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Streptococcus anginosus together with S. constellatus and S. intermedius 

constitute the Streptococcus anginosus group (SAG), until recently considered 

to be benign commensals of the human mucosa isolated predominantly from 

oral cavity, but also from upper respiratory, intestinal, and urogenital tracts. 

For years the virulence potential of SAG was underestimated, mainly due to 

complications in correct species identification and their assignment to the 

physiological microbiota. Still, SAG representatives have been associated with 

purulent infections at oral and non-oral sites resulting in abscesses formation 

and empyema. Also, life threatening blood infections caused by SAG have 

been reported. However, the understanding of SAG as potential pathogen is 

only fragmentary, albeit certain aspects of SAG infection seem sufficiently well 

described to deserve a systematic overview. In this review we summarize the 

current state of knowledge of the S. anginosus pathogenicity factors and their 

mechanisms of action.
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Introduction

In the genus Streptococcus the species S. pyogenes, S. agalactiae, S. pneumoniae, and 
S. dysgalactiae subsp. equisimilis (SDSE) are most frequently responsible for morbidity and 
mortality in humans (Carapetis et al., 2005; O’Brien et al., 2009; Rantala, 2014; Lawn et al., 
2017). However, other streptococci, previously considered just human commensals, are 
recognised as a cause of human diseases, e.g., oral streptococci S. sanguinis (Vogkou et al., 
2016; Zhu et al., 2018), S. intermedius (Sadykov et al., 2003; Mishra and Fournier, 2013; Issa 
et al., 2020), S. constellatus (Akuzawa et al., 2017), and S. anginosus (Clarridge et al., 2001; 
Asam and Spellerberg, 2014). Clinical data indicate that also S. suis and S. iniae, porcine 
and fish pathogens, respectively, can infect humans (Weinstein et al., 1997; Lun et al., 2007; 
Baiano and Barnes, 2009). Distinguishing between pathogenic and non-pathogenic strains 
was historically based on their ability to lyse erythrocytes on blood-agar plates: those 
forming a clear zone of hemolysis (β-hemolysis), were considered potentially pathogenic. 
A further differentiation was proposed in 1933 by Rebecca Lancefield, who identified 
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different versions of the major cell wall polysaccharide of 
streptococci, later called the group polysaccharide or the 
Lancefield antigen. According to this classification, the human 
pathogens S. pyogenes and S. agalactiae belong to group A (GAS) 
and group B (GBS) streptococci, respectively. Other streptococci 
are not homogenous in expressing the Lancefield antigens, e.g., 
S. anginosus strains can bear group F, C, G, or even group A 
antigens, or none (Obszańska et al., 2016; Baracco, 2019; Figure 1). 
Rather than basing on the antigens, the currently accepted 
classification of streptococci reflects their phylogenetic 
relationships. Accordingly, they are classed into seven groups: 
pyogenic, anginosus, mitis, salivarius, bovis, mutans, and species 
of unknown position, as for example S. suis (Köhler, 2007). 
S. anginosus, S. constellatus and S. intermedius constitute the 
Streptococus anginosus group (SAG, the Anginosus group). 
Formerly, these three species were regarded by European and 
Japanese microbiologists as a single species “Streptococcus milleri.” 
However, they were distinguished by microbiologists from North 
America. [reviewed in (Coykendall, 1989) and recently in 
(Pilarczyk-Zurek et al., 2022)]. Previously, SAG was classed in a 
diverse group of streptococci called the viridans group which was 
poorly characterized(Coykendall, 1989). The name “viridans” 

comes from the Latin “viridis” meaning “green” and was given to 
the bacteria due to a greenish halo around their colonies on blood 
agar. The green or brown colouring results from the oxidation of 
hemoglobin to methemoglobin and is called α-hemolysis. 
However, the name viridans was misleading, as not all S. anginosus 
strains present this type of hemolysis: some are β-hemolytic and 
some are even nonhemolytic, in other words – they present 
γ-hemolysis, a confusing term referring to a lack of hemolysis 
(Coykendall, 1989; Whiley et al., 1990; Fox et al., 1993; Broyles 
et al., 2009; Fischetti and Ryan, 2015; Whiley and Hardie, 2015; 
Figure 1). In 2013, a further differentiation of SAG was proposed 
on the basis of the nucleotide sequences of seven housekeeping 
genes: S. constellatus was divided into three subspecies, 
constellatus, pharyngis, and viborgensis, and S. anginosus into two 
subspecies, anginosus and whileyi; S. intermedius remained as a 
single species (Jensen et al., 2013). The type strain S. anginosus 
NCTC 10713 (  =  ATCC 33397, ATCC 12395), a β-hemolytic strain 
with the Lancefield group G antigen isolated from human throat, 
is classified as S. anginosus subsp. anginosus. It should be noted 
here that detection of Lancefield antigen and biochemical tests 
used in laboratory practice for SAG identification, and even mass 
spectrometry (MALDI-TOF-MS), do not allow a reliable 

FIGURE 1

Types of hemolysis and Lancefield antigens presented by S. anginosus strains. Green tick –feature present in some S. anginosus strains, red cross 
– absent.
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identification at species level and the results should be viewed with 
caution (Whiley et al., 1990; Wenzler et al., 2015). The precise SAG 
species identification can be achieved with the use of the molecular 
biology-based methods; the SAG identification issues have been 
recently reviewed in (Pilarczyk-Zurek et al., 2022).

In the past all SAG species were considered to be  human 
commensals, part of the healthy human microbiota, commonly 
residing on mucosal membranes of the oral cavity, preferentially 
found in dental plaques, but also on mucosal membranes of the 
gastrointestinal, upper respiratory, and urogenital tracts (Hamada 
and Slade, 1980; Whiley et al., 1992). However, more and more 
data link SAG members with health problems in humans, 
especially in immunocompromised, cancer, or cystic fibrosis 
patients [reviewed in (Pilarczyk-Zurek et al., 2022)]. According to 
observations, the clinical syndromes differed depending on the 
SAG species involved: S. constellatus was associated with 
odontogenic, soft tissue, pleuropulmonary, and intra-abdominal 
abscesses, S. intermedius with pleuropulmonary infections, 
abscesses of brain, and deep soft tissues, whereas S. anginosus was 
rarely responsible for abscesses and more frequently than two 
other SAGs was isolated from blood, infected soft tissues, and 
urine (Whiley et al., 1992; Clarridge et al., 2001; Junckerstorff 
et al., 2014; Issa et al., 2020; Jiang et al., 2020). Nevertheless, there 
are several reports of isolation of S. anginosus not only from dental 
abscesses, but also from infective endocarditis, abscesses of brain, 
liver, spleen, corpus cavernosum, probably as a result of 
hematogenous spread (Fisher and Russell, 1993; Dugdale et al., 
2013; Junckerstorff et al., 2014; Esplin et al., 2017; Finn et al., 2018; 
Wu and Zheng, 2020). A correlation between S. anginosus 
infections in oncological patients with esophageal cancer have 
been suggested (Morita et al., 2003; Rawla et al., 2017). S. anginosus 
was frequently isolated from the sputum of cystic fibrosis (CF) 
patients together with Pseudomonas aeruginosa and Staphylococcus 
aureus, the principal CF pathogens, and presumably was 
responsible for exacerbation of pneumonia (Waite et al., 2012; 
Whiley et al., 2014). In vitro S. anginosus was shown to enhance 
P. aeruginosa pathogenicity (Whiley et al., 2014; Waite et al., 2017). 
S. anginosus was also recovered from patients in co-infections with 
other species, e.g., Mycobacterium tuberculosis, and Eikenella 
corrodens (Rabuñal et al., 2009; Patel et al., 2020). All these data 
strongly suggest that S. anginosus should be viewed as an emerging 
opportunistic pathogen of substantial clinical importance 
(Reißmann et al., 2010; Pilarczyk-Zurek et al., 2022).

Streptococci use diverse strategies to adhere to, invade, and 
finally colonize host cells or tissues to acquire nutrition, and also 
to evade the defence mechanisms by suppressing the immune 
response (Zachary, 2017; Sitkiewicz, 2018). Numerous 
streptococcal proteins responsible for the adherence to eukaryotic 
cells have been identified. They interact with components of the 
connective tissue and the extracellular matrix (ECM), such as 
collagen, fibrinogen, fibronectin, and laminin, and also bind to 
salivary proteins (Nobbs et  al., 2009). The attachment to host 
surfaces is mediated by adhesins, e.g., lectin-like adhesins, and 
extracellular appendages such as pili and fibrils (Nobbs et al., 2009; 

Schüler et al., 2012). To avoid being eliminated, streptococci trick 
the host immune system by hiding their antigens under thick 
capsules, by surviving inside macrophages, or by inducing 
macrophage apoptosis with pore-forming enzymes from the 
hemolysin group (Dinkla et al., 2007; Timmer et al., 2009; Cumley 
et al., 2012). Using nuclease A or DNases (Chang et al., 2011; de 
Buhr et al., 2014), streptococci dismantle neutrophil extracellular 
traps (NETs) built of chromosomal DNA and bactericidal 
proteins, which are released by neutrophils upon stimulation with, 
i.e., interleukin (IL)-8 or hydrogen peroxide (Von Köckritz-
Blickwede and Nizet, 2009). Other virulence factors, such as 
hyaluronidase and chondroitin sulphatase, are involved in 
degradation of the host ECM (Asam and Spellerberg, 2014). 
SRRP1 (serine-rich repeat protein 1) and enolase aid the crossing 
of the blood – brain barrier (Sorge et al., 2009; Sun et al., 2016). 
Individual streptococcal species produce different repertoires of 
virulence factors, not all of equal importance.

Our understanding of the repertoire of virulence factors of 
SAG, and especially of their regulation, is still rather limited, 
although some mechanisms and their role in different stages of 
SAG infections seem firmly establish. Because of the progress in 
this field in recent years, the two brilliant reviews by Olson (Olson 
et al., 2013) on streptococcal virulence factors identified in SAG 
genomes in silico, and by Asam and Spellerberg (2014) on 
molecular pathogenicity of SAG species, published, respectively, 
in 2013 and 2014, are no longer up to date. Therefore, in the 
present review we will update the information on S. anginosus, its 
virulence factors and their prevalence in strains isolated 
from humans.

Streptococcal virulence factors

The term “virulence factor” itself refers to a component or 
structure of a microorganism that helps in the establishing of an 
infection or in eliciting a disease. During an infection, the 
virulence factors of bacteria battle the protection mechanisms of 
the host. A streptococcal infection proceeds in three main stages: 
adhesion to, invasion, and colonization of the host tissues (Nobbs 
et  al., 2009). In the genus Streptococcus, 189 genes coding for 
known and putative virulence factors have been identified (Olson 
et al., 2013). An analysis of 18 clinical SAG strains has revealed the 
presence of 55 of such factors in the SAG pan-genome, however, 
an individual S. anginosus carried only 30–34 virulence genes, of 
which 16 genes were found in all the SAGs analysed (Olson et al., 
2013). In this review, factors with an experimentally-determined 
role in different aspects of S. anginosus virulence will be presented 
in detail, while the putative ones will only be mentioned briefly.

Adhesion

The most important step of infection is adhesion of a 
pathogenic bacteria to the host tissue. This step determinates 
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whether the bacterium will continue invasion and colonisation or 
not. Several host-tissue components can be exploited as targets of 
adhesion: fibronectin, fibrinogen, collagen, laminin and other 
proteins of the ECM.

Fibronectin-binding proteins
Fibronectin, a protein found in the ECM of connective tissue, 

is an important ligand used by Gram-positive cocci to adhere to 
host tissues. Fibronectin binding proteins (FPBs), are also called 
“microbial surface components recognizing adhesive matrix 
molecules,” or MSCRAMMs (Schwarz-Linek et al., 2004). FBPs 
are anchored in the bacterial cell wall, and typically comprise an 
N-terminal signal peptide for secretion, an LPXTG membrane 
anchorage motif, and a fibronectin-binding domain (Hanski et al., 
1992). However, several atypical FBPs of streptococci are also 
known which lack a conventional secretion signal, an anchorage 
motif, or a typical fibronectin-binding domain, e.g., Fbp54 of 
S. pyogenes (Courtney et al., 1996). A gene encoding an atypical 
FBP homologue was also identified in S. anginosus NCTC 10713 
type strain (Kodama et  al., 2018). The fbp62 gene codes for a 
62.8-kDa cell-wall localized protein (Fbp62) without a signal 
peptide and a membrane anchorage motif. While S. anginosus 
NCTC 10713 was able to bind to immobilized fibronectin and 
epithelial cells of the HEp-2 (human laryngeal carcinoma) and 
DOK (human dysplastic keratinocyte) lines, its knock-out mutant 
Δfbp62 was not. Moreover, the fbp62 mutation lowered mortality 
and abscess formation in a mouse infection model (Kodama et al., 
2018). These results imply that Fbp62 is a bona fide virulence 
factor of S. anginosus. Earlier studies have revealed that all clinical 
SAG isolates recovered from abscesses, chest infection or nephritis 
can bind rat fibronectin, but with efficiencies varying 10-fold, 
especially among the S. anginosus strains (Willcox, 1995).

Also glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 
of S. pyogenes or S. suis, a glycolytic enzyme, found at the cell 
surface of these bacteria, binds fibronectin. By showing these two 
unrelated activities it can be classed as a moonlighting protein [for 
review (Henderson and Martin, 2011)]. In addition to fibronectin, 
S. pyogenes GAPDH binds lysozyme, myosin, and actin (Pancholi 
and Fischetti, 1992). The fibronectin-binding function of GAPDH 
in S. anginosus has not been tested. Nevertheless, a fraction of this 
enzyme was detected on the cell surface and among plasminogen-
binding proteins (Kinnby et  al., 2008; see below). In another 
survey the gapC gene, coding for a monomer of cell-surface 
located GAPDH, was detected by PCR in all 22 S. anginosus 
clinical strains tested, indicating that GAPDH could act as a 
virulence factor also in S. anginosus (Chang and Lo, 2013).

Fibrinogen-binding proteins
Fibrinogen (Fg) is a blood plasma glycoprotein composed of 

two trimers of non-identical α, β, and γ chains. It plays a crucial 
role in hemostasis and in the innate immune system by forming 
insoluble fibrin clots (Herrick et  al., 1999; Rubel et  al., 2001). 
Numerous proteins of diverse Gram-positive bacteria, including 
streptococci can interact with Fg by distinct mechanisms [for 

review (Rivera et al., 2007)]. In S. pyogenes the M protein, its main 
virulence factor, binds Fg and plays an anti-phagocytic role thus 
enhancing bacterial survival in the host (Courtney et al., 2006). 
Besides Fg, the M protein can also interact with other serum 
proteins, such as plasminogen and immunoglobulins, and with 
collagen (Courtney et al., 2002). In S. suis muramidase-released 
protein (MRP), a 136-kDa cell wall-anchored surface protein, is a 
major fibrinogen-binding protein. A recent study showed that 
binding of MRP with human fibrinogen improves the viability of 
S. suis in the human blood and also favours the development of 
meningitis (Pian et al., 2015). Two fibrinogen-binding proteins in 
S. agalactiae, FbsA and FbsB, were shown to bind human 
fibrinogen and form a semi-flexible polymer-like network 
effectively preventing phagocytosis (Tenenbaum et  al., 2005). 
Ability to bind human Fg was also shown for clinical S. anginosus 
strains, although the exact mechanism of Fg binding by 
S. anginosus is not yet clear (Willcox, 1995). Moreover, a whole-
genome comparative analysis of seven other clinical S. anginosus 
strains identified eight proteins out of 58 with the LPXTG motif 
as fibrinogen-binding ones (Olson et al., 2013).

Laminin-binding protein
Laminins are glycoproteins of the ECM and a major 

component of the basement membrane; laminin binding facilitates 
adhesion of streptococci. The clinical S. anginosus strain SLEH753 
isolated from infective endocarditis was shown to adhere strongly 
to an exposed basement membrane of human and porcine valves 
(mimicking native endovascular surface) in a laminin- as well as 
fibronectin-dependent manner (Allen et al., 2002). An 80-kDa 
surface lipoprotein was isolated from this strain as a putative 
laminin binding protein (PLBP), albeit direct binding of the 
purified PLBP to laminins was not shown (Allen and Höök, 2002).

Putative adhesion factors
A/ Serum opacity factor (SOF), an extracellular lipoproteinase, 

is another major fibronectin-binding protein of streptococci 
expressed by ca. 50% of invasive S. pyogenes strains (Courtney and 
Pownall, 2010). Its main function is disrupting the organization of 
high-density lipoproteins, which results in the formation of large 
water-insoluble lipid vesicles making the serum opaque. Apart 
from fibronectin, SOF binds other host molecules involved in 
bacterial adherence, such as fibrinogen and fibulin-1 (Courtney 
and Pownall, 2010). In S. pyogenes SOF is encoded by the sof gene. 
Its homologue was detected in several clinical isolates of various 
streptoccoci, including two of five analysed strains of SAG of 
group F (Reitmeyer et al., 1989).

B/ Pneumococcal surface adhesin A (PsaA) is a 37-kDa 
protein encoded by the psaA gene reported in a S. pneumoniae 
strain serotype 6B (Jado et  al., 2001). This protein is likely to 
be involved in pneumococcal virulence, as immunization of mice 
with PsaA reduced the nasal load of pneumococci (Briles et al., 
2000). The psaA homologue identical in 95% or 94% to the 
pneumococcal one was found in S. mitis and S. oralis, respectively 
(Jado et al., 2001). In S. anginosus type strain NCTC 10713 the 
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psaA homologue is 90% identical with pneumococcal 
psaA. However, its role in SAG virulence has not been studied.

C/ Antigen I/II – the major adhesins of oral cavity streptococci 
are Antigens I/II (Ag I/II), cell surface-anchored proteins of ca. 
180–210 kDa (Moisset et al., 1994). Proteins of the Ag I/II family 
are multifunctional, with functions varying among bacterial 
species and the niches occupied in the host [for review (Manzer 
et al., 2020)]. The first Ag I/II was characterized in S. mutans 
where it plays a crucial role in teeth colonisation. It is encoded by 
the spaP gene (also called pac; Russell et  al., 1980). Another 
S. mutans Ag I/II-related protein, SR (salivary receptor), interacts 
with salivary glycoproteins adsorbed on the tooth surface 
(Hajishengallis et al., 1992). When present in the bloodstream, the 
Ag I/II proteins can modulate the immune response and induce a 
proinflammatory reactions (for review (Manzer et  al., 2020)). 
Sequences coding for homologues of the Ag I/II and SR antigen 
were detected in two α-hemolytic S. anginosus strains NMH10 
and PC4890 by Southern hybridization with the spaP gene 
fragments (Ma et al., 1991). Further studies are needed to confirm 
the presence of the Ag I/II-like antigens on the cell surface 
of SAGs.

D/ Pneumococcal adherence and virulence factor B (PavB), 
encoded by the pavB gene, is a surface-exposed adhesin of 
S. pneumoniae. A homologue of pavB has been detected in some 
S. anginosus strains. It codes for a protein 62% identical to 
pneumococal PavB on 56% of its length (Olson et al., 2013).

F/ Internalin A is a major invasion protein of Listeria 
monocytogenes, an intercellular pathogen, involved in the 
attachment to hepatocyte, epithelial, and endothelial cells and in 
the invasion of their vacuoles; it is encoded by inlA (Bierne et al., 
2018). An internalin A homologue, the Slr (Streptococcus leucine-
rich) protein, is produced by S. pyogenes (Reid et al., 2003). A gene 
homologous to inlA was also found in two of seven genomes of 
S. anginosus strains analysed. It codes for a protein 47% identical 
to internalin on 89% of its length (Sawyer et  al., 1996; Olson 
et al., 2013).

G/ Fimbriae (Pili). Bacterial adhesion to surfaces and the 
resulting virulence is also dependent on hair-like structures 
located on the bacterial cell surface. In contrast to those of Gram-
negative bacteria, in Gram-positive bacteria they are not well 
described [for review (Telford et al., 2006)]. Two types of surface 
appendages have been detected in Gram-positive bacteria: 
fimbriae (also called pili) – up to 3 μm long, flexible, thick rods 
(3–10 nm in diameter), and fibrils – short, thin rods (1–2 nm in 
diameter) extending for 70–500 nm from the bacterial surface. 
Historically, pili and fimbriae were discovered independently and 
named by two research groups. Although nowadays their names 
are considered synonymous (Telford et al., 2006), fimbriae seem 
to be related mainly to adhesion, while pili also to DNA uptake 
(Ottow, 1975). The pili of Gram-positive bacteria are composed of 
three covalently bound protein subunits carrying LPXTG sorting 
motif and also covalently bound to the peptidoglycan. The amino 
acid sequences of the pili of invasive streptococcal strains are 
similar to the MSCRAMM proteins involved in interaction with 

components of the ECM. Genes encoding pili subunits and a 
sortase, as well as their regulators are located in the pilus 
pathogenicity island organised similarly in all main groups of 
streptococci such as GAS, GBS, and pneumococci (Telford et al., 
2006). Fibrils produced by streptococci help to bind fibronectin 
and better adhere to the host tissue (Telford et al., 2006). They 
have been identified in, e.g., S. agalactiae, S. pneumoniae, 
S. pyogenes, S. mutans, and in two SAG species: S. intermedius, and 
S. constellatus [see (Nobbs et al., 2009)].

In S. intermedius fimbriae are involved in saliva-mediated 
aggregation and associated with adherence. They are encoded by 
the saf operon, where saf3 encodes the main pilus subunit 
(Yamaguchi et al., 2009). An analysis of 16 clinical strains of SAG, 
including six S. anginosus strains, identified the saf3 gene in only 
four S. intermedius strains (Yamaguchi et al., 2009). In an earlier 
study the saliva-mediated aggregation was observed for 17 
S. intermedius and two S. constellatus strains and for none of the 
six S. anginosus strains (Yamaguchi and Matsunoshita, 2004). It is 
therefore likely that S. anginosus does not produce fimbriae.

Invasion and colonisation

Factors enabling bacteria to evade the host immune system 
and to improve the niche for living are considered important for 
the colonisation and invasion of host tissues.

Capsule
One of the first streptococcal virulence factors identified was 

the capsule. It is built from capsular polysaccharide (CPS) and has 
been detected in numerous streptococcal strains of various 
species: S. pyogenes, S. pneumoniae, S. mitis, S. gordonii, 
S. agalactiae, S. suis, and SAGs (Smith et al., 1999; Rukke et al., 
2012; Toniolo et  al., 2015; Skov Sørensen et  al., 2016). The 
biochemical composition of the capsule differs between species. 
For example, in S. pyogenes capsular polysaccharide is hyaluronic 
acid [for review (Wessels, 2019)], and the simplest CPS of 
S. pneumoniae is a linear polymer with a repeat unit comprising 
two or more monosaccharides [for review (Paton and Trappetti, 
2019)]. A typical cps cluster encoding enzymes of the CPS 
synthesis pathway in S. pneumoniae is located in the chromosome 
between the dexB and aliA genes, and comprises 12 to 20 genes. 
The capsule not only helps S. pneumoniae to defend its own cells 
against the host immune system, phagocytosis and binding by 
NETs, but it also contributes to pathogenesis in many ways and is 
absolutely required in systemic infections (Wartha et al., 2007; 
Hyams et al., 2010; Paton and Trappetti, 2019).

A cps locus similar to that of S. pneumoniae is often harboured 
by oral streptococci belonging to the groups, salivarius 
(S. salivarius), mitis (S. mitis and S. oralis), sanguinis (S. sanguinis 
and S. gordonii), and anginosus (S. anginosus and S. intermedius; 
Skov Sørensen et al., 2016). The main role of the capsule of oral 
streptococci is adherence to salivary components, biofilm 
formation, and interaction with other bacterial species; in the 
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latter case CPS acts as a receptor for lectin-like adhesins (Cisar 
et al., 1995).

The structure of the locus associated with CPS synthesis has 
been studied in detail in type strain S. anginosus ATCC 33397 
(NCTC 10713; Tsunashima et  al., 2012; Figure  2). The region 
consists of 24 ORFs with 14 central genes, cpsA – cpsN, directly 
associated with CPS synthesis. The first four, cpsA – cpsD, are 
predicted to code for, respectively, a membrane-bound 
transcription factor for the cps operon, phosphotyrosine-protein 
phosphatase, a regulatory protein, and a tyrosine protein kinase. 
Based on the homology of the subsequent cps genes of S. anginosus 
to cps genes of other streptococci, they are inferred to encode 
transferases for undecaprenyl-phosphate glucose-1-phosphate 
(cpsE), rhamnose (cpsF), N-acetylgalactosamine (cpsG), 
O-acetylserine (cpsH), acetylgalactosamine (cpsI), rhamnose 
(cpsJ), and galactofuranose (cpsK). The following genes code for: 
the polysaccharide polymerase Wzy (cpsL) which joins the 
repeating units to form polysaccharide, the repeating unit 
transporter (flippase) Wzx (cpsM) engaged in transporting of the 
repeating units to the outer surface of the membrane and 
UDP-galactopyranose mutase (cpsN). The importance of cpsE for 
CPS production in S. anginosus has been verified experimentally 
(Tsunashima et al., 2012).

The genes upstream of cpsA code for: nrdD – ribonucleoside-
triphosphate reductase, orfW, orfX and orfY – acetyltransferases, 
nrdG – anaerobic ribonucleoside triphosphate reductase activator 
protein. Downstream of cpsN lie genes encoding: orfO – a 
phosphoglycerate mutase family protein, orfP – a cell wall surface 
anchor family protein, orfQ – a DNA-binding response regulator, 
orfR – a sensor histidine kinase, and polI – DNA polymerase 
I  (Tsunashima et  al., 2012). The cps loci of S. gordonii and 
S. sanguinis have an organization and chromosomal localization 
similar to that of S. anginosus (Tsunashima et al., 2012).

Plasminogen-binding proteins: α-enolase and 
glyceraldehyde-3-phosphate dehydrogenase

α-Enolase is a glycolytic enzyme, but it can also be found on 
the surface of bacterial cells where it acts as a receptor for human 
plasminogen to aid invasion (Kornblatt et al., 2011). Similarly to 
GAPDH, α-enolase is therefore a moonlighting protein [for 
review (Henderson and Martin, 2014)]. α-Enolase in its receptor 
function has been found in S. pneumoniae, S. pyogenes, S. suis, 
S. mutans, and S. iniae (Pancholi and Fischetti, 1998; Bergmann 
et al., 2001; Ge et al., 2004; Esgleas et al., 2008; Membrebe et al., 
2016). In S. suis α-enolase can also bind fibronectin and fibrinogen 

(Esgleas et  al., 2008; Pian et  al., 2015), thereby improving an 
antiphagocytic effect.

The streptococcal α-enolases are homo-octamers of 45-kDa 
monomers, each with two potential plasminogen binding sites 
(Cork et  al., 2009; Kornblatt et  al., 2011). In S. pneumoniae 
α-enolase the plasminogen binding depends on two C-terminal 
lysine residues and an internal plasminogen binding motif (IPM; 
Itzek et  al., 2010). An analysis of 56 clinical strains of oral 
streptococci, including eight SAG strains, has shown that IPM is 
conserved in their α-enolases (Itzek et al., 2010). Plasminogen 
binding was analysed in detail in three S. anginosus strains of 
human oral origin. In one S. anginosus strain the plasminogen-
binding proteins were identified as α-enolase and phosphoglycerate 
mutase; the second produced 11 plasminogen-binding proteins, 
of which five were identified as the glycolytic enzymes α-enolase, 
phosphoglycerate kinase, GAPDH, phosphoglycerate mutase, and 
triosephosphate isomerase; and the third – 14 proteins identified 
as standard glycolytic enzymes or their isoforms (Kinnby 
et al., 2008).

Streptococcal hemolysins
Hemolysins are well-described streptococcal virulence factors. 

Different types of hemolysins have been identified and named 
after the species or genus in which they were detected. Some 
hemolysins are produced by several species, like streptolysin S 
(SLS), an oxygen stable cytolytic toxin of S. pyogenes, S. iniae, and 
S. constellatus, and streptolysin O, an oxygen labile one, produced 
by S. pyogenes, S. canis, and S. dysgalactiae subsp. equisimilis 
(SDSE). Both of them lyse erythrocytes, leukocytes and platelets, 
forming holes in their membranes. Streptolysin S is a small 
peptide (2.7 kDa) synthesised ribosomally and extensively 
modified post-translationally (Nizet et al., 2000). The latter feature 
makes it related to the post-translationally modified bacteriocins 
(Molloy et al., 2011). These modifications result in the formation 
of aromatic thiazole and (methyl-)oxazole heterocycles prior to 
SLS export (Lee et al., 2008). Proteins involved in SLS production 
are encoded by the sag operon. Typically, as in S. pyogenes, it 
comprises nine genes sagA–I, with sagA encoding an SLS 
precursor. The sagB product is a 36.0-kDa protein 22% identical 
to a dehydrogenase that modifies McbA, the precursor of the 
E. coli bacteriocin microcin B17, one of the thiazole/oxazole-
modified microcins (TOMMs). SagC (40.3 kDa) is 13% identical 
to the McbA cyclodehydratase, and SagD (51.6 kDa) is a 
component of the SagBCD complex and probably regulates its 
enzymatic activity (Nizet et  al., 2000; Lee et  al., 2008). sagE 

FIGURE 2

Organization of the cps locus of S. anginosus. Arrows depict genes coding for: transferases (green), regulatory proteins (yellow), polymerase and 
flippase (orange), mutase (dark green), other genes are in grey. Details in the text.

https://doi.org/10.3389/fmicb.2022.1025136
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Kuryłek et al. 10.3389/fmicb.2022.1025136

Frontiers in Microbiology 07 frontiersin.org

encodes a 25.4-kDa immunity protein localized in the membrane, 
similarly to the 26.2-kDa product of sagF. The sagGHI-encoded 
proteins are putative ABC transporters, important in extracellular 
transport (Nizet et al., 2000).

Streptolysin O (63,65  kDa) is a cholesterol-dependent 
cytolysin composed of 571 amino acids, with a 33-residues 
N-terminal secretion signal peptide (Kehoe et al., 1987). Other 
hemolysins seem to be unique to single bacterial species only, e.g., 
intermedilysin to S. intermedius (Nagamune et al., 1996), suilysin 
to S. suis (Xu et al., 2010), and pneumolysin to S. pneumoniae 
(Shumway and Klebanoff, 1971). Although most hemolysins show 
the expected hemolytic activity, there are exceptions – some 
pneumolysins have no hemolytic activity (Nadeem Khan et al., 
2014). Pneumolysins were originally believed to be released only 
upon S. pneumoniae death, but later data showed that their active 
forms are in fact bound to the bacterial cell surface (Price and 
Camilli, 2009).

Notably, recent data have revealed that various streptococcal 
hemolysins have more sophisticated functions than simple lysis of 
erythrocytes. Streptolysin O suppresses the neutrophil oxidative 
burst, a rapid production of reactive oxygen species in response to 
pathogen invasion, and also helps to avoid the bacteria killing by 
neutrophil by blocking their degranulation, interleukin-8, and 
elastase secretion, which in turn suppresses the formation of NETs 
(Timmer et al., 2009; Uchiyama et al., 2015). Some hemolysins 
also affect the invasion of eukaryotic cells, as for example the cell-
bound fraction of intermedilysin during invasion of human liver 
cell line HepG2 by S. intermedius (Sukeno et  al., 2005). Also 
pneumolysins are involved in the S. pneumoniae pathogenicity 
regardless of their hemolytic activity, as they are engaged in 
biofilm formation (Kirkham et al., 2006; Shak et al., 2013).

Hemolysins of Streptococcus anginosus
As mentioned earlier, few of the S. anginosus strains isolated 

from infections are β-hemolytic. The β-hemolysin of S. anginosus 
has been identified as SLS (Asam et al., 2013; Tabata et al., 2013), 
no streptolysin O producing strains have been reported. SLS is 
synthesised as a precursor comprising a 23-amino acid signal 
peptide and a 30-amino acid structural peptide which is further 
modified post-translationally, similarly to other members of the 
SLS-like group of peptides (Bernheimer, 1967; Molloy et al., 2011). 
SLS is also classified as a member of the TOMM family. Similarly 
to gene clusters coding for other TOMM bacteriocins, the sagA 
gene encoding the SLS is followed by sagB, sagC and sagD, 
products of which introduce aromatic thiazole and (methyl-)
oxazole heterocycles onto the SLS (Lee et al., 2008; Molloy et al., 
2011). In β-hemolytic S. anginosus strains, the sag operon is 
composed of 10 genes sagA-I, including two copies of sagA, sagA1 
and sagA2, encoding SLS (Tabata et  al., 2013). The genes 
responsible for the β-hemolytic phenotype were first identified in 
S. anginosus type strain NCTC 10713 (Tabata et al., 2013). A PCR 
screen of 125 clinical S. anginosus strains for the sagA1 and sagA2 
genes showed that all β-hemolytic strains (18.4%; n = 23) carried 
the both genes, as did the type strain NCTC 10713, and all 

nonhemolytic strains (81.6%; n = 102) carried neither (Tabata 
et al., 2013). A mutant of NCTC 10713 depleted of both sagA 
genes was nonhemolytic, and introduction of either sagA1 or 
sagA2 restored the β-hemolytic activity. Also both single NCTC 
10713 mutants, ΔsagA1 and ΔsagA2, were still β-hemolytic 
(Tabata et al., 2013).

SLS of S. anginosus is a broad-range β-hemolysin causing lysis 
of red blood cells of humans, horse, sheep, cattle, rabbit and even 
chicken (Asam et  al., 2015). SLS shows no cytotoxic activity 
towards THP-1 (acute monocytic leukemia) cells or human 
granulocytes after 2 h of treatment (Asam et al., 2015). However, 
after 24 h morphological changes, such as a flattened morphology 
and bleb formation are observed in the THP-1 and HSC-2 (human 
oral squamous cell carcinoma line) cell lines, presumably due to 
the leakage of the cellular contents following disruption of the cell 
membrane (Tabata et al., 2019). Those changes were shown to 
be SLS-depended: the β-hemolytic strain NCTC 10713 markedly 
decreased the HSC-2 cells survival, while NCTC 10713 depleted 
of both sagAs was not cytotoxic, demonstrating that SLS of the 
β-hemolytic S. anginosus NCTC 10713 is responsible for 
cytotoxicity (Tabata et al., 2019).

Prevalence of β-hemolytic Streptococcus 
anginosus strains

The prevalence of β-hemolytic strains of S. anginosus among 
natural isolates is not entirely clear. While the survey of 125 
clinical strains mentioned earlier (Tabata et al., 2013) found as 
much as 18.4% (n = 23) of those to be β-hemolytic, this proportion 
was markedly lower in two other studies. An analysis of 164 
strains of S. anginosus isolated from throats of 1,480 US students 
with pharyngitis reported only 1.2% β-hemolytic ones (n = 2; Fox 
et al., 1993), and a survey of 29 S. anginosus strains isolated from 
patients with skin or soft tissue infections found only 7% (n = 2; 
Summanen et al., 2009). Notably, in the latter analysis all the other 
strains were α-hemolytic (Summanen et al., 2009). It is worth 
mentioning that the analysis described by Fox et al. (1993) was 
performed before the molecular biology-based methods of SAG 
identification were elaborated. The prevalence of β-hemolytic 
strains among isolates from apparently healthy subjects is even 
smaller: among SAG strains isolated from throat swabs collected 
from 3,416 healthy children in India only ca. 0.18% (n = 6) isolates 
were β-hemolytic (Nayak et al., 2019). Similarly no β-hemolytic 
strains were found among 25 samples collected from 
non-symptomatic students in the US study (Fox et  al., 1993). 
β-hemolysis of S. anginosus is overall rare, albeit more frequent 
among clinical strains isolated from infections. Still, since a vast 
majority of the clinical strains are non-β-hemolytic one may 
conclude that, while being a cytotoxin, SLS, is not a critical 
virulence factor of S. anginosus.

DNases
Historically, four different types of extracellular DNases, A, B, 

C, and D, produced by GAS have been distinguished serologically, 
and each strain produces at least one of them (Wannamaker, 1958; 
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Wannamaker et  al., 1967; Wannamaker and Yasmineh, 1967). 
DNase B, known as mitogenic factor (MF) or streptococcal 
pyrogenic exotoxin F (SPE-F), is chromosomally encoded by the 
spd (also known as mf, speF or spdB) gene and is specific for GAS 
(Sriskandan et al., 2000; Das et al., 2017). DNase C and DNase D 
are encoded on prophages by genes spd3 and sdaD2, respectively 
(Sriskandan et al., 2000; Sumby et al., 2005). Currently, DNase A 
remains known only serologically and as a protein. Up till now, 
still other GAS DNases have been identified [for review 
(Remmington and Turner, 2018)], including cell-wall-anchored 
nuclease A encoded by spnA (Hasegawa et al., 2010; Chang et al., 
2011). It took over 60 years from discovery of the GAS-produced 
extracellular DNases to the conclusion about their importance in 
the pathogen invasion (Sumby et al., 2005). The DNases protect 
S. pyogenes from extracellular killing by degrading DNA 
scaffolding of the NETs (Beiter et al., 2006; Buchanan et al., 2006; 
de Buhr et al., 2014). In turn, by degrading streptococcal DNA, 
DNases enable evading the host innate immune system by 
avoidance of Toll-like receptor 9 (TLR9)-mediated recognition of 
unmethylated CpG-rich motifs in bacterial DNA, followed by 
cytokine overproduction (Uchiyama et al., 2012). Extracellular 
DNases have been identified in S. suis, S. pyogenes, S. pneumoniae, 
and S. agalactiae (Hasegawa et  al., 2002a; Beiter et  al., 2006; 
Korczynska et al., 2012; Derré-Bobillot et al., 2013; de Buhr et al., 
2015). Moreover, GAS, similarly to SDSE, secretes streptodornase, 
encoded by the sda gene (sdc in SDSE; Wolinowska et al., 1991; 
Hasegawa et al., 2002b).

The DNase activity was tested for 518 SAG strains from 
clinical specimens (Jacobs and Stobberingh, 1995). Among 
307  S. anginosus isolates the majority (63%) were positive for 
DNase activity, and the corresponding figures for S. constellatus 
and S. intermedius strains were 58 and 78%, respectively. It is 
worth noting here that species identification was based on 
antigenic and biochemical tests. Different results were obtained in 
a survey of 128 SAG strains from sputum of CF patients, where 
among 45 isolates recognised as S. anginosus all but one (98%) 
were DNase producers (Grinwis et al., 2010).

Hyaluronidase
Hyaluronic acid is the major component of the ECM of the 

host connective tissue. Hyaluronan is a mediator of inflammation, 
however its role depends of its size: small fragments are regarded 
pro-inflammatory while large ones serve to suppress the 
inflammatory response [for review (Petrey and de la Motte, 
2014)]. Hyaluronidase (hyaluronate lyase) is secreted by many 
streptococcal strains, including SAGs; it is an important factor 
facilitating the spreading of bacteria through the host tissues 
(Günther et al., 1996). Accordingly, secretion of hyaluronidase by 
S. agalactiae (GBS) has been shown to suppress the immune 
response and increase the intracellular survival of the bacteria in 
macrophages (Wang et al., 2014; Kolar et al., 2015). In GAS, GBS, 
and clinical strains of S. pneumoniae hyaluronidase also enables 
the use of hyaluronic acid produced by the host, or even that 
derived from capsules of other streptococci, for example GAS, as 

an alternative carbon source for growth (Rivera Starr and Cary, 
2006; Marion et al., 2012). Moreover, hyaluronidase is involved in 
the spreading of S. intermedius by facilitating their detachment 
from a biofilm (Pecharki et  al., 2008). The extracellular 
hyaluronidase produced by S. pyogenes is a protein of 99.6 kDa 
encoded by the hylA gene (Hynes et al., 2000, 2009).

Some light on the prevalence of hyaluronidase in diverse 
serological groups of streptococci has been shed by a large 
research on 614 GAS, 247 GBS, 225 group C streptococci (GCS) 
and 143 group G (GGS) strains (Günther et al., 1996). Among the 
GAS only 12.5% produced hyaluronidase, whereas in the other 
groups hyaluronidase positive strains were more frequent: GBS 
– 72.1%, GCS – 84%, and GGS – 85.5%. A survey of SAG strains 
(no species identified) isolated from clinical cases (n = 165) and 
from healthy people (n = 97) showed that on average 41% of the 
strains were hyaluronidase-positive, but this rate was twice as high 
among the clinical strains (ca. 50%) compared with those from a 
normal flora (ca. 25%; Unsworth, 1989). The frequency of 
hyaluronidase production also differs markedly for the three SAG 
species. In a study of 518 SAG strains recovered from clinical 
swabs a hyaluronidase activity was detected in only 8% (n = 25) of 
all S. anginosus strains (n = 307), both related to infections (11 of 
163, 7%) and of unknown clinical importance (14 of 144, 10%; 
Jacobs and Stobberingh, 1995). In stark contrast, hyaluronidase 
producers represented 96 and 83% of S. constellatus and 
S. intermedius strains, respectively. Consistently, in a study of the 
SAG strains isolated from patients with acute dento-alveolar 
abscesses, none of 15  S. anginosus strains identified produced 
hyaluronidase (Fisher and Russell, 1993). A similar outcome was 
also obtained in an analysis of 157 SAG strains (64 dental plaque 
isolates and 91 from various other clinical sources), among which 
an average of 67% produced hyaluronidase (Whiley et al., 1990). 
However, of the 47 S. anginosus strains only 4% (n = 2) did, while 
98% of S. intermedius and 88% of S. constellatus strains were 
hyaluronidase-positive (Whiley et al., 1990). Thus, hyaluronidase 
is produced by strikingly few S. anginosus strains and, therefore, 
appears not to be  as important in their virulence as in other 
streptococci. However, it should be  noted that in surveys 
mentioned above (Whiley et al., 1990; Fisher and Russell, 1993; 
Jacobs and Stobberingh, 1995) the SAG species were identified 
with antigenic and biochemical tests, prior the molecular biology-
based methods have been introduced.

Hydrogen sulfide production
Hydrogen sulfide (H2S) is toxic for mammals at high 

concentrations. Its major effect is covalent modification of 
hemoglobin and its release from erythrocytes (Beauchamp et al., 
1984). H2S is produced from L-cysteine in an α, β-elimination 
reaction catalysed by L-cysteine desulfhydrase (βC-S lyase, Lcd; 
Guarneros and Ortega, 1970; Kurzban et  al., 1999). An 
involvement of H2S in progression of periodontal diseases has 
been proposed, especially for oral Gram-negative bacteria, the 
major H2S producers (Ratcliff and Johnson, 1999). Notably, the 
crude extracts from S. anginosus have a much higher capacity to 
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produce hydrogen sulfide than those from other oral streptococci 
(Yoshida et  al., 2003). The lcd gene encoding L-cysteine 
desulfhydrase from the laboratory S. anginosus strain FW73 was 
cloned in E. coli and the enzyme purified (Yoshida et al., 2002); 
exposition of sheep erythrocytes to L-cysteine and βC-S lyase 
resulted in the release of hemoglobin and its modification. 
Moreover, in BALB/c mice dental abscesses were formed after 
dorsal subcutaneous injection of the FW73 strain (Takahashi 
et al., 2011). When the mice were injected S. anginosus together 
with L-cysteine, the mean diameter of the abscesses was larger and 
also the level of lcd expression in the pus was over 15-fold higher 
than in mice injected with S. anginosus without L-cysteine. This 
indicated that H2S produced by L-cysteine desulfhydrase was 
responsible for the formation of the odontogenic abscesses in 
mouse (Takahashi et al., 2011).

Superantigens
Bacterial superantigens are toxins acting as T lymphocytes 

mitogens. They bypass antigen-presenting cells and directly 
stimulate the massive polyclonal proliferation of T cells, what 
results in the systemic release of pro-inflammatory cytokines 
(“cytokine storm”), including interferon-gamma (IFN-γ), tumour 
necrosis factor-alpha (TNFα) interleukin-beta (IL-1β), and IL-6, 
which in turn lead to a high fever and a toxic shock (Fraser and 
Proft, 2008; Wilde et al., 2021). In S. pyogenes the superantigens 
comprise streptococcal pyrogenic toxins (SPEs), streptococcal 
superantigen (SSA), and streptococcal mitogenic exotoxin Zn 
(SMEZn; Spaulding et al., 2013; Commons et al., 2014). The SPEs 
are divided into serotypes named A, C and G to O. SPEG and 
SMEZn are encoded chromosomally, in contrast to the other 
superantigens which are encoded by bacteriophages.

A collection of 124 β-hemolytic streptococcal strains isolated 
from 1,040 patients with diagnosed acute pharyngitis was tested 
by PCR for the presence of 11 known S. pyogenes superantigen-
encoding genes (Anand et al., 2012). With the use of antigenic and 
biochemical tests 67 isolates (54%) were identified as S. anginosus, 
38 (31%) as SDSE, and 19 (15%) as S. pyogenes. The speC, speG, 
and smeZ genes were detected in 100, 97.1, and 77.1% of the 
strains, respectively. The largest set comprising speC, speG, speA, 
speH, speI, and smeZ was detected in seven strains including one 
S. anginosus. Moreover, every S. anginosus strain harboured at 
least one gene encoding a superantigen. However, their nucleotide 
sequences were not determined (Anand et al., 2012). Recently, in 
a study of 59 β-hemolytic S. anginosus strains collected from 
endocarditis cases, the speC and speG genes as well as sdc and 
sdaD coding for DNases were detected in 1–8% of strains (Babbar 
et al., 2017). The genes were sequenced showing 100% identity 
with the respective S. pyogenes genes.

SAA, a novel Streptococcus anginosus antigen
Nitric oxide (NO) produced in response to bacterial infection 

has bactericidal effects [for review (Vatansever et  al., 2013)]. 
Components of the S. mutans cell wall, rhamnose glucose 
polymers, and lipoteichoic acid from S. sanguis and S. mutans 

have been shown to induce NO production in macrophages 
(English et al., 1996; Martin et al., 1997). A similar feature has 
been observed for S. anginosus – induction of the production of 
both NO and inflammatory cytokines by murine peritoneal 
exudate cells (PEC; Sasaki et al., 2001). The agent responsible for 
that was purified from a culture supernatant of S. anginosus NCTC 
10713 type strain and named S. anginosus antigen (SAA). SAA 
was then shown to stimulate NO production by PEC and 
accumulation of induced NO synthetase mRNA in a dose 
dependent manner in vitro. Furthermore, SAA also induced the 
accumulation of mRNA of TNF-α, IL–1β, and IL–6 (Sasaki et al., 
2001). SAA was recognized as a tyrosine tRNA synthetase (TyrRS) 
belonging to the aminoacyl-tRNA synthetase family (Shimoyama 
et al., 2020). TyrRS could be isolated from whole-cell lysates of 
eight oral streptococci type strains (S. anginosus, S. mutans, 
S. intermedius, S. mitis, S. sobrinus, S. gordonii, S. sanguinus, and 
S. constellatus) but not from S. salivarius or S. oralis. It was also 
detected in culture supernatants of six out of seven clinical strains 
of S. anginosus from dental plaques but not in the supernatants of 
nine other oral streptococci. Interestingly, TyrRS has been found 
extracellularly uniquely in S. anginosus. The secretory system 
exporting TyrRS of S. anginosus outside the cell is yet to 
be  elucidated as the protein lacks a typical N-terminal signal 
peptide recognised by the Sec secretion system (Shimoyama 
et al., 2020).

Signalling mediated by LuxS orthologues
Biofilm is the predominant type of growth for most bacterial 

species as it gives their communities a much higher resistance to 
changing environmental factors or antimicrobials compared to free-
floating planktonic cells (Mah and O’Toole, 2001). In a process called 
quorum sensing numerous opportunistic pathogens produce 
autoinducers in response to extracellular signals to coordinate 
population behaviour (Miller and Bassler, 2001). Inter-species 
communication, frequent in both Gram-positive and Gram-negative 
bacteria, is based on the universal signalling molecule called 
autoinducer–2 (AI–2) whose synthesis requires the activity of LuxS 
(Vendeville et al., 2005). LuxS-mediated signalling has been identified 
in diverse species, including S. mitis, S. gordonii, S. pneumoniae, and 
S. agalactiae, therefore an attempt has been made to detect the luxS 
gene also in the S. anginosus type strain NCTC 10713 (Petersen et al., 
2006). A PCR-amplified internal fragment of putative luxS showed 
approx. 80% nucleotide sequence identity with the luxS sequences of 
S. pneumoniae, S. gordonii, and S. mutans. Also, a culture supernatant 
of S. anginosus NCTC 10713 induced bioluminescence in Vibrio 
harveyi BB170, an AI-2 sensor, 5-fold more efficiently than that of its 
isogenic ΔluxS mutant. In accordance with the expected role of the 
putative LuxS, the luxS deletion decreased the ability to form biofilm 
between 2- and 5-fold, depending on medium used. Interestingly, 
under anaerobic conditions S. anginosus formed biofilm less 
efficiently than in a 5% CO2 aerobic atmosphere, regardless of its luxS 
status (Petersen et al., 2006). Moreover, the luxS mutation increased 
susceptibility to erythromycin and ampicillin (Ahmed et al., 2007), 
suggesting that the communication among bacteria could be taken 
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advantage of as a possible target for designing a new antibacterials 
(Ahmed et al., 2007).

Other putative factors
A/ UDP-glucose pyrophosphorylase encoded by hasC is part 

of the chromosomal hasABC operon, essential for the synthesis of 
the hyaluronic acid capsule of group A streptococci (Crater et al., 
1995). A homologue of hasC encoding a protein 86% identical to 
that of S. pyogenes has been found in all 17 SAG genomes tested, 
including seven S. anginosus strains (Olson et al., 2013); however, 
its role in SAG remains to be determined.

B/ Pullulanase is an enzyme degrading pullulan, a 
polysaccharide consisting of maltotriose units joined through 
α-D-1-6 glycosidic bonds. In S. pneumoniae pullulanase (SpuA) is 
a cell wall-anchored protein of 143 kDa shown to be necessary for 
full virulence in a mouse-lung model of infection (Bongaerts et al., 
2000; Hava and Camilli, 2002). Also in S. pyogenes pullulanase 
(PulA) is a surface enzyme (129 kDa) involved in adhesion to the 
nasopharyngeal epithelium (Hytönen et  al., 2003); it may 
contribute to the S. pyogenes virulence by its glycoprotein-binding 
activity and also by its potential to supply energy by carbohydrate 
hydrolysis. In all seven genomes of S. anginosus strains isolated 
from pulmonary and blood infections, analysed by Olsen et al. 
(Olson et al., 2013), a pulA homologue was detected coding for a 
protein 81% identical to the S. pyogenes protein along 59% of its 
length. However, the putative pullulanase of S. anginosus has not 
been studied yet.

C/ Streptococcal invasion locus. Another factor involved in 
invasion and evasion of streptococci in the host is the sil locus 
(streptococcus invasion locus). In S. pneumoniae it comprises five 
genes, silA-silE, which work as a quorum-sensing competence 
regulon. In GAS the sil locus has been shown to markedly increase 
invasiveness and fatal infections in an animal model (Hidalgo-
Grass et al., 2002). Homologues of the silA to silE genes have also 
been identified in S. anginosus. The encoded proteins are identical 
in 52, 41, 41, 54, and 80% to those of S. pyogenes, respectively, and 
cover 98, 84, 55, 99, and 99.7% of their length (Olson et al., 2013).

D/ Two-component global regulatory system – the CsrR/CsrS 
regulon. In GAS the two-component system CsrR/CsrS represses 
several genes, e.g., those enabling the synthesis of the hyaluronic 
acid capsule, SLS and other toxins (Engleberg et al., 2001). The 
importance of CsrR/CsrS in the pathogenesis of GBS has also been 
reported, showing that inactivation of csrR increased the 
expression of a cluster of cyl genes and enhanced the hemolytic 
activity (Spellerberg et al., 2000; Lamy et al., 2004; Jiang et al., 
2005). In SAG a csrR homologue encoding a protein 46% identical 
to CsrR of S. pyogenes along 99% of its length has been identified 
(Olson et al., 2013).

Additionally, several loci coding for other putative virulence 
factors have been detected in individual S. anginosus strains, basing 
on their homology to the Streptococcus virulence gene database 
(Olson et al., 2013). As already stated, S. anginosus is the most diverse 
species of the SAG group and the repertoire of its virulence factors 
differs substantially among strains (Olson et al., 2013).

Conclusion

Due to the increasing number of reports on the 
association of S. anginosus with a wide variety of infections 
ranging from oral infections, through empyema, abscesses 
and pulmonary infections to systemic blood infections, 
especially of immunocompromised and critically ill patients, 
it is now considered an emerging pathogen. However, in 
contrast to other streptococcal pathogens, the virulence 
factors and their regulation in S. anginosus are still poorly 
understood. One cannot exclude that its repertoire of factors 
facilitating infection is much broader than currently 
appreciated – those listed here do not exhaust the arsenal of 
proteins binding the host extracellular matrix and allowing 
the infection caused by these bacteria to spread. We hope that 
this review will systematize the present knowledge on the 
molecular basis of S. anginosus virulence and attract interest 
to this fascinating but somewhat neglected species. Further 
studies on the role of these factors in the infections are 
essential and should contribute to a better understanding of 
the transmission mechanisms of S. anginosus. This knowledge 
will in turn help to develop more effective means of 
preventing and dealing with the wide range of infections 
caused by this species.
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