameters indicated that there were three distinct 
clusters (Supplementary Figure S5B1). In one of them, 
representatives of Fusibacter, Parcubacteria, Patescibacteria, and 
Rhodocytophaga, among others, were positively correlated with 
salinity parameters (EC, K+, Na+, Cl−) and OM, and negatively 
correlated with pH. In contrast, in another cluster, representatives 
of Bacilli, Sacharimonadales, Parcubacteria, Firmicutes, and 

Polyangiales were negatively correlated with ion concentrations 
(K+, Na+,Cl−) and OM, and positively correlated with pH and 
N. Finally, in the third cluster, ion concentrations (K+, Na+, Cl−) 
and pH were positively correlated, and SOM and N were 
negatively correlated, with phylotypes belonging to 
Gemmatimonas, Bryobacter, Parcubacteria, 
Thermoanaerobaculaceae, and Anaerolineae, among others.

For the case of fungi, similar clustering of dominant 
phylotypes into three broad groups could be  observed 
(Supplementary Figure S5C1). Those positively correlated with EC 
and SOM but negatively with pH were classified as Mortierella, 
Aspergillus, Trichosporon, Sistotrema, members of Chytridiomycota, 
Glomeromycota, and Tremllomycetes, among others. Those 
positively correlated with SOM and N and negatively correlated 
with EC were classified as Talaromyces, Ceratocystis, Aspergillus 
and Microascus. The cluster positively correlated with soil pH and 
EC and negatively correlated with SOM and N included members 
of Curvularia, Ascomycota, Chaetomiaceae, Orbiliaceae and 
Chytridiomycota, among others.

For trophic modes, two groups formed with respect to soil 
parameters (Supplementary Figure S5). One group was positively 
correlated with N and OM (trophic modes of pathotroph, 
symbiotroph, and pathotroph-symbiotroph), and the other were 
positively correlated with pH, P and concentrations of ionic 
concentrations of Cl, Na, and K (saprotrophs, saprotroph-
symbiotroph, pathogen-saprotroph, and pathogen-saptrotroph- 

A

D E

B C

FIGURE 4

Heat maps showing the dominant soil archaeal (A), bacterial (B), and fungal (C), phylotypes, and bacteria with acdS (D), and nifH genes (E), in five 
soils collected from agricultural fields in the Indus River Basin, Pakistan, and whether they can be considered as indicator species for a particular 
region. CCS, Choa Saidan Shah; KSMR, Khewra salt mines range; PA, Pakka Anna; D, Daharki; MM, Mirpur Mathelo.
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symbiotroph; Supplementary Figure S5F1). Pathotroph, 
symbiotroph, and pathotroph-symbiotroph were also positively 
correlated with Cu and As, whereas the other trophic modes were 
positively correlated with Cr, Co, Ni, Pb, and Zn 
(Supplementary Figure S5F2).

Within the archaea, dominant phylotypes related to 
Crenarchaeota were positively correlated with soil pH and EC, and 
negatively with SOM and N (Supplementary Figure S5A1).

For bacteria containing the acdS gene, Zhihengliuella was 
positively correlated with higher soil pH and EC, but negatively 
correlated with SOM and N, whereas Bradyrhizobium, 
Burkholderia, Haererehalobacter and Streptomyces were positively 
correlated with SOM and N, and negatively correlated with soil pH 
and EC (Supplementary Figure S5D1).

Finally, for bacteria containing the nifH gene, 
Bradyrhizobium, Azosporillum, Klebsiella and Desulfovibrio 
were positively correlated with SOM and N and negatively 
with salinity and pH, while Calothrix, Rhodobacter and 
Sphingomonas were positively correlated with salinity 
parameters and pH, and negatively correlated with SOM and 
N (Supplementary Figure S5E1).

Analyses to evaluate correlations with select heavy metal and 
metalloid concentrations indicated that the dominant bacterial 
communities also separated communities into three distinct 
clusters (Supplementary Figure S5B2). One cluster was positively 
correlated with Cr, Pb, Zn, and Co, and contained Fusibacter, a 
Parcubacteria member, Rhodocytophaga, and a Patescibacteria 
member, among others. Another group was positively correlated 
with As, Cu, and Ni, and included Gemmatimonas, Bryobacter, 
and a Parcubacteria member, among others. Finally, the third 
cluster was negatively correlated with all soil metal and metalloid 
concentrations, and included Polyangia and Parcubacteria 
members, among others.

Within the archaea, many Methanocaldococcus-affiliated and 
Crenarchaeota-affiliated phylotypes were positively correlated 
with concentrations of As, Ni and Cu (Supplementary Figure S5A1). 
Another cluster was negatively correlated with the concentrations 
of all metals and metalloids, and included Methanocaldococcus 
and Thermoprotei.

For fungi, several phylotypes were positively correlated with 
all of the heavy metals and metalloids such as Aspergillus, 
Sistotrema, and a few Ascomycota (Supplementary Figure S5C1). 
Another cluster contained fungal members that were negatively 
correlated with all heavy metals and metalloids, such as 
Emericellopsis or Trichosporon. Several phylotypes were positively 
correlated with Ni, As and Cu, such as Curvularia or Polyporales. 
Finally, another cluster contained fungal phylotypes that were 
positively correlated only with Pb, Zn, Cr, and Co, such as an 
Aspergillus and Ceratocystis adiposa.

Bacterial phylotypes containing the acdS gene clustered into 
three distinct groups. One cluster was positively correlated with 
all heavy metals and metalloids and included Zhihengliuella, 
Brevibacterium, Burkholderia and Streptomyces 
(Supplementary Figure S5D1). Other phylotypes classified as 

Burkholderia and Streptomyces were positively correlated only 
with Ni, As and Cu.

Finally, bacterial phylotypes containing the nifH gene 
clustered into two groups. One was positively correlated with Ni, 
As and Cu, and included Sphingomonas, Rhodobacter, Calothrix, 
among others (Supplementary Figure S5E2). The other group was 
positively correlated with concentrations of Pb, Zn, Cr and Co, 
and included Bradyrhizobium, Klebsiella, Azospirillum, 
Desulfovibrio, and Agrobacterium, among others.

Predicted metagenomes of bacterial 
communities

Qualitative β-diversity metrics comparing the five agricultural 
soils indicated that the predicted metagenomes of the soil 
microbial communities clustered into 3 distinct groups: CSS and 
KSMR; PA and D; and MM (Figure  5). CSS and KSMR were 
positively correlated with OM and N, while PA and D were 
positively correlated with pH, P and salinity parameters. There 
were also significant differences in the relative abundance of some 
microbial genes with potential to help plants obtain nutrients and 
withstand abiotic stress among the five soils 
(Supplementary Table S2). For example, the relative abundance of 
microbes with genes for synthesis of ACC-deaminase (acdS) and 
nitrite reductase (nirK) were greater in CSS and D than the other 
soils. Differences in the potential for microbial communities to 
solubilize P were also apparent, with D having a greater relative 
abundance of microbes with acid phosphatase genes (appA and 
phoN), and CSS having a greater relative abundance of those with 
alkaline phosphatase genes (phoA, phoB). Microbes in D also had 
a greater potential relative abundance of genes for salicylate 
synthase (mbtI, irp9, ybtS), while PA had a greater relative 
abundance of the gene for isochorismate pyruvate lyase (pchB), 
and MM had a greater relative abundance of the gene for ferric 
uptake regulator (FUR). Finally, all soils except CSS contained 
microbes with a high relative abundance of the gene for indole-3-
glycerol phosphate synthase (IGPS).

Discussion

Learning more about how soil salinity and elevated 
concentrations of HM can alter the composition and functional 
potential of soil microbial communities has potential to help aid 
in the development of new practices that can help farmers 
overcome these challenges. As predicted, agricultural soils in the 
Indus River Basin in Pakistan provided an ideal location to study 
these dynamics. Farm fields ranged from moderately saline 
upstream (CSS, KSMR), to very strongly saline downstream (PA, 
D, MM), but did not differ in other critical soil parameters such as 
pH and OM (Table 1), which are generally the strongest factors 
driving soil microbial community structure (Rodriguez-Sanchez 
et al., 2022). At the same time, concentrations of Ni, Co, and Cr 
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were all greater at sites downstream relative to upstream (Table 2). 
Elevated concentrations of soluble salts in soils under irrigation in 
arable regions are common, and likely to accumulate at higher 
concentrations downstream due to deposition within irrigation 
networks (Syed et al., 2021). The exact source of HM in this region 
are unclear, though it could be due to soil factors such as soil 
parent materials, as well effluent from salt and coal mines, nearby 
chemical industries, and agricultural and municipal wastes 
(Ashraf et  al., 2021). Regardless of the cause, the combined 
presence of high concentrations of soluble salts and HM is of 
concern given that both can harm crop plants, and salinity can 
increase bioavailability of HM like Cd and Pb (Acosta et al., 2011). 
Fortunately, others have reported opposite trends for HM like Cr, 
Ni, and As (Han J. et al., 2021). While we cannot predict how HM 
will behave in these soils, we can conclude that farms in the Indus 
Basin are at high risk for salinity and HM, so farmers should take 
steps to address these stress factors.

Identifying dominant microbial taxa that thrive within these 
agroecosystems can provide important clues about potential 
threats, as well as insights on how to better manage these systems. 
Microbial communities in all soils were dominated by taxa with 
high potential capacity to withstand abiotic stress (Figure  2), 
which is consistent with studies in similar ecosystems. For 
example, Rodriguez-Sanchez et al. (2022) also found Ascomycota 
to dominate soil fungal communities in an arid agricultural region 
subject to salt and HM stress in Peru. Dominance of the 
Ascomycota is these systems is likely due to the fact that these 
microbes generally contain a high number of genes and specific 
traits that make them more competitive in harsh environments 
(Egidi et al., 2019). Members of the Ascomycota play important 
roles in soil as saprotrophs, but others can cause plant diseases 

(Rodriguez-Sanchez et al., 2022). Acidobacteriota are commonly 
reported as one of the most abundant groups of bacteria found 
within saline soils, and thus, some have proposed that they can 
serve as bio-indicators for salt-tolerant communities (de Leon-
Lorenzana et al., 2017; Yue et al., 2020; Cao et al., 2021). Microbes 
within the Acidobacteriota are difficult to cultivate and study 
under laboratory conditions, so their exact ecosystem functions 
are still unclear, though they are expected to play important roles 
in biogeochemical cycles and plant growth promotion (Kalam 
et al., 2020). Mukhtar et al. (2018) previously found Actinobacteria 
to be highly abundant in the rhizospheres of wheat plants collected 
in PA. Actinomycetes are well-known for their capacity to tolerate 
conditions of high soil pH, water (Pepper et al., 2015), and salinity 
stress, and some have been demonstrated to help plants withstand 
salt stress (Djebaili et  al., 2020). Many genera within the 
Actinomycetes, such as Streptomycetes, are also noted for their 
capacity to both cause as well as prevent plant disease (Schrey and 
Tarkka, 2008). Finally, Euryarchaeota are widespread in terrestrial 
ecosystems worldwide, including many extreme environments 
(Hu et al., 2013). Many of the metabolic capabilities and potential 
functional roles of Euryarchaeota in soils remain unresolved, 
though they are expected to play critical roles in biogeochemical 
cycles (Hu et al., 2013). Consequently, future efforts to isolate 
microbes within these taxa and elucidate their specific functional 
roles are recommended as a means to promote crop growth and 
resilience against biotic and abiotic stress.

Determining how individual taxa respond to salinity and HM 
concentrations is also important for learning how to better manage 
these agroecosystems. Like other studies (Khan et al., 2020; Wang 
S. et al., 2021; Chen et al., 2022; Jiang et al., 2022) salinity had a 
strong influence on bacterial, but not fungal diversity (Figure 3; 

FIGURE 5

Differences in the predicted metagenome of soil microbial communities in five soils collected from agricultural fields within the Indus River Basin, 
Pakistan, and correlations with chemical properties quantified using principal coordinates analyses (PCA). EC, Electric conductivity; OM, total 
organic matter; P, exchangeable phosphorous; CL, total concentrations of chloride; K, potassium; Na, sodium; N, nitrogen.
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Supplementary Figure S1) in this study. This may be related to the 
fact that fungi are generally more resistant to salinity than bacteria 
(Rath et  al., 2016, 2019). Some have theorized that this could 
be due, at least in part, to the capacity of fungi to retain Na+ within 
their hyphae, thereby preventing translocation to more sensitive 
tissues (Zhao et al., 2019). Unlike salinity, elevated concentrations 
of HM often influence both bacterial and fungal diversity, but in 
different directions. For example, Stefanowicz et  al. (2008) 
observed a decrease in bacterial and increase in fungal diversity in 
response to HM along a pollution transect, indicating that HM 
may select for fungal taxa with unique capabilities to withstand 
HM stress. Rodriguez-Sanchez et al. (2022) noted that higher Co 
and Ni concentrations in particular, appeared to be  important 
drivers of fungal community structure in Peru. In the present 
study, fungal diversity did not change in response to HM, but 
we did identify some phylotypes such as Aspergillus and Curvularia, 
that were positively correlated with increasing concentrations of 
Co and Ni (Supplementary Figure S5C2). Aspergillus and 
Curvularia have been noted for their strong capacity to withstand 
HM stress, which could be related to their capacity to counteract 
HM toxicity via efflux pumps, biosorption, and production of 
secondary metabolites (Torres-Cruz et al., 2018; Imran et al., 2020). 
Aspergillus play important roles in soil as saprophytes (Nayak et al., 
2020). Curvularia have been noted to act as pathogens in some 
plant species, but promote plant growth in others via PGP activities 
such as P solubilization (Priyadharsini and Muthukumar, 2017). 
Finally, the absence of an effect of salinity or HM on α-diversity 
within the archaeal community was not surprising given the strong 
capacity of microbes within this to tolerate extreme environments, 
including high salinity (Matarredona et al., 2020). Nevertheless, the 
fact that there were potential differences in β-diversity indicate that 
some phylotypes, such as some of the Methanoncaldococcus, could 
be more sensitive to these stress factors.

A diverse set of potentially bacterial phylotypes were positively 
correlated with increasing concentrations of soluble salts and HM 
in the soils downstream (Supplementary Figure S5), and thus 
could be  targets for future isolation and/or soil management 
efforts. Halotolerant Fusibacter spp. are noted for their capacity to 
tolerate highly saline (Serrano et al., 2017; Selivanova et al., 2018), 
and HM enriched environments (Serrano et al., 2017; Meng et al., 
2021; Ghosh Roy et  al., 2022). Fusibacter spp. are thought to 
contribute to many important agroecosystem services including 
decomposition of SOM (Qiu et  al., 2021), heterotrophic 
denitrification (Han F. et al., 2021), and arsenate/sulfate reduction 
(Wang and Huang, 2021). Nocardioidaceae have previously been 
found to be  among the most dominant phylotypes in wheat 
rhizospheres grown in Islamabad and Azad Jammu and Kashmir 
regions of Pakistan (Latif et al., 2020), and noted for their potential 
PGP capabilities (Yadav et al., 2017). Fibrobacteraceae have also 
been well-documented in many wheat production systems 
(Prudence et al., 2021), but while they are known to efficiently 
utilize wheat root exudates, their exact role in plant–soil systems 
is not yet clear. Limnochordia and Polyangiales have been linked 
with organic management practices commonly used to improve 

soil health in saline soils (Shang et  al., 2020; Yu et  al., 2020). 
Polyangiales are suspected to play an important role in cellulose 
degradation and carbon cycles (Braga et  al., 2021). Finally, 
Isospheraceae have been isolated from extreme environments 
(Hewelke et al., 2020; Kaushik et al., 2020; Morrow et al., 2020), 
but their functional role in soils is still unclear.

A number of other bacterial and archaeal phylotypes such as 
Parcubacteria, Patescibacteria, and Crenarchaeota were also 
positively correlated with salinity and HM 
(Supplementary Figures S5A,B), regardless of their association 
with a particular soil, indicating that they could be broadly adapted 
to soils in this region. Parcubacteria and Patescibacteria are 
members of the novel candidate phyla radiation (CPR), which tend 
to have small-genomes, small cell size, and limited biosynthetic 
capabilities relative to other bacterial groups (Moreira et al., 2021). 
They are suspected to act as predatory bacteria that prey on other 
taxa, thereby helping to keep bacterial populations in check 
(Nelson and Stegen, 2015; Conte et al., 2018; Mora-Ruiz et al., 
2018). They have also been shown to inhabit a diverse range of 
environments including plant rhizospheres, and have diverse 
functional capabilities for carbon (C) and N cycling (Danczak 
et al., 2017; Selivanova et al., 2018; Nicolas et al., 2021). While these 
taxa have not previously been noted to be  adapted to saline 
environment, recent studies indicate that they are influenced by 
HM (Huang et al., 2021; Zhang et al., 2021). Crenarchaeota are 
widely recognized as important ammonium oxidizers in soil 
ecosystems (Treusch et  al., 2005; Nicol and Schleper, 2006; 
Brochier-Armanet et al., 2008). Crenarchaeota have been reported 
in saline soils (Ren et al., 2018), and soils with high concentrations 
of HM (Li et  al., 2020), though others have found them to 
be negatively correlated with salinity (Oueriaghli et al., 2013). This 
could help explain why some Crenarchaeota members were 
classified as characteristic phylotypes in CCS and KSMR.

Several fungal phylotypes including Mortierella, Sistotrema, 
Trichosporon, and Chaetomiaceae, were also positively correlated 
with salinity parameters, regardless of their connections with 
individual soils (Supplementary Figure S5B). The presence of 
Mortierella spp. well documented in saline soils and several studies 
have indicated that they have potential to promote plant growth in 
these systems (Bian et al., 2020; Ozimek and Hanaka, 2020; Sun et al., 
2021). Similarly, Sistotrema spp. (Redou et  al., 2015; Grum-
Grzhimaylo et al., 2018), Trichosporon spp. (Liu et al., 2019; Sun et al., 
2021), and Chaetomiaceae (Castelan-Sanchez et al., 2019), have all 
been reported to tolerate salinity stress and have potential PGP 
activities. Since Sistotrema and Trichosporon were also positively 
correlated with SOM in the present study, future studies should 
consider investigating whether methods that can increase SOM, such 
as growing cover crops or amending soils with composts (Hoagland 
et al., 2008; Rudisill et al., 2015; Reeve et al., 2016; Richardville et al., 
2022), can enhance their populations in these soils.

Unfortunately, not all of the phylotypes with potential PGP 
activities identified in this study were positively correlated with 
salinity and/or HM. For example, Gemmatimonas and Curvularia, 
were more abundant in fields located upstream where salinity and 

https://doi.org/10.3389/fmicb.2022.1020175
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Marghoob et al. 10.3389/fmicb.2022.1020175

Frontiers in Microbiology 13 frontiersin.org

HM levels were much lower (Figure 5). Yue et al. (2020) suggested 
that Gemmatimonas can play important roles in helping plants 
tolerate saline conditions. Curvularia has also been shown to help 
reduce salt stress in plants (Pan et al., 2018), possibly due to the 
capacity of these fungi to produce osmoprotectants (Bengyella et al., 
2019). However, it is important to note that some Curvularia species 
have also been reported to cause diseases in crops like wheat (Sultana 
et al., 2019; Bozoğlu et al., 2022; Tan et al., 2022), consequently, more 
focused studies on the composition and role of individual species of 
Curvularia within these soils are recommended. At the same time, 
identifying ways to promote beneficial populations of Curvularia 
and Gemmatimonas also could be helpful. For example, Li et al. 
(2021) observed greater populations of Gemmatimonas in saline soils 
amended with organic fertilizers, and this was linked to greater 
abiotic stress resistance in crop plants.

All soils contained bacterial communities harboring nifH and 
acdS genes, and distribution patterns suggest that individual taxa 
may be better adapted to different salinity and HM concentrations. 
For example, some Calothrix phylotypes were positively correlated 
with both salinity and HM, as well as low N 
(Supplementary Figure S5B1). Jiang et al. (2019) also noted positive 
correlations between Calothrix and these soil properties, and 
suggested that these cyanobacteria likely play an important role in 
suppling N in habitats with low N fertility. Others have also noted 
that Sphingomonas spp. are highly tolerant of soluble salts and HM, 
and can promote plant growth under these stressful conditions (Asaf 
et al., 2020). Zhihengliuella have also been positively correlated with 
salinity (Chen et al., 2010; Aslam and Ali, 2018; Hajiabadi et al., 
2021), and shown to promote plant growth via their capacity to fix 
atmospheric N, produce ACC deaminase and IAA, and mineralize 
N into plant available forms (Orhan and Demirci, 2020). Many 
Burkholderia spp. have been shown to have potential PGP activities 
(Zhao et al., 2014; Jung et al., 2018; Sarkar et al., 2018), and promote 
plant growth under saline conditions (Sarkar et al., 2018). In this 
study, Burkholderia were positively correlated with HM which is 
consistent with other studies (Li et  al., 2020), but negatively 
correlated with salinity (Supplementary Figure S5B). Finally, two 
bacterial phylotypes, Klebsiella and Azospirillum, which are well 
known for their PGP activity, were negatively correlated with salinity 
in this study (Supplementary Figure S5E2). Others have noted that 
nifH activity in isolates from these genera can be negatively correlated 
with increasing salinity levels (Tripathi et  al., 1998), though 
halotolerant Klebsiella strains linked with high N uptake in plants 
grown under saline conditions have also been isolated (Sharma et al., 
2016). Similarly, a salt-resistant Klebsiella strain isolated from a wheat 
rhizosphere in the Bahawalpur district of Pakistan was shown to 
enhance the growth of this important crop under high salinity 
conditions via the production of exopolysaccharides (EPS) and 
indole acetic acid (IAA), and solubilization of Zn and P (Latif 
et al., 2022).

Predicting metabolic profiles in metagenomic studies using 
bioinformatic software such as PICRUSt2 (Douglas et al., 2020) is a 
robust and comparatively efficient technology in the field of 
microbial ecology, with strong potential to help infer implications of 

stress factors on soil microbial functions (Kori et al., 2019). When 
comparing soils in study, we found that functional capabilities within 
D and PA were positively correlated with salinity and HM (Figure 5), 
indicating that microbes within these soils may have developed 
unique functional capabilities to deal with these stress factors. In 
contrast, CSS and KSMR were positively correlated with SOM and 
N. The reason for these differences is unclear, though since salinity 
(Rath and Rousk, 2015) and HM (Aponte et al., 2020) can play 
significant roles in activities related to SOM decomposition and 
other elemental cycles, it is possible that increasing concentrations 
of salinity and HM are altering the capacity for microbes to influence 
these processes. For example, Wang et al. (2018) observed a negative 
correlation between salinity and denitrifying bacteria harboring the 
nirK gene (Supplementary Table S2). It is unclear why soil D also was 
enriched in nirK, though it is interesting to note that this soil also had 
greater abundance of microbes with the gene for pyrroloquinoline-
quinone synthase (pqqC), and the highest levels of SOM (Table 1). 
The pqqC gene plays a critical role in SOM cycling, and not 
surprisingly, is often linked with greater SOC and total N levels  
(Shi et al., 2022).

Some of the soils in the present study were also linked with 
several genes associated with phosphorous (P) cycling, which is 
consistent with other studies demonstrating that many salt-tolerant 
bacteria with PGP capabilities harbor P solubilizing genes (Dey et al., 
2021). CSS in particular, was linked with greater relative abundance 
of bacteria with alkaline phosphatases (phoA, phoB; 
Supplementary Table S2), which is likely related to the very low P 
level in this soil. In contrast, microbes with several acid-phosphate 
genes (phoN, aphA, appA) were enriched in soil D 
(Supplementary Table S2). It is unclear why these would be enriched 
in this soil given that it also had high pH (Supplementary Table S2), 
but these findings provide further evidence that this soil is unique 
and deserves additional attention in future studies. Unfortunately, 
increasing salinity levels are often associated with decreased activity 
of the enzymes associated with P solubilization (Cortes-Lorenzo 
et  al., 2012), so future efforts to isolate salt and HM-tolerant 
phylotypes that are capable of carrying out this critical agroecosystem 
activity in the presence of these extreme conditions are needed.

Interestingly, several genes associated with siderophore 
production were distinct in some of the soils 
(Supplementary Table S2). For example, microbes with the ferric 
uptake regulator (FUR) gene were enriched in MM. The capacity for 
bacteria to leverage this approach to sequester iron under oxidative 
stress is an important adaptive trait in stressful environments 
(Duangurai et al., 2018; Wang H. et al., 2021). Microbes with genes 
associated with salicylate synthetase (mbtI, Irp9, ybtS) were enriched 
in D, and pchB, which is involved in salicylic acid synthesis, was 
enriched in PA (Supplementary Table S2). The capacity for microbes 
to synthesize secondary metabolites involved in salicylic acid 
production is linked with ferric-chelating siderophores, and can play 
a critical role in help microbes withstand biotic and abiotic stress 
(Gehring et al., 1998; Pelludat et al., 2003; Shelton and Lamb, 2018; 
Mishra and Baek, 2021). In addition, bacterial production of these 
compounds can help promote plant growth under iron-deficient 
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environments (Mishra and Baek, 2021), and is thought to play a 
critical role in helping prevent plant disease (Köhl et  al., 2019). 
Consequently, future efforts to isolate salt and HM-tolerant microbes 
with the capacity to produce these compounds could be very helpful 
in developing future inoculants to promote crop growth.

Finally, the capacity for microbes to thrive in stressful 
environments and promote plant growth will require isolation of 
microbes with high stress tolerance. Interestingly, all soils except 
CSS were enriched in bacteria with the gene for indole-3-glycerol 
phosphate synthase (IGPS), which is associated with tryptophan-
independent indole acetic acid (IAA) production 
(Supplementary Table S2). Upregulation of IGPS under salinity 
stress has been observed in many studies (Ahmad et al., 2020; 
Rangseekaew et  al., 2022), and is thought to be  important in 
helping bacteria tolerate these extreme conditions. IAA is also an 
important plant hormone regulating root growth, and bacterial 
production of this compound has long been associated with 
potential PGP activity (Glick, 2012). Similarly, ACC-deaminase 
production, which is controlled by the gene acdS, is a critical PGP 
trait. D had a greater potential relative abundance of microbes 
with this gene (Supplementary Table S2), so again, this soil 
appears to be a particularly valuable soil for future efforts to isolate 
soil bacteria with PGP capabilities.

Unfortunately, using the FUNGuild tool (Nguyen et al., 2016), 
we noted a negative correlation between salinity and some HM on 
fungi with symbiotrophic activity, and positive correlation 
between pathotrophic fungi and N and some HM within the soils 
of this region (Supplementary Figure S5F1). Relationships 
between fungi with these trophic modes and soil chemical 
properties have been mixed in other studies (Lin et al., 2022; Zhu 
et al., 2022), indicating that other site-specific factors are likely to 
play a role in mediating these dynamics and further research is 
needed to elucidate the mechanisms responsible. Fortunately, 
fungi with saprotrophic capabilities were positively correlated with 
salinity and some metals, providing further evidence of the 
adaptability of this important group of fungi in these soils.

Conclusion

Agricultural fields within the Indus Basin are clearly at risk for 
salinity and HM stress, and farmers need new strategies to protect 
their crops and reduce human health risks. Results of this study 
demonstrate that several farm fields within this region contain 
indigenous microbial flora with unique capabilities to survive 
under these harsh conditions, and some may also be able to help 
promote plant growth. Overall, fields in  location D appear to 
contain microbes with the most unique capabilities, and thus 
would provide a good starting point to begin to try and isolate 
unique taxa for future development as PGP inoculants. At the same 
time, we noted the dominance of microbes that could be a potential 
threat in these systems, as well as situations where microbes with 
well-known PGP capabilities were negatively impacted by salt and 
HM concentrations. Thus, future efforts to isolate and determine 

the exact functional roles of these microbes is recommended, along 
with strategies on how to better promote or prevent their 
abundance using different soil and crop management practices.
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