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Since the outbreak of COVID-19, hundreds of millions of people have been

infected, causing millions of deaths, and resulting in a heavy impact on

the daily life of countless people. Accurately identifying patients and taking

timely isolation measures are necessary ways to stop the spread of COVID-

19. Besides the nucleic acid test, lung CT image detection is also a path to

quickly identify COVID-19 patients. In this context, deep learning technology

can help radiologists identify COVID-19 patients from CT images rapidly. In

this paper, we propose a deep learning ensemble framework called VitCNX

which combines Vision Transformer and ConvNeXt for COVID-19 CT image

identification. We compared our proposed model VitCNX with E�cientNetV2,

DenseNet, ResNet-50, and Swin-Transformer which are state-of-the-art deep

learning models in the field of image classification, and two individual models

which we used for the ensemble (Vision Transformer and ConvNeXt) in binary

and three-classification experiments. In the binary classification experiment,

VitCNX achieves the best recall of 0.9907, accuracy of 0.9821, F1-score of

0.9855, AUC of 0.9985, and AUPR of 0.9991, which outperforms the other

six models. Equally, in the three-classification experiment, VitCNX computes

the best precision of 0.9668, an accuracy of 0.9696, and an F1-score of

0.9631, further demonstrating its excellent image classification capability. We

hope our proposed VitCNX model could contribute to the recognition of

COVID-19 patients.
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Introduction

In March 2020, the World Health Organization declared

COVID-19 as an international pandemic disease due to its

rapid and strong transmission (Cascella et al., 2022). Until

22 April 2022, the pandemic has caused about 6.213 million

deaths worldwide, over 505.8 million people have been infected

with this virus, and there are up to ∼700 thousand new cases

within 24 h of that time (Geneva: World Health Organization,

2020; Wang et al., 2021). Different from SARS, the new

coronavirus did not disappear quickly or cause limited losses

(Stadler et al., 2003). On the contrary, its Delta and Omicron

variants induced new pandemics worldwide after multiple

mutations (Vasireddy et al., 2021; V’kovski et al., 2021; Yu

et al., 2021; Del Rio et al., 2022). It has also caused a sustained

impact on the global economy. Long-term shutdowns left many

people unemployed.Many countries enforced lockdowns during

periodical outbreaks, which resulted in a global economic

recession (Alshater et al., 2021; Padhan and Prabheesh, 2021).

Although vaccines have been researched and developed to

prevent COVID-19 transmission to a certain extent, there is still

a need to adopt various methods to detect the virus and prevent

its spread.

As a highly contagious respiratory disease, the clinical

symptoms of COVID-19 are similar to the common flu and

common pneumonia, for instance, coughing, dyspnea, dizziness,

and some mild symptoms (Zhang et al., 2020). But the patient

infected by the novel coronavirusmay deteriorate into fatal acute

respiratory distress syndrome in a very short period of time

(Guan, 2020). As a result, it greatly increases the difficulty of

its early detection and places higher demands on the healthcare

system for its treatment. Therefore, the efficient and accurate

identification of COVID-19 in patients has become a key to

preventing its spread. The nucleic acid test is currently the most

widely used due to its high accuracy, simple operation, and low

cost (Tahamtan and Ardebili, 2020). But the paucity of standard

laboratory environments with specially trained staff has limited

the entire testing process.

As an alternative, the non-invasive detection technology,

Computed Tomography (CT) provides a new rapid detection

method for detecting COVID-19. After the patient has

undergone a lung CT scan, experienced radiologists can quickly

find typical lesions in the patient’s lungs, such as ground-glass

opacity, consolidation, and interlobular interstitial thickening by

reading the CT images (Chung et al., 2020; Xu et al., 2020). We

can also detect COVID-19 in a short time by combining patients’

clinical symptoms and investigating recent social situations

using epidemiological survey methods. It can help medical

workers and epidemic management departments to quickly deal

with patients and deploy new prevention and control strategies,

and thus intervene in the treatment of patients as early as

possible to control its contagion.

However, during the initial stage of the epidemic outbreak,

the massive influx of patients often means medical staff and

healthcare professionals have to work 24 h a day, which has a bad

effect on the physical and mental health of doctors and affects

the accuracy and efficiency of the medical diagnosis (Zhan

et al., 2021). Alternatively, artificial intelligence technology

is a quite efficient strategy and obtains wide application in

various fields (Chen et al., 2019; Liu et al., 2021a, 2022a,b; Tang

et al., 2021; Wang et al., 2021; Zhang et al., 2021; Liang et al.,

2022; Sun et al., 2022; Yang et al., 2022), and can be used to

complement the work of radiologists. It can efficiently assist

medical staff in judging symptoms, for example, pre-classifying

pathological images or predicting sampling results, and thus

can greatly reduce their working intensity. Particularly, deep

learning has achieved optimal performance in medical image

processing (Munir et al., 2019). For instance, Sohail et al.

(2021) used a modified deep residual neural network to detect

pathological tissue images of breast cancer and implemented

automated tumor grading by detecting cell mitosis. Similarly,

Codella et al. (2017) introduced a deep ensemble model

for pathological image segmentation of skin cancer and the

detection of melanoma to improve the detection efficiency of

skin cancer. Dou et al. (2016) established a three-dimensional

multi-layer convolution model to detect pulmonary nodules in

lung stereoscopic CT images, thereby reducing the false positive

rate of automated pulmonary nodule detection. Farooq and

Hafeez (2020) proposed a ResNet-based COVID-19 screening

system to assist radiologists to diagnose. Aslan et al. (2021)

developed a new type of COVID-19 infection detection system

based on convolutional neural networks (CNN) by combining

the long short-term memory (LSTM) network model. These

methods effectively improved the identification performance of

COVID-19-related CT images. In this paper, we propose a deep-

learning ensemble model by integrating Vision Transformer

(Dou et al., 2016) and ConvNeXt (Liu et al., 2022c) to effectively

improve the prediction accuracy of COVID-19-related

CT images.

Materials and methods

Materials

We constructed a comprehensive dataset by integrating and

screening data from three lung CT datasets (Soares et al., 2020;

Yang et al., 2020). Dataset 1 contained a total of 4,171 images,

where 2,167 images were from COVID-19 patients, 757 were

from healthy people, and 1,247 were from other pneumonia

patients. Dataset 2 contained a total of 2,481 images, where

1,252 images were from COVID-19 patients, and 1,229 were

from healthy people; both datasets 1 and 2 were from São Paulo,

Brazil. Dataset 3 was fromWuhan, China, and included 746 CT
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images, of which 349 were from COVID-19 patients and 397

were from healthy people. Using these datasets we constructed

an integrated dataset with a total of 7,398 CT images, which

had 3,768 CT images of COVID-19 patients, 2,383 healthy CT

images, and 1,247 CT images of other pneumonia patients.

Methods

We investigated various CNN and transformer models and

chose Vision Transformer and ConvNeXt as the basic classifier

of the ensemble model.

Vision transformer

Transformers have been widely used in the natural language

processing field since it was proposed in 2017 (Vaswani et al.,

2017). It constructs basic decoder units by connecting the

feed-forward neural network and the self-attention mechanism

(Bahdanau et al., 2014), as well as adding an encoder-

decoder self-attention layer between the two network structures.

It creates a brand-new structure that differs from CNN

while obtaining relatively high accuracy. The self-attention

mechanism used in the transformer first converts the input text

into an embedding vector based on word embedding progress.

Next, the obtained embedding vectors are used as inputs (named

Queries, Keys, and Values) of the self-attention mechanism by a

series of multiplication operations. Finally, the output of the self-

attention layer is computed using Equation (1) and is fed to the

next fully connected layer.

Attention (Q,K,V) = softmax

(

QKT

√

dk

)

V (1)

dk = dim (K)

In 2020, Dosovitskiy et al. built Vision Transformer for

image classification. It achieved powerful classification ability

comparable to the top CNN models on multiple datasets

(CIFAR-100, ImageNet, etc.) (Dosovitskiy et al., 2020).

As shown in Figure 1, the main architecture of the Vision

Transformer model is mainly composed of three parts: First is

the embedding layer which is used to convert an image into

a vector that the transformer encoder can recognize. It also

plays a role in embedding position information. The second

is the transformer encoder layer which is used to extract

features. Finally, a multi-layer perceptron head is used to feature

dimension reduction and classify images.

The embedding layer

We used Vision Transformer-B/16-224 to classify COVID-

19-related images. The procedure for embedding the layer

is shown in Figure 2. First, an original image is resized to

the following dimensions: 224∗224∗3. Second, the image is

segmented into blocks of 16∗16∗3 according to the VIT-B/16-

224 configuration, thereby generating 14∗14 = 196 (224/16 =

14) blocks. Third, each block is mapped on a 768-dimensional

vector through linear mapping. Finally, a matrix of 196∗768 size

is obtained as the basic input token.

In the original transformer model, all vectors need to embed

position vectors to represent the spatiotemporal information

of the original input. Similarly, Vision Transformer takes the

location information as a trainable parameter and adds it to

the token after the image is converted into a vector. The token

is extended by one dimension, and a trainable parameter that

represents the class or label is added to this new dimension to

represent the original class or label of the token for training. The

obtained final vector is input into the Transformer Encoder as

a token.

Transformer encoder layer

As shown in Figure 3, the encoder layer mainly includes

layer normalization (LN), multi-head attention (MHA) block,

dropout, and multi-layer perceptron (MLP) block. The core of

this structure is the parallel attention mechanism processing

layer called multi-head attention. First, the input token matrix is

normalized through layer normalization. Second, three matrices

Q, K, and V are obtained by multiplying WQand WK , which

are the same as the self-attention module. Third, Q, K, and

V are divided into a matrix equal to the number of heads h

by multiples ofW
Q
i ,W

K
i ,W

V
i . The corresponding Qi, Ki, Vi

matrix of each head is then used to compute the respective

attention score using Equation (2):

headi = Attention
(

QW
Q
i ,KW

K
i ,VW

V
i

)

(2)

W
Q
i ∈ R

dmodel×dq ,WK
i ∈ R

dmodel×dk ,WV
i ∈ R

dmodel×dv ,

dq = dk = dv = dmodel/h

Finally, the output of the MHA layer is obtained by

concatenating all heads and multiplying a matrix-like full

connection using Equation (3):

MultiHead(Q,K,V) = Concat
(

head1, . . . , headh
)

Wo (3)

Wo
∈ R

hdv×dmodel

The output of the entire transformer encoder layer can be

obtained through a residual connection both before and after the

MHA andMLP layers. And the encoder layer of the entire model

is usually formed by stacking multiple transformer encoders.

MLP head

The main role of the MLP head is to obtain the high-

dimensional features and obtain the final classification result.
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FIGURE 1

Concise structure of Vision Transformer.

FIGURE 2

Structure of embedding layer in Vision Transformer. The darker green wider rectangles represent the flattened feature vector of each block of an

image, while the pink wider rectangles represent the feature vectors corresponding to classes, and the brown narrower rectangle represents the

spatiotemporal information of the image.

The outputs of the transformer encoder layer (197∗768 in VIT

B16/224) are used to compute the classification probability of an

image. That is, the output of the transformer encoder layer is

a 197∗768 matrix, whose sizes are the same as the input of the

transformer encoder layer. Finally, only one 768-dimensional

vector is used as the input for the MLP head to obtain the

classification result of an image corresponding to the matrix.

ConvNeXt

CNN is a classic neural network structure. Lenet was used

for handwritten digit recognition as the earliest convolutional

neural network model (LeCun et al., 1989). Due to the

limitation of the lack of computer performance and the

difficulty of collecting large-scale datasets in the 1990s, CNN

did not achieve outstanding results in the 20 years that followed.

In 2012, Krizhevsky et al. (2012) proposed the AlexNet CNN

model, which defeated all image classification models at the

ILSVRC2012 competition (Russakovsky et al., 2015). The

following CNN models, for instance, VGGNet (Simonyan

and Zisserman, 2014) and GoogleNet (Szegedy, 2015),

have become prevalent in many AI application fields. The

concept of residual and bottleneck layer proposed by the

ResNet (He et al., 2016) model in 2015 again improved the

performance of CNN. It effectively avoids the gradient problem

caused by deeper layers. The generative adversarial network

(GAN) proposed by Goodfellow et al. (2014) divided the

network into two parts including generation and discriminator

based on game theory to achieve better performance through

iterative evolutions.

Since the transformer structure came into being in 2020,

CNN has not become obsolete. On the contrary, the ConvNeXt

network was introduced. ConvNeXt absorbs the advantages

of multiple transformer structures in the network structure

setting and parameter selection. It outperformed the most

powerful transformer model named swin-transformer (Liu

et al., 2021a,b) on the ImageNet-1K dataset by adjusting

training parameter settings, optimizer, and convolution

kernel sizes.

As shown in Figure 4, ConvNeXt has a pretty concise

structure. Its performance is greatly improved to the original

ResNet although it is quite similar to ResNet. Moreover, it not
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FIGURE 3

Structure of encoder layer in Vision Transformer.

FIGURE 4

Concise structure of ConvNeXt.

only demonstrates better performance than many classic CNN

models but also outperforms many transformer models.

First, ConvNeXt starts training ResNet-50 using techniques

similar to training transformer models, such as better

optimizers, more efficient hyper-parameter settings, and

new data augmentation methods. Second, various new

optimization strategies are gradually applied to optimize the

model, for instance, setting new layer numbers and larger

convolution kernels. And eventually, ConvNeXt outperforms

the transformer model on the ImageNet-1K dataset.

The overall structure of ConvNeXt is very similar to ResNet-

50. It includes the feature extraction layer of the head, the
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middle layer where the bottleneck structure of four different

dimensions is separately stacked, and the final high-dimensional

feature classification layer. However, the strategy of stacking

and the interior of each layer has undergone several changes.

The changes include: (i) In each stage of the original ResNet-

50, the stacking number of each block is 3:4:6:3; in ConvNeXt

this has been revised to 3:3:9:3, which is similar to the block

stacking of the transformer model. (ii) In the block of ResNet-

50, the bottleneck design is to reduce the dimension first, then

feature extraction, and finally increase the dimension. However,

as shown in Figure 5, the bottleneck in ConvNeXt is designed

to run feature extraction first, then reduce the dimension, and

finally increase the dimension. (iii) It has modified the size of

the convolution kernel to 7∗7 from the ResNet 3∗3. (iv) Its

activation function has also been replaced from ReLU to GELU,

and cut back the usage count of activation functions. (v) Its

normalization has changed to layer normalization from batch

normalization as well as reduced usage count of normalization.

The performance of ConvNeXt has gradually improved and

even outperforms the VIT through the above five strategies

and a few other settings including new parameters, structures,

and functions.

Ensemble

As shown in the pipeline in Figure 6, we can obtain the

final classification results by integrating the results of the

Vision Transformer and ConvNeXt based on the soft voting

mechanism using Equation (4):

Sf = αSv + (1− α) Sc (4)

Where S v and S c denote the classification scores from

Vision Transformer and ConvNeXt for all images, respectively.

FIGURE 5

Di�erences between ConvNeXt and ResNet in bottleneck.
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FIGURE 6

Pipeline of ViTCNX.
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Results

Experimental evaluation and parameter
settings

We used six metrics to evaluate the performance of all

classification models, that is, precision, recall, accuracy, F1-

score, AUC, and AUPR. These six evaluation metrics are defined

as follows:

Precision =
TP

TP+ FP
(5)

Recall =
TP

TP+ FN
(6)

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
(7)

F1− Score =
2∗Precision∗Recall

Precision+ Recall
(8)

TPR (Ture Positive Rate) =
TP

TP+ FN
(9)

FPR
(

False Positive Rate
)

=
FP

TN+ FP
(10)

AUC is the area under the TPR-FPR curve. AUPR is the

area under the precision-recall curve. For COVID-19-related

image binary classification, precision means the proportion

of images that are COVID-19-related images in the dataset

and are predicted to be COVID-19-related among all the

predicted COVID-19 images. Recall represents the proportion

of images that are COVID-19-related images in the dataset

and are predicted to be COVID-19-related among all COVID-

19-related images in the dataset. Accuracy represents the

proportion that is correctly predicted. F1-Score, AUC, and

AUPR are comprehensive metrics that consider precision,

recall, and FPR.

To investigate the performance of our proposed ViTCNX

model in different classification situations, we conducted

experiments under binary classification and three-class

classification, respectively. In the ViTCNX, the dataset

was randomly initialized with seed = 8. ConvNeXt uses

ConvNeXt_tiny to construct and initialize parameters,

and its initial learning rate was set to 5e-4, and the initial

weight adopted the convnext_tiny_1k_224_ema. The Vision

Transformer uses vit_base_patch16 to construct and initialize

parameters, and its initial learning rate was set to 1e-3. It

adopted the initial weight vit_base_patch16_224_in21k. In

all image classification algorithms, the training epoch and

the batch size were set to 100 and 8, respectively. DenseNet,

ResNet-50, Swin Transformer, and EfficinetNetV2 used

densenet121, resnet50-pre, swin_tiny_patch4_window7_224,

and pre_efficientnetv2-s to initialize their weight parameters,

respectively. The corresponding learning rates were 1e-3, 1e-4,

1e-4, and 1e-3, respectively. ViTCNX used the same parameter

settings as individual Vision Transformer and ConvNeXt.

After comparing the image classification ability under different

TABLE 1 Performance of ViTCNX and the other six models under the

binary classification.

Metrics Precision Recall Accuracy F1-score AUC AUPR

EfficientNetV2 0.9920 0.3293 0.5875 0.4945 0.9609 0.9738

ConvNeXt 0.9650 0.9894 0.9715 0.9770 0.9952 0.9968

DenseNet 0.9788 0.9814 0.9756 0.9801 0.9973 0.9983

Swin

Transformer

0.9587 0.9548 0.9471 0.9568 0.9911 0.9945

ResNet-50 0.9892 0.9695 0.9748 0.9792 0.9970 0.9979

Vision

Transformer

0.9815 0.9854 0.9797 0.9834 0.9985 0.9990

ViTCNX 0.9803 0.9907 0.9821 0.9855 0.9985 0.9991

Bold values means the highest score under this metric.

values of α, we set α = 0.6 where ViTCNX computed the

best performance.

Binary classification for CT images

Under the binary classification of images, there were a total

of 6,151 CT images, including 3,768 CT images from COVID-

19 patients and 2,383 CT images from healthy individuals. The

6,151 images were divided into a ratio of 0.8:0.2. Consequently,

4,922 images were used as the training set, including 3,015

COVID-19-related images and 1,907 CT images from healthy

individuals. The remaining 1,229 images were used as the

test set, including 753 COVID-19-related CT images and 476

healthy images. We compared our proposed ViTCNX model

with four state-of-the-art image classification algorithms, that is,

DenseNet (Huang et al., 2017), ResNet-50, Swin Transformer,

and EfficinetNetV2 (Tan and Le, 2021). In addition, ViTCNX

was also compared with the two individual models it was

comprised of, that is, Vision Transformer and ConvNeXt. The

results are shown in Table 1. The bold font in each column

represents the best performance computed by the corresponding

method among the above seven methods. Table 1 and Figure 7

show the precision, recall, accuracy, F1-score, AUC, and AUPR

values and curves of these models.

From Table 1 and Figure 7, we can find that ViTCNX

obtained the best recall, accuracy, F1-score, AUC, and

AUPR, significantly outperforming the other six methods.

EfficientNetV2 achieved the best score of precision. This

result is consistent with the prediction results on the

confusion matrix. In the experiments, EfficientNetV2 computed

higher precision than ViTCNX. The reasons may be that

different models perform very differently on different parameter

settings, different datasets, and different sizes, which have a

significant impact on the classification performance of the

model. In particular, ViTCNX outperforms its two individual

models, Vision Transformer and ConvNeXt, demonstrating

that an ensemble of single classification models can improve

image identification performance. Figures 7B,C show the AUC
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FIGURE 7

(A) The performance comparison of VitCNX and six other models for COVID-19 in binary classification problems; (B,C) The AUC and AUPR

values of VitCNX and six other models for COVID-19 in binary classification problems.

and AUPR values obtained by the seven models. ViTCNX

outperforms the other six models, elucidating that it can

effectively classify related CT images as COVID-19-related

or not.

Three-classification for CT images

To further investigate the performance of the seven models

under the three-classification challenge, we considered a total

of 7,398 CT images, including 3,768 images from COVID-

19 patients, 2,383 from healthy individuals, and 1,247 from

other pneumonia patients. The 7,398 images were divided in

a ratio of 0.8:0.2, resulting in 5,920 images in the training

set and 1,478 images in the test set. The 5,920 images in the

training set consisted of 3,015, 1,907, and 998 images from

COVID-19 patients, healthy individuals, and other pneumonia

patients, respectively. The 1,478 images in the test set consisted

of 753, 476, and 249 images from COVID-19 patients, healthy

individuals, and other pneumonia patients, respectively. We
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trained ViTCNX and the other comparable models using the

training set and then evaluated their performance using the test

set. Table 2 and Figure 8 show the precision, recall, accuracy, and

F1-score values of ViTCNX and the other six models for the

three-classification situation.

From Table 2 and Figure 8, we can observe that ViTCNX

computed the best precision, accuracy, and F1-score,

greatly outperforming the other six models. Although it

calculated a relatively lower recall of 0.9597 than Vision

Transformer with a recall of 0.9599, the difference is very

minor. Particularly, compared with Vision Transformer,

ConvNeXt, DenseNet, ResNet-50, Swin Transformer, and

EfficientNetV2, ViTCNX computed a F1-score of 0.9631,

better by 0.04, 1.58, 1.89, 5.32, 6.74, and 64.11% than

the six models, respectively. These results demonstrate

that ViTCNX can more accurately classify CT images

from COVID-19, from other pneumonia cases, and

healthy individuals.

TABLE 2 Performance of ViTCNX and the other six models under

three classification.

Metrics Precision Recall Accuracy F1-Score

EfficientNetV2 0.7783 0.4188 0.4526 0.3221

ConvNeXt 0.9562 0.9397 0.9574 0.9473

DenseNet 0.9487 0.9402 0.9560 0.9442

Swin Transformer 0.9259 0.8754 0.9127 0.8957

ResNet-50 0.9369 0.8936 0.9317 0.9100

Vision Transformer 0.9657 0.9599 0.9689 0.9627

ViTCNX 0.9668 0.9597 0.9696 0.9631

Bold values means the highest score under this metric.

The confusion matrix analysis

We further evaluated the number of true positives (TP), true

negatives (TN), false positives (FP), and false negatives (FN)

obtained by Vision Transformer, ConvNeXt, DenseNet, ResNet-

50, Swin Transformer, EfficientNetV2, and ViTCNX under

binary classification. Table 3 and Figure 9 present the statistical

data of TP, TN, FP, and FN from the above seven models for

binary classification. The importance of these four evaluation

metrics is not equal. For COVID-19 image recognition, TP

denotes the number of images that are COVID-19 images in

the dataset and are predicted to be COVID-19-related. FN

denotes the number of images that are COVID-19 images but

are predicted to be non-COVID-19-related. FN denotes that

there are undetected COVID-19 patients, which may cause the

spread of the pandemic. TP and FN are more important than the

other two metrics. Higher TP and lower FN represent the better

performance of ViTCNX.

TABLE 3 Statistics of ViTCNX and other six models for binary

classification.

Metrics TP TN FP FN

EfficientNetV2 248 474 2 505

ConvNeXt 745 449 27 8

DenseNet 739 460 16 14

Swin Transformer 719 445 31 34

ResNet-50 730 468 8 23

Vision Transformer 742 462 14 11

ViTCNX 746 461 15 7

Bold values means the highest score under this metric.

FIGURE 8

The performance of VitCNX and six other models for three-classification problem.
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FIGURE 9

The confusion matrix of results of VitCNX and six other models.
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FromTable 3 and Figure 9, we can observe that our proposed

ViTCNXmodel screens the most TP, and the least FN compared

to the other six models. Our proposed ViTCNXmodel computes

the highest TP of 746 and the lowest FN of 7 among 1,229 test

samples, demonstrating that it can most efficiently recognize

COVID-19-related images of COVID-19 patients.

Discussion and conclusion

With the rapid development of AI technology and high-

performance computing platforms, using deep learning models

to detect COVID-19 through lung CT images has become

a research hotspot. Not only because this method has a

higher performance and faster speed, but also lower time and

economic cost. In this paper, we proposed an ensemble deep

learning model (ViTCNX) to recognize COVID-19-related CT

images by combining Vision Transformer and ConvNeXt. We

compared ViTCNX with six other state-of-the-art deep learning

models (Vision Transformer, ConvNeXt, DenseNet, ResNet-

50, Swin Transformer, and EfficientNetV2). We conducted a

series of comparative experiments to evaluate the performance

of ViTCNX. The results show that ViTCNX computed the

best recall, accuracy, F1-score, AUC, and AUPR under binary

classification and the best precision, accuracy, and F1-score

under three-classification tests. Moreover, ViTCNX obtained

the highest TP and the lowest FN in binary classification. The

results show that our proposed ViTCNX model has powerful

COVID-19-related image recognition ability.

We adopted several techniques to reduce over-fitting. First,

we used three different datasets of COVID-19 to evaluate the

performance of ViTCNX. The three datasets were collected from

two different places (Wuhan, China, and São Paulo, Brazil).

We integrated the three different datasets into one dataset

to increase the differences in datasets and further enhance

the generalization performance of ViTCNX. Additionally, we

used techniques including layer normalization and dropout

to prevent over-fitting. The ensemble learning strategies also

helped to improve the model’s generalization ability and

reduce over-fitting.

There are two advantages of the proposed ViTCNX model:

First, the variance is reduced through the ensemble of multiple

models, thereby improving the robustness and generalization

ability of the model. Second, Vision Transformer and ConvNeXt

are greatly different in structure. An ensemble of them can

lower their correlation and further reduce the classification

error. Although ViTCNX obtains better performance, it does

increase a large number of training parameters, which increases

the training and testing time of the model and requires higher

computational resources.

In the future, we will continuously update data to build

larger COVID-19 datasets to enhance the generalization ability

of ViTCNX. We will also design a new deep learning

framework, adopt efficient training methods, and optimize

parameter settings to improve the prediction ability of the

model. Additionally, we will establish an automatic annotation

model to autonomously label hot spots. We anticipate that our

proposedViTCNXmodel can contribute to the clinical detection

of COVID-19.
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