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Bacteria remodel their plasma membrane lipidome to maintain key biophysical 

attributes in response to ecological disturbances. For Halanaerobium and 

other anaerobic halotolerant taxa that persist in hydraulically fractured deep 

subsurface shale reservoirs, salinity, and hydraulic retention time (HRT) are 

important perturbants of cell membrane structure, yet their effects remain 

poorly understood. Membrane-linked activities underlie in situ microbial 

growth kinetics and physiologies which drive biogeochemical reactions in 

engineered subsurface systems. Hence, we used gas chromatography–mass 

spectrometry (GC–MS) to investigate the effects of salinity and HRT on the 

phospholipid fatty acid composition of H. congolense WG10 and mixed 

enrichment cultures from hydraulically fractured shale wells. We also coupled 

acyl chain remodeling to membrane mechanics by measuring bilayer elasticity 

using atomic force microscopy (AFM). For these experiments, cultures were 

grown in a chemostat vessel operated in continuous flow mode under strict 

anoxia and constant stirring. Our findings show that salinity and HRT induce 

significant changes in membrane fatty acid chemistry of H. congolense 

WG10  in distinct and complementary ways. Notably, under nonoptimal salt 

concentrations (7% and 20% NaCl), H. congolense WG10 elevates the portion 

of polyunsaturated fatty acids (PUFAs) in its membrane, and this results in an 

apparent increase in fluidity (homeoviscous adaptation principle) and thickness. 

Double bond index (DBI) and mean chain length (MCL) were used as proxies 

for membrane fluidity and thickness, respectively. These results provide new 

insight into our understanding of how environmental and engineered factors 

might disrupt the physical and biogeochemical equilibria of fractured shale by 

inducing physiologically relevant changes in the membrane fatty acid chemistry 

of persistent microbial taxa.
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Introduction

Deep subsurface shale is increasingly being engineered in the 
United States (US EIA, 2020) and globally using horizontal drilling 
and hydraulic fracturing, to meet rising demands for energy. Shale 
reservoirs accounted for 79% of total dry natural gas production 
in the US in 2020 and are projected to continue to supply most of 
the dry natural gas through 2050 (US EIA, 2021). During 
hydraulic fracturing, a water-based “fracking” fluid is injected 
downhole to extend fracture networks on low-permeability 
subterranean formations (Stemple et al., 2021). Communities of 
microbes are introduced into engineered shale with prefracturing 
fluid, drilling mud, and impoundment water (Gaspar et al., 2014) 
where they colonize the reservoir (Cluff et al., 2014; Daly et al., 
2016). Over time, they become major drivers of subsurface 
biogeochemistry, with negative consequences for efficient energy 
recovery and ecosystem health, including biofouling (Booker 
et al., 2017) and pore clogging (Jones et al., 2021). Fractured shale 
is a hostile and highly dynamic environment, characterized by a 
myriad of stressors including brine-level salinities. In addition, 
well flow rates vary, due to natural deterioration as well as seasonal 
controls. These unstable environmental and engineered conditions 

perturb the microbiome, necessitating adaptive changes including 
adjustments in plasma membrane features. Microbial activities in 
subsurface energy systems hamper natural gas production, which 
is a cleaner alternative to other fossil fuels such as coal (Hayhoe 
et al., 2002; Jaramillo et al., 2007; Burney, 2020). Therefore, to meet 
the United Nation’s Sustainable Development Goal 7 – affordable 
and clean energy (Racioppi et  al., 2020) – it is imperative to 
advance our understanding of how persistent taxa in underground 
hydrocarbon systems respond to ecosystem changes.

Hydraulic fracturing fluids have relatively low salt 
concentrations, typically <5,000 ppm total dissolved solids (Zeng 
et al., 2020). However, the salinity of flowback and produced 
water, which is co-collected with natural gas, ranges from 40,000 
to 70,000 mg/L (Zolfaghari et  al., 2016), and could be  much 
higher depending on the geochemistry of the formation (Stewart 
et al., 2015). The high salinity of produced water derives from 
several geo-physicochemical mechanisms including mixing of 
fracturing fluids with formation brine (Rowan et al., 2015), and 
dissolution of salts and minerals on fractured surfaces (Ghanbari 
et al., 2013; Ghanbari and Dehghanpour, 2015). Members of 
halotolerant and thermotolerant bacterial and archaeal taxa 
including Halanaerobium, Marinobacter, Methanohalophilus, 
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Methanolobus, Halomonadaceae and Halobacteroidaceae, adapt 
to these subsurface conditions and dominate the fractured shale 
ecosystem (Daly et  al., 2016). The genus Halanaerobium has 
been identified and recovered from several geographically and 
geologically distinct subsurface hydrocarbon reservoirs (Jones 
et al., 2021), indicating it is an important representative taxon in 
these systems for understanding microbial growth kinetics, roles 
in subsurface biogeochemistries and responses to physicochemical  
fluctuations.

Salinity is a topic of global interest (Upadhyay and Chauhan, 
2022), transcending engineered subsurface hydrocarbon systems. 
Notably, salinity affects the productivity of agricultural soils 
(Singh et al., 2022), thus, threatens food security, which is a critical 
United Nation’s Sustainable Development Goal (Upadhyay and 
Chauhan, 2022). Natural causes of soil salinization include 
mineral weathering, dissolution of fossil salts, rain deposition, and 
upwards migration of saline groundwater by capillary action (Das 
et  al., 2020). Moreover, anthropogenic management practices 
especially irrigation, represent a significant source of inorganic 
salts to soils (Yu et al., 2021). Salinity levels beyond their tolerance 
thresholds challenge the viability and physiologies of plants and 
microorganisms, which dominate the biota of the soil matrix. 
Several studies have linked high salinity to reduced microbial 
diversity in forest, desert and agro-based systems (Rath et al., 
2019; Zhang et  al., 2019; Yu et  al., 2021). In addition, the 
availability of micronutrients such as iron (Fe) to plants is impeded 
by high salt levels (Abbas et al., 2015; Singh et al., 2022). Therefore, 
salt tolerance is a highly desirable trait in microorganisms and 
plants in the face of increasing salinization and aridification of 
global soils. Halotolerant and halophilic species are able to sustain 
microbial functions and help plants acquire micronutrients whose 
availabilities are limited in salinity degraded soils (Abbas et al., 
2015; Singh et al., 2022; Upadhyay et al., 2022).

The microbial plasma membrane protects the cell from 
external stressors and mediates critical physiologies, including 
transport, metabolism, signaling, aggregation and cell-surface 
interactions (Hurdle et al., 2011). In most microbes, it makes up 
the cell envelope alongside a peptidoglycan-based cell wall and in 
a few taxa, other structural layers such as the capsule. In Gram 
negative bacteria, a second membrane, regarded as the outer 
membrane (OM) which is rich in lipopolysaccharides, lies outside 
the thin sheet of peptidoglycan. Most archaea have a single 
membrane and are covered by a paracrystalline protein layer 
(Konings et  al., 2002; Albers and Meyer, 2011). The plasma 
membrane is composed of lipids, proteins, and occasionally 
sugars. A unit membrane is basically a fluid matrix of lipids to 
which proteins are either attached loosely or enmeshed – the so 
called “fluid mosaic model” proposed by Singer and Nicolson 
(1972). The main constituents of the bacterial membrane lipidome 
are glycerophospholipids which comprise a hydrophilic polar 
head group covalently linked to hydrophobic fatty acid tails. 
Phospholipid fatty acids (PLFAs) differ in chain length, saturation, 
structural configuration, and functional groups. Membrane 

functions are associated with the activities of peripheral and 
integral proteins, which in turn depend on biophysical properties 
such as phase behavior, bilayer symmetry, viscosity, curvature, 
thickness and elasticity (Chwastek et al., 2020). To a large extent, 
these properties are collectively dictated by the bilayer lipidome 
(Klose et al., 2013).

Microorganisms remodel their membrane lipidome to 
maintain key biophysical properties (Klose et al., 2013; Levental 
et al., 2017; Chwastek et al., 2020) in response to external stressors. 
This involves reconfiguration and reorganization of head groups 
and/or hydrophobic tails. Both fluidity and phase behavior, are 
important for biological membrane function (Winnikoff et al., 
2021). Fluidity affects permeability (Lande et al., 1995) and plays 
an important role in cellular respiration (Budin et al., 2018), while 
phase controls lipid raft (floating microdomain) formation 
(Simons and Vaz, 2004), as well as membrane fusion and budding 
(Siegel and Epand, 1997). Homeoviscous adaptation, the 
biochemical mechanism to maintain cell membrane viscosity, 
mainly depends on the nature of phospholipid fatty acids 
(Winnikoff et al., 2021). Induced changes in membrane fatty acid 
composition are common in microorganisms (Fan and Evans, 
2015; Chwastek et al., 2020; Winnikoff et al., 2021), including 
subsurface-dwelling bacteria (Grossi et al., 2010; Fichtel et al., 
2015; Roumagnac et al., 2020).

The membrane lipids of moderately and extremely halophilic 
bacteria are acutely sensitive to salinity (Kates, 1986). However, 
the effects of salt stress on biological membranes have not been 
studied as extensively as the effects of temperature and pressure. 
In halophilic phototrophic bacteria including Ectothiorhodospira 
sp., Chromatium purpuratum, Rhodobacter adriaticus and 
Rhodopseudomonas marina, salt-induced trends in membrane 
fatty acid composition were dependent on the optimum growth 
salinity (Imhoff and Thiemann, 1991). Suboptimal salt 
concentrations led to acyl chain shortening and increase in 
unsaturation (Imhoff and Thiemann, 1991). In other halotolerant 
bacteria, Vibrio sp. (Hanna et al., 1984) and Planococcus sp. (Miller 
and Leschine, 2005), proportions of branched chain fatty acids 
(BCFAs) and cyclic fatty acids increased with salt concentration. 
These adaptive strategies fluidize the membrane and depress its gel 
point (Kates, 1986; Winnikoff et al., 2021).

In addition to changes in salinity as the shale well develops, the 
flow rate of natural gas and produced water is subject to 
considerable temporal fluctuations. Naturally, constant production 
leads to an exponential decline in natural gas recovery. In addition, 
well flow rates are intentionally adjusted according to energy 
demands from consumers (Sherven et al., 2013). For instance, due 
to lower demands during warmer months, production of natural 
gas and co-eluting fluids are typically reduced by “turning back” 
the well. There is a relationship between well flow rate and fluid 
residence time in hydraulically fractured shale reservoirs, termed 
hydraulic retention time (HRT): HRT is increased by lower flows 
and vice versa. Fluid residence time, in the context of fractured 
subsurface systems and continuous culture reactors, can affect 
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microbial specific growth rate (Rodrigues et al., 2012) and biomass 
yields. However, the effects of HRT on biological membranes, 
especially in high salinity environments, remain largely unexplored.

For Halanaerobium and other persistent microbial taxa of 
fractured shale, salinity, and hydraulic retention time (HRT) are 
important perturbants of cell membrane structure. Hence, 
we investigated the effects of salinity and HRT on membrane fatty 
acid composition and elasticity of Halanaerobium congolense 
WG10 and mixed enrichment cultures from hydraulically 
fractured wells in West Virginia, United States. This study provides 
new insight into our growing understanding of how environmental 
and engineered factors might disrupt the physical and 
biogeochemical equilibria of fractured shale by inducing 
physiologically relevant changes in the membrane fatty acid 
chemistry of persistent microbial taxa.

Materials and methods

Growth experiments

Cultures of Halanaerobium congolense WG10 (NCBI 
Assembly accession number: GCA_900102605.1), previously 
isolated from a Utica-Point Pleasant natural gas well (Booker 
et al., 2017), were grown in triplicate using chemostat bioreactors 
(Sartorius Biostat® Q-plus, Germany) at 40°C under three 
salinities (7%, 13%, and 20%) and three hydraulic retention times 
(HRTs; 19.2, 24, and 48 h). Produced fluid samples were obtained 
from the gas-water separator of hydraulically fractured natural gas 
wells in the Appalachian Basin (Marcellus Shale Energy and 
Environmental Laboratory – MSEEL, Morgantown, WV). The 
fluids were filtered on site using 0.45 μm PES filters (EMD 
Millipore, Burlington, MA, United States) and stored in 1 L sterile 
amber glass containers. Samples were preserved at 4°C until 
analysis. Produced fluid enrichment (mixed) cultures were 
cultivated in triplicate at 40°C under two HRTs (24 h and 48 h). 
For both culture types: eight (8) days after steady state was 
attained, cells were pelleted via centrifugation at 4,000g for 30 min; 
excess supernatant was removed before storage at −80°C. Tubes 
containing frozen cells were recovered and left to thaw at room 
temperature in a laminar flow hood. Then the culture pellets were 
aseptically transferred to a 15 ml muffled glass tube.

Lipid extraction and fatty acid 
methylation

Samples were sequentially extracted ultrasonically according 
to a modified Bligh and Dyer procedure (Bligh and Dyer, 1959) 
using three solvent mixtures – dichloromethane (DCM): methanol 
(MeOH): phosphate buffer, 1:2:0.8 (v/v/v); DCM: MeOH: 
trichloroacetic acid (TCAA) buffer, 1:2:0.8 (v/v/v); and DCM: 
MeOH, 5:1 (v/v; Cequier-Sánchez et al., 2008). Phosphate buffer 
(0.05 M) was prepared by adding 4.35 g of dibasic potassium 

phosphate (K2HPO4) with 500 ml of HPLC-grade water and 
neutralizing to pH 7.4 with 1 N hydrochloric acid. Trichloroacetic 
acid buffer (0.05 M) was prepared by adding 0.8169 g of TCAA 
with 100 ml of HPLC-grade water and neutralized with 10 N 
sodium hydroxide (NaOH) solution to pH of 2.0. Both buffers 
were washed with DCM (5% of buffer volume) by shaking the 
mixture vigorously and storing for 5-h at room temperature to 
allow for complete phase separation.

Exactly 4 ml of DCM: MeOH: phosphate buffer was added to 
the 15 ml tubes containing culture pellets. To this mixture, 50 μl of 
50 pmol per μl of internal standard 1,2-dinonadecanoyl-sn-glycero-
3-phosphocholine (Avanti Polar Lipids) was added. The tube was 
shaken, vortexed for 15 s and sonicated in an ultrasonicator bath 
for 10 min. It was centrifuged for 10 min at 3000 rpm and the 
supernatant was transferred into a muffled 250 ml glass separatory 
funnel. This procedure was repeated once with DCM: MeOH: 
phosphate buffer, and the resulting supernatant was added to the 
same collecting funnel. The samples were then extracted twice each 
with DCM: MeOH: TCAA buffer and DCM: MeOH, following the 
same protocol. The separatory funnel containing the mixture of 
supernatants was shaken vigorously for 15 s and let to rest 
overnight to split phase. The organic phase was collected into 
another muffled separatory funnel, and the aqueous phase was 
re-extracted with DCM. The pool of organic phases was washed 
with HPLC-grade water and evaporated to near dryness with a 
high-purity nitrogen blowdown evaporator at 37°C. The resulting 
total lipid extract (TLE) was reconstituted with 1 ml of hexane and 
stored at −20°C until further use.

Total lipid extracts were sequentially fractionated on an 
activated silicic acid column into fractions of different polarities 
using hexane, chloroform, acetone, and methanol. The methanol 
fraction containing phospholipids was evaporated to dryness 
using a N2 gas blowdown evaporator, then resuspended with 
500 μl of methanol and 1 ml of methanolic potassium hydroxide. 
The mixture was vortexed for 30 s and incubated at 60°C for 
30 min. After cooling, 2 ml of hexane was added prior to 
neutralization with 200 μl of 1 N acetic acid. Then, 2 ml of Milli-
Q® nanopure distilled water was added to break phase. The 
samples were vortexed for 30 s and centrifuged for 5 min at 
2,000 rpm to separate the phases. The upper (organic) phase was 
transferred to a muffled volatile organic carbon (VOC) vial and 
the lower phase was re-extracted with 2 ml of hexane. The solution 
containing fatty acid methyl ester (FAME) extracts was evaporated 
to dryness using a N2 gas blowdown evaporator and redissolved 
in 300 μl of hexane. The hexane containing FAMEs was transferred 
to a GC vial and preserved at −20°C until analysis.

GC–MS analysis, lipid identification, and 
quantification

Aliquots (1 μl) of hexane containing FAMEs were analyzed 
using a Thermo Scientific Trace 1300 gas chromatograph (GC) 
coupled to a Thermo Scientific ISQ 7000 single quadrupole 
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mass spectrometer (MS). The chromatograph was equipped 
with a cyanopropylphenyl-based phase column (TRACE™ 
TR-FAME 30 m, 0.25 mm I.D. × 0.25 μm film thickness), 
specifically designed for the separation of FAMEs. The GC was 
programmed to run at 60°C for 2 min, then the temperature was 
increased at a rate of 10°C per min to 150°C; this was followed 
by a second ramp to 312°C, at 3°C per min. The final operating 
temperatures of the injector and detector were 230°C and 
300°C, respectively.

FAMEs were identified and quantified using the following 
external standards (Matreya LLC, State College, Pennsylvania, 
United States): Bacterial Acid Methyl Ester CP Mixture (BacFAME 
[1114]), Polyunsaturated FAME Mixture 2 (PUFA-2 [1081]) and 
Polyunsaturated FAME Mixture 3 (PUFA-3 [1177]). These 
standards contained FAMEs ranging from 11 to 22 carbons in 
length and had representative saturates, monounsaturates and 
polyunsaturates. Identities of FAMEs were initially checked 
against the NIST17 mass spectral library and confirmed using 
matching external standards. To quantify FAMEs, each peak was 
integrated, and its area was compared to the external standard. For 
FAMEs without matching external standards, the response factor 
(RF) from the most structurally related FAME standard was used 
for quantitation (Lewe et al., 2021).

Calculation of double bond index and 
mean acyl chain length

Double bond index (DBI) reflects the degree of membrane 
phospholipid unsaturation and was calculated using the formula 
(Vornanen et al., 1999):

 

∑( )× ( )( )
∑

number of double bonds in fatty acid abundance mol%

aabundance mol of all fatty acids in the culture sample%( )

Mean chain length (MCL) was calculated as (Vornanen 
et al., 1999):

 

∑( )× ( )(hydrocarbon chain length of fatty acid abundance mol% ))
∑ ( )abundance mol of all fatty acids in the culture sample%

Atomic force microscopy

To determine membrane elasticity, cultures of H. congolense 
WG10 were fixed onto 0.2 μm polycarbonate membranes 
(Sterlitech, Kent, WA) by vacuum filtration at 40 psi. Force 
measurements were performed with MFP-3D-BIOTM Atomic 
Force Microscope in contact or tapping mode, with polystyrene 
particle (25 μm) probes with a spring constant of 165.00 pN/nm 
(Novascan, Boone, IA). A scan rate of 0.15 Hz and a force distance 

of 1.00 μm were applied. Force map was set at a scan size of 
40.00 μm, a scan time of 3.705 min, over a region of four points by 
four points. Measurements were performed in triplicates, and the 
pixels related to bacteria were selected empirically based on the 
range of the elasticity.

Statistical analyses

Peak intensities were converted to molar concentrations using 
standard calibration curves, then normalized to percent 
abundance, sample-wise. All statistical analyses and graphing were 
done in the R environment version 4.1.2. Normality in data 
distribution was evaluated using Shapiro–Wilk test. To statistically 
compare two treatment groups, a two-tailed unpaired Student’s 
t-test was performed. One-way analysis of variance (ANOVA) was 
applied to comparisons of multiple groups using a Tukey’s honest 
significance test (HSD) post-hoc analysis. Variations were 
considered statistically significant at p ≤ 0.05.

Results

Composition of fatty acid methyl esters

We determined relative molar abundances of individual fatty 
acid methyl esters (FAMEs) that underpin the structural effects of 
salinity and HRT on the membranes of these dominant shale taxa. 
Figure  1 shows that in pure cultures of H. congolense WG10 
cultivated at 40°C under three salinities (7%, 13%, and 20%) and 
HRTs (19.2, 24, and 48 h), a total of 39 FAMEs were detected. 
Meanwhile, only 26 FAMEs were found in the produced fluid 
mixed culture samples enriched at the same temperature (40°C) 
under similar HRT gradients (24 and 48 h; Supplementary Table).

Among the 39 fatty acids found in H. congolense WG10 across 
treatment conditions, C14:0 had the highest overall mean 
abundance (~30%). Of the five fatty acid classes identified, 
saturated fatty acid (SFA) was the most abundant (~51%), followed 
by polyunsaturated fatty acid (PUFA; ~26%). For the mixed 
cultures, C13:0 had the highest overall mean abundance (~28%), 
and similar to H. congolense WG10, SFA was the dominant PLFA 
class (~68%).

Only nine (9) out of the 39 fatty acids in H. congolense 
WG10 varied significantly with salinity at constant temperature 
(40°C) and HRT (24 h). Their trends are shown in Figure 2. 
Among these, three monounsaturated FAMEs [C14:1ω5 
(p = 0.018), C15:1ω5c (p = 0.025) and C16:1ω9c (p = 0.023)] 
significantly increased with salinity (Figures  2A–C). Two 
others, C17:0 (p = 0.011) and C20:4ω6 (p = 0.047), significantly 
progressively decreased as salinity increased (Figures 2D,H). 
The rest of the fatty acids that varied (C18:0, C18:1ω7c, 
C18:2ω4 and C22:4ω6c) showed a non-linear pattern of change 
with salinity – an increase in abundance with increase in 
salinity from 7% to 13% NaCl, followed by a decline as salinity 
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was further increased to 20% (Figures 2E–G,I). These results 
imply that unsaturated species are the centerpiece of salinity-
induced adjustments to membrane fatty acid chemistry in 
H. congolense WG10. They also indicate complex metabolic 
exchanges among fatty acids, such as the probable oxidation 
and desaturation of C17:0 fatty acid to form shorter-chained 
monounsaturated moieties under increasing salinities.

None of the 39 fatty acids in H. congolense WG10 varied 
significantly with HRT at constant temperature (40°C) and salinity 
(13% NaCl). Moreover, only one fatty acid, C17:0, showed a 
significant variation with HRT in H. congolense WG10 grown at 
40°C and 7% salinity (data not shown). None of the 26 fatty acids 
found in the mixed cultures varied significantly with HRT (data 
not shown). This suggests that HRT, which controls cellular 
growth rate and extent of exposure to toxic metabolic by-products 
in the reactor, co-ordinately rather than discretely modulates or 

very minimally influences the plasma membrane fatty acid 
composition of shale taxa.

Membrane unsaturation and thickness 
are increased in Halanaerobium 
congolense WG10 under nonoptimal 
salinities, but are variably affected by 
HRT

Figure 3 shows the effects of salinity and HRT on the mean 
chain length (MCL) and double bond index (DBI) of membrane 
phospholipids in H. congolense WG10. Both parameters varied 
significantly with salinity at constant growth temperature (40°C) 
and HRT (24 h; Figure 3A). As salinity increased from 7% to 13% 
NaCl, there was a significant decrease in both mean chain length 

FIGURE 1

Heatmap distribution of individual phospholipid fatty acids in Halanaerobium congolense WG10 and fluid enrichment (mixed) cultures grown at 
40°C under different salinities and HRTs. Fatty acids are sorted by class, then chain length and number of double bonds.
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(p = 0.0003) and DBI (p = 0.009). However, a further increase in 
salt concentration from 13% to 20% produced the opposite effect, 
where both mean chain length and DBI increased. There was no 
significant difference in chain length or DBI between the two 
nonoptimal salinity conditions (7% and 20%). Halanaerobium 
congolense WG10 also adjusted the mean chain length and DBI of 
its membrane phospholipids in response to HRT at constant 
temperature (40°C) and salinity (7% or 13%). At 7%, MCL and 
DBI significantly decreased with HRT (Figure 3B), while at 13% 
salinity, H. congolense WG10 significantly increased the MCL and 
DBI of its membrane as HRT increased (Figure 3C). There was no 
significant variation in either MCL or DBI with HRT (24 versus 
48 h) in the mixed cultures (Supplementary Figure S1).

SFAs and MUFAs in the plasma 
membrane of Halanaerobium 
congolense WG10 are exchanged for 
PUFAs under nonoptimal salinities

We examined the effects of salinity and HRT on the relative 
molar abundances of each of five major fatty acid classes: 
saturated, monounsaturated, polyunsaturated, branched chain 
and cyclic. As shown in Figure 4, a significant increase in the 
membrane saturated fatty acid (SFA; p = 0.03) content of 
H. congolense WG10 was observed when salinity was increased 
from 7% to 13% NaCl. This was accompanied by a more significant 
decline (p = 0.006) in the polyunsaturated fatty acid (PUFA) 

A B C

D E F

G H I

FIGURE 2

Membrane-derived fatty acids that significantly varied with salinity in H. congolense WG10. (A) 14:1ω5; (B) 15:1ω5c; (C) 16:1ω9c; (D) 17:0; (E) 18:0; 
(F) 18:1ω7c; (G) 18:2ω4; (H) 20:4ω6; (I) 22:4ω6c. Fatty acids are arranged by chain length then by number of double bonds. p-Values are obtained 
from one-way ANOVA of independent groups. Variation is considered significant at α ≤ 0.05.
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fraction. With a further increase in salinity from 13% to 20%, SFA 
significantly dropped (p = 0.046) while PUFA increased (p = 0.017). 
The membrane monounsaturated fatty acid (MUFA) composition 
of H. congolense WG10 varied similarly as the SFA fraction, except 
that its decline as salinity increased from 13% to 20% was not 
statistically significant. There was no significant variation in all 
three PLFA classes between 7% and 20% salinities. Changes in the 
molar abundances of branched chain fatty acids (BCFAs) and 
cyclic fatty acids, with salinity, were not statistically significant.

Membrane SFA and MUFA compositions of H. congolense 
WG10 grown at constant temperature (40°C) and salinity (7%), 
increased significantly as HRT was increased from 24 to 48 h. This 
was accompanied by a significant decline (p = 0.016) in the PUFA 
content (Figure 5A). Relative molar abundances of both BCFA 
and cyclic FA did not significantly vary with HRT (data not 

shown). In contrast, when grown at the same temperature and 
13% NaCl, none of the membrane fatty acid classes in H. congolense 
WG10 varied significantly with HRT, except for PUFA whose 
abundance significantly increased as HRT was increased from 24 
to 48 h (Figure 5B). For the mixed cultures, HRT did not produce 
significant variations in the molar abundances of any of the fatty 
acid classes (Supplementary Figure S2).

Membrane elasticity in Halanaerobium 
congolense WG10 does not significantly 
vary with salinity and HRT

To couple changes in fatty acid composition to a 
physiologically-relevant aspect of membrane mechanics, 
we measured the bilayer elasticity of H. congolense WG10 grown 
at 40°C under varying salnities (7%, 13%, and 20% NaCl) and 
hydraulic retention times (19.2, 24, and 48 h), using atomic force 
microscopy (data not shown). ANOVA revealed that neither 
salinity nor HRT induced significant changes in membrane 
elasticity. However, mean Young’s Modulus (a measure of stiffness) 
at 13% salinity was considerably lower than at 7% and 20%, a 
similar pattern of variation with membrane polyunsaturated fatty 
acid composition, suggesting that PUFA modulates membrane 
elasitcity in H. congolense WG10.

Discussion

Salinity and hydraulic retention time 
influence membrane fatty acid chemistry 
in Halanaerobium congolense WG10

Our findings show that Halanaerobium congolense WG10 
remodels its membrane fatty acid composition in response to 
variations in salinity and hydraulic retention time (HRT). To 
curtail the confounding effect of changes in the microbial lipidome 
due to growth phase progression (Berezhnoy et al., 2022) rather 
than induced by bioreactor growth conditions, we  used a 
chemostat system for culture cultivation and harvested cells after 
they had attained steady state at which point, the specific growth 
rate is constant and equal to the dilution rate. Being a continuous 
culture system, cultures were sustained in a prolonged exponential 
growth phase until harvested at steady state. In general, salinity 
had a more pronounced and consistent impact than HRT. We used 
mean chain length (MCL) and double bond index (DBI; Figure 3) 
as proxies to quantify the effects of both perturbants on critical 
aspects of cell membrane structure and properties, in lieu of 
biophysical experimentation. DBI is a measure of degree of 
unsaturation and by implication bilayer viscosity/fluidity 
(Berezhnoy et  al., 2022). Chain length, on the other hand, 
estimates membrane thickness. Fluidity and thickness affect the 
biological functions of the membrane. Salinity and HRT induced 
significant changes in membrane fatty acid composition of 

A B

C D

E F

FIGURE 3

Mean chain length (MCL) and double bond index (DBI) of 
membrane phospholipids in H. congolense WG10 responded 
distinctly to salinity (A,B) and hydraulic retention time (HRT). The 
effect of HRT was evaluated at two discrete salinities – 7% (C,D) 
and 13% (E,F). p-Values are obtained from one-way ANOVA of 
multiple independent groups or Student’s t-test of two 
independent groups. Variation is considered statistically 
significant at α ≤ 0.05.
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H. congolense WG10 which reflected on mean chain length and 
DBI. Accordingly, the membrane appeared to be thicker and more 
fluid under low (7% NaCl) and high salt stresses (20% NaCl), 
compared to optimal salinity (13% NaCl). Also, at optimal salinity, 
membrane thickness and fluidity increased with HRT. The specific 
growth rate of cultures in a chemostat is lower at higher 
HRT. Therefore, our fluidity trend observation contrasts in 
principle with the findings of a prior study which reported that 
saturated fatty acid (SFA)/double bond equivalent (DBE) ratio 
increased as the growth rates of two E. coli strains plateaued into 
the stationary phase (Berezhnoy et al., 2022). This indicates that, 
in the current study, because growth rate variations were 
domiciled within the prolonged log phase, membrane lipidome 
changes is due to other growth-related metabolic distresses rather 
than stationarity. Taken together, our findings imply that a thicker 
and fluidized membrane is essential to effective adaptation of 
H. congolense WG10 to osmotic and metabolic stresses. In 
contrast, membrane fatty acid composition of the mixed cultures 

of persistent shale taxa was not significantly altered by HRT 
(Supplementary Figures). It is rational to think that in general, 
shale microbial communities are better able to resist the impacts 
of ecological disturbances (external stressors) than isolated 
species, hence the minimal adaptive changes in membrane  
chemistry.

Thirty-nine (39) phospholipid fatty acids were found at variable 
abundances in H. congolense WG10 grown at 40°C under different 
salinities (7%, 13%, and 20%) and hydraulic retention times (19.2, 24, 
and 48 h; Figure 1). These fatty acids belong to five classes – saturated 
fatty acid (SFA), monounsaturated fatty acid (MUFA), 
polyunsaturated fatty acid (PUFA), branched chain fatty acid (BCFA) 
and cyclic fatty acid (CFA). The relatively low amounts of BCFAs and 
CFAs could be due to the maintenance of cultures in a prolonged 
exponential growth phase in the chemostats. Cyclopropanation has 
been reported to increase with growth progression in E. coli such that 
the lipidome is dominated by lipids with CFA chains during the late 
stationary phase (Berezhnoy et al., 2022). Only 26 of these 39 fatty 

A

D E

B C

FIGURE 4

Variations in molar abundances of membrane phospholipid fatty acid classes in H. congolense WG10 with salinity at constant temperature (40°C) 
and HRT (24 h). p-Values are obtained from one-way ANOVA of independent groups. Variation is considered significant at α ≤ 0.05. SFA, Saturated 
fatty acid; MUFA, Monounsaturated fatty acid; PUFA, Polyunsaturated fatty acid; BCFA, Branched chain fatty acid; CyclicFA, Cyclic fatty acid.
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acids were found in the mixed culture samples grown at 40°C under 
varying HRTs (24 and 48 h; Figure 1). We believe that the fatty acid 
compositional trends observed in these shale taxa are mainly driven 
by lipid metabolism as opposed to “diet.” Metabolic pathways for fatty 
acid biosynthesis and post-synthetic modifications exist in bacteria 
and begin with the conversion of acetyl-CoA to malonyl-CoA 
(Cronan and Thomas, 2009). After malonyl-CoA condenses with an 
acyl carrier protein (ACP), the central pathway devolves into several 
branches that lead to the synthesis of major fatty acids. Fatty acid 
metabolism in all organisms is globally regulated at various genetic 
and metabolic levels (Fujita et  al., 2007). Faced with changing 
subsurface conditions, H. congolense WG10 and other persistent shale 
taxa potentially deploy these regulatory mechanisms to modulate 
fatty acid composition, to maintain functionally-relevant biophysical 
properties of the plasma membrane.

Membrane polyunsaturated fatty acid (PUFA) composition 
did not correlate with salinity in H. congolense WG10 grown 
at 40°C and 24 h HRT. Bilayer PUFA abundance during growth 
at 13% NaCl was significantly lower than at 7% and 20% 
(Figure 4). Considering that 13% is the optimal growth salinity, 
this trend indicates that H. congolense WG10 adapts to low 
(7%) and high (20%) salt stress by increasing its membrane 
PUFA composition. Similarly, a halotolerant bacterium, 
Rhodococcus erythropolis, had significantly higher amounts of 
membrane derived PUFAs when grown under low (1%) and 
high (7.5%) osmotic stress, compared to growth at optimal 
salinity (2.5%; de Carvalho et al., 2014). The observation that 
none of the individual PUFAs which varied significantly with 
salinity in H. congolense WG10 (C18:2ω4, C20:4ω6, and 
C22:4ω6c) followed this trend (Figure 2) suggests that they 

A B C

D E F

FIGURE 5

Variations in abundances of membrane PLFA classes in H. congolense WG10 with hydraulic retention time at constant temperature (40°C), 
evaluated at two different salinities – 7% (A–C) and 13% (D–F). p-Values are obtained from student’s t-test of independent groups. Variation is 
considered significant at α ≤ 0.05. SFA, Saturated fatty acid; MUFA, Monounsaturated fatty acid; PUFA, Polyunsaturated fatty acid.
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might be functionally interchangeable and regulated as a group 
rather than as discrete entities (Winnikoff et al., 2021).

Previously thought incapable (Okuyama et al., 2007), bacteria 
(especially halophiles and psychrophiles) are now well known to 
incorporate polyunsaturated fatty acids (PUFAs) into their membrane 
lipidome (Russel and Nichols, 1999; Nichols and McMeekin, 2002; 
Jadhav et  al., 2010; de Carvalho et  al., 2014; Moi et  al., 2018). 
Accordingly, we found 14 PUFAs in H. congolense WG10 and 10 in 
the mixed cultures. Their chain lengths ranged from 18 to 22 and 
number of double bonds varied from 2 to 6. We believe functional 
metabolic pathways for de novo synthesis of PUFAs exist in these 
persistent shale taxa. Generally, there are two pathways for PUFA 
synthesis in bacteria – aerobic and anaerobic. The aerobic mechanism 
begins with a saturated fatty acid and involves repeating steps of 
desaturation and elongation (Zhu et al., 2006). On the other hand, the 
anaerobic pathway involves the actions of polyketide synthase (PKS)-
related enzymes, also called PUFA synthases (Zhang et al., 2021). A 
combination of genetic and biochemical approaches is required to 
confirm the existence and operation of one or both pathways in 
H. congolense WG10. Meanwhile, an NCBI nucleotide search 
confirmed the presence of a regulator of polyketide synthase 
expression gene (GenBank: PUU90574.1) in a metagenome-
assembled genome (MAG) belonging to Halanaerobium sp. isolated 
from a hydraulically fractured shale well, suggesting this pathway may 
exist in this genus.

Shale microbes may also possibly acquire exogenous 
polyunsaturated fatty acids (PUFAs) from their surroundings. 
This scavenging behavior is not unthinkable among microbes and 
have been reported in several bacterial species including 
halotolerant Vibrio (Smith et al., 2021), as well as Pseudomonas, 
Acinetobacter, Escherichia and Klebsiella (Eder et  al., 2017; 
Moravec et  al., 2017; Baker et  al., 2018; Hobby et  al., 2019; 
Herndon et  al., 2020; Zang et  al., 2021). In this hypothetical 
scenario, exogenous PUFAs would likely come from the oil and 
gas reservoirs. Organisms of the candidate phyla radiation (CPR) 
and DPANN radiation residing within the deep continental 
subsurface have been suggested to scavenge, use and modify 
molecular lipids from external sources (Probst et al., 2020).

The effects of HRT (24 and 48 h) on membrane PUFA 
composition of H. congolense WG10 is discriminated by salinity 
(Figure  5). When growing at 7% NaCl, total PUFA abundance 
declines significantly with HRT whereas at 13%, it increases with 
HRT. Hydraulic retention time (HRT) – the inverse of dilution rate 
– is a critical microbial growth parameter in continuous culture 
systems. At abnormally high HRT (in this case 48 h), the dilution rate 
likely falls below the bacterium’s maximum specific growth rate, 
upsetting the exponential phase dynamics. Despite being a self-
adjusting system, with longer medium residence time in the 
chemostat, there is substrate depletion and possibly accumulation of 
toxic metabolic by-products (Foustoukos and Pérez-Rodríguez, 
2015). These conditions exert physiological stress on H. congolense 
WG10, prompting membrane acyl chain remodeling to achieve 
desired biophysical attributes of the bilayer. This translates to 
increasing membrane PUFA composition when growing at optimal 

salinity (13% NaCl), but the opposite when subjected to hypoosmotic 
stress (7% NaCl; Figure  5). We  are not exactly sure why this 
discrepancy exists.

Like PUFA, membrane saturated fatty acid (SFA) and 
monounsaturated fatty acid (MUFA) compositions of H. congolense 
WG10 did not correlate with salinity at constant temperature (40°C) 
and HRT (24 h). However, unlike PUFA, molar abundances of SFA 
and MUFA at 13% NaCl were significantly higher than at 7% and 
20% (Figure 4). This inverse relationship between PUFA and SFA/
MUFA implies that when confronting low (7%) or high (20%) salt 
stress, H. congolense WG10 exchanges significant amounts of SFAs 
and MUFAs in its membrane lipidome with PUFAs. This exact same 
response was reported in the halotolerant bacteria, Rhodococcus 
erythropolis (de Carvalho et al., 2014). Similarly, in H. congolense 
WG10 growing at optimal salinity (13%), membrane PUFA 
composition was significantly increased under high HRT, even 
though concomitant reductions in the abundances of SFAs and 
MUFAs were not statistically significant (Figure 5B).

It is our hypothesis that, just like other bacteria (de Carvalho 
et al., 2014), H. congolense WG10 constitutively expresses desaturases 
and elongases, which are quickly activated when needed to convert 
saturated and monounsaturated fatty acids to polyunsaturated fatty 
acids. We believe that stearoyl-CoA desaturase plays a key role in 
membrane PUFA biosynthesis in H. congolense WG10 growing under 
salt-stressed conditions, based on the observation that out of the 7 
SFAs and MUFAs that varied significantly with salinity (Figure 2), 
only C18 fatty acids – C18:0 and C18:1ω7c – were downregulated at 
7% and 20% salinity compared to 13%. (Figure 2). Stearoyl-CoA 
desaturase introduces double bonds into C18 fatty acyl chains. Many 
marine bacteria express elongases and desaturases, including the 
soluble stearoyl-CoA desaturase and membrane-bound acyl-CoA 
desaturases (Moi et al., 2018; Berezhnoy et al., 2022).

Rationalizing membrane acyl chain 
remodeling in Halanaerobium 
congolense WG10

Now, we turn to common hypotheses of membrane lipidome 
remodeling to attempt a rationalization of the responses of 
H. congolense WG10 to changes in salinity and hydraulic retention 
time (HRT). Both factors are relevant for hydraulic fracturing of deep 
subsurface shale and appeared to exert selective forces on membrane 
fatty acid composition of H. congolense WG10. First, our findings 
seem to align with the homeoviscous principle, which argues that 
membrane lipidome remodeling is driven by the need to maintain 
fluidity within a narrow range (Sinensky, 1974; Ernst et al., 2016). 
We quantitatively estimated degree of unsaturation as double bond 
index (DBI). Higher DBI connotes higher unsaturation and by 
implication lower viscosity/higher fluidity (Berezhnoy et al., 2022). 
Due to kinks in their hydrocarbon chains caused by the presence of 
double bonds, unsaturated fatty acids pack at relatively low densities, 
hence, promote membrane transition to the disordered liquid-
crystalline phase. As shown in Figure 3, H. congolense WG10 adapted 
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to low and high salt stress by further desaturating its membrane 
lipidome thereby increasing the fluidity of the bilayer matrix. This was 
also the response when the cells were challenged by an abnormally 
high hydraulic retention time (HRT) when growing at optimal 
temperature and salinity (Figure 3B). Fluidity determines ease of 
lateral diffusion of macromolecules in the bilayer matrix (Ballweg 
et al., 2020), and hence affects the spatial orientation, folding and 
functions of membrane proteins. Perhaps, H. congolense WG10 
increases bilayer fluidity to spatially reorient thus functionalize or 
inhibit a cohort of membrane proteins such as sensors, kinases, 
channels, and transporters. Moreover, under high salinity stress, an 
increase in membrane fluidity might be necessary to counteract the 
gelation effect of monovalent cations (Russell, 1989; Seddon, 1990; 
Imhoff and Thiemann, 1991). However, the homeoviscous principle 
does not explain why H. congolense WG10 opted to increase 
membrane fluidity with polyunsaturated fatty acids (PUFAs) and not 
monounsaturated fatty acids. In fact, monounsaturation is sufficient 
for a bacterium to achieve its desired level of bilayer fluidity as 
introducing more than one double bond into a membrane fatty acid 
moiety exerts no additive effect on liquid-crystalline to gel transition 
(Russel and Nichols, 1999).

This gap in logic can be filled by the second hypothesis of 
membrane lipidome remodeling – the homeophasic principle. 
This principle holds that lipidome readjustment is geared toward 
controlling phase behavior (Linden et al., 1973). Membrane lipids 
can self-assemble into other supramolecular structures besides the 
bilayer, including micelles, cubic and hexagonal phases (Ernst 
et  al., 2016). Predominance of non-bilayer phases negatively 
affects the biophysical properties and functions of the membrane 
(Russel and Nichols, 1999). While monounsaturated 
phospholipids favor the formation of non-bilayer phases, PUFAs 
allow just enough molecular motion to provide fluidity while 
preventing deleterious transition to inverted phases (Russel and 
Nichols, 1999). Therefore, it is apparent that H. congolense WG10 
achieves sufficient fluidity while maintaining its bilayer structure 
under stress by increasing membrane PUFA composition.

Beyond regulating fluidity and phase behavior, PUFAs are 
known to alter other mechanical and biophysical properties of the 
membrane, including elasticity, thickness and curvature (Bruno 
et al., 2007). Membrane elasticity of H. congolense WG10, which 
we  experimentally measured using atomic force microscopy 
(AFM), did not significantly vary with either HRT or salinity. On 
the other hand, we used mean phospholipid chain length as a 
quantitative estimate of bilayer thickness and found it to 
be significantly variant and positively correlated with membrane 
PUFA composition across gradients of salinity and hydraulic 
retention time (Figures 3–5). Hydrophobic thickness of bilayer 
membranes affects bending rigidity (Bermúdez et  al., 2004), 
permeability (Discher et al., 1999) and elasticity (Bermudez et al., 
2002). These properties, in turn, modulate the configuration and 
functions of membrane proteins including transporters and 
channels (Bruno et al., 2007). Hence, through several possible 
mechanistic and chemical processes, polyunsaturated fatty acids 
stabilize the bilayer membrane of H. congolense WG10 and endow 

it with biophysical attributes needed for adaptation to salinity-and 
HRT-induced perturbations. Differential gene expression analysis, 
proteomics and/or lipidomics investigations would shed more 
light on these underlying mechanisms.

Conclusion

For H. congolense WG10 which persists in hydraulically 
fractured shale wells, salinity and hydraulic retention time (HRT) 
significantly influence membrane fatty acid composition and 
mechanics, and therefore, alter bilayer biophysics. Under 
non-optimal salinities, H. congolense WG10 increases the fluidity 
and thickness of the plasma membrane by elevating its PUFA 
composition. On the other hand, the effects of HRT on membrane 
fatty acid chemistry in H. congolense is less pronounced and 
discriminated by salinity level. The functions of the membrane, 
which include transport, metabolism, respiration, and cell-surface 
interactions, rely on the maintenance of optimal biophysical states. 
This study has demonstrated, under a simulated laboratory 
setting, how salinity and well flow rates affect the plasma 
membrane fatty acid chemistry of persistent shale taxa. This 
fundamental mechanistic insight will underlie efforts toward 
advancing our understanding of how environmental and 
engineered factors influence the physical and biogeochemical 
equilibria of subsurface hydrocarbon systems by inducing 
physiologically relevant changes in membrane features of 
resident taxa.
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