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Introduction: Long-term grazing profoundly affects grassland ecosystems,

whereas how the soil microbiome and multiple soil ecosystem functions

alter in response to two-decades of grazing, especially how soil microbiome

(diversity, composition, network complexity, and stability) forms soil

multifunctionality is rarely addressed.

Methods: We used a long-term buffalo grazing grassland to measure the

responses of soil physicochemical attributes, stoichiometry, enzyme activities,

soil microbial niche width, structure, functions, and networks to grazing in a

subtropical grassland of Guizhou Plateau, China.

Results: The evidence from this work suggested that grazing elevated the

soil hardness, available calcium content, and available magnesium content

by 6.5, 1.9, and 1.9 times (p = 0.00015–0.0160) and acid phosphatase activity,

bulk density, pH by 59, 8, and 0.5 unit (p = 0.0014–0.0370), but decreased

the soil water content, available phosphorus content, and multifunctionality

by 47, 73, and 9–21% (p = 0.0250–0.0460), respectively. Grazing intensified

the soil microbial carbon limitation (+78%, p = 0.0260) as indicated by the

increased investment in the soil β-glucosidase activity (+90%, p = 0.0120).

Grazing enhanced the complexity and stability of the bacterial and fungal

networks but reduced the bacterial Simpson diversity (p < 0.05). The bacterial

diversity, network complexity, and stability had positive effects, while bacterial

and fungal compositions had negative effects on multifunctionality.

Discussions: This work is an original attempt to show that grazing lowered

multifunctionality via the reduced bacterial diversity and shifted soil bacterial

and fungal compositions rather than the enhanced bacterial and fungal

network complexities and stability by grazing. Protecting the bacterial
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diversity from decreasing, optimizing the composition of bacteria and fungi,

and enhancing the complexity and stability of bacterial network may be

conducive to improving the soil multifunction of grazing grassland, on a

subtropical grassland.

KEYWORDS

fungi, bacteria, grassland, diversity, network complexity, network robustness, niche
breadth

Introduction

Grassland covers 54% of terrestrial land (Barber-Cross et al.,
2022) and occupies ca. 70% of the agricultural land (Abdalla
et al., 2018; Ding et al., 2021). It forms ecologically and
economically significant functions, including storing one-third
of the terrestrial carbon storage (Shrestha et al., 2020; Bai and
Cotrufo, 2022), yielding about one-third of terrestrial annual net
primary productivity (Ding et al., 2020), supporting livelihoods
of 1–2 billion population (Garmendia et al., 2022), and reducing
food insecurity (Shrestha et al., 2020). As the most crucial and
pervasive anthropogenic disturbance (Wang B. et al., 2019) of
grasslands worldwide (Zhang et al., 2018a), and grazing is the
major land use accounting for over 22% of the planetary’s land
cover (Waters et al., 2019), it is essential to reveal the impact of
grazing on grassland for improving grassland management and
ecological protection.

A large body of field experiments and meta-analyses have
been carried out to measure the influences of grazing on the
soil’s physical environment, available elements, and element
limitations (Zhang et al., 2018a; Chai et al., 2019; Fenetahun
et al., 2021; Liu et al., 2022; Van Syoc et al., 2022; Wang L. et al.,
2022). Grazing could decrease soil porosity (Tang et al., 2019)
and increase soil bulk density (Binkley et al., 2003; Davidson
et al., 2017; Zhang et al., 2018b; Sun et al., 2019; Lai and Kumar,
2020; Fenetahun et al., 2021). These could result in a decline
in the air and water permeability (Daniel et al., 2002; Zhang
et al., 2018b) and soil moisture (Hou et al., 2014; Li et al.,
2021; Liu et al., 2021). However, grazing also increased soil
pH (Binkley et al., 2003; Hao and He, 2019; Fenetahun et al.,
2021; Li et al., 2021). Since soil pH, O2, and water were most
crucial driving forces of soil microorganisms (Fierer, 2017), and
grazing compressed the living niche for soil microbiome (Chai
et al., 2019; Proesmans et al., 2022) and negatively affected the
growth of microbes (Zhan et al., 2020), we speculated that the
changes caused by grazing may have a far-reaching impact on
the attributes of soil microorganisms.

Grazing may not only change the physical environment but
also affect nutrient availability. Some studies found that grazing
promoted nutrient cycling (Zhang et al., 2021a) and enhanced
soil net nitrogen (N) mineralization and N nitrification (Zhou
et al., 2017; Dong et al., 2020b), NH4

+ (Lai and Kumar, 2020),

NO3
− (Wang et al., 2016) and available phosphorus (P) (Hao

and He, 2019), potassium (K), and calcium (Ca) (Arevalo
et al., 1998) and have a positive impact on the availability of
soil nutrients (Faghihinia et al., 2020; Xu et al., 2022). Other
studies showed that grazing diminished the net mineralization
rate (Shan et al., 2011) and decreased available soil N and
P (Hao and He, 2019; Liu et al., 2021; Yu et al., 2021), K
(Fenetahun et al., 2021), Ca, and magnesium (Binkley et al.,
2003). Because nutrient availability has a very important effect
in soil microbiome (Fierer, 2017; Wang Z. et al., 2019; Ding
et al., 2020), we assumed that the grazing-triggered alterations
in available elements may also shift the microbial NP limitations
and the attributes of soil microbiome.

Grazing not only changes the soil’s physical environment
and nutrient availability but also reduces plant input through
reduced aboveground biomass, belowground biomass (Yan
et al., 2013; Hao and He, 2019; Wang et al., 2021), plant
richness (He et al., 2022), cover, and standing dead and litter
(Davidson et al., 2017; Li et al., 2017; Zhao et al., 2021;
Rong et al., 2022). Since grassland plants translocated about
30–50% of assimilates below-ground (Yakov and Grzegorz,
2000), grazing could result in lower C availability, which
likely aggravates soil microbial carbon limitation and decreases
microbial biomass C (Zhou et al., 2017). Since the soil microbial
community is fundamentally controlled by C limitation (Ding
et al., 2020; Ding and Wang, 2021), we hypothesized that
grazing-induced carbon limitation may alter the attributes of
soil microorganisms.

Although increasing numbers of studies have reported the
influences of grazing on soil’s physical environment, available
elements (Fenetahun et al., 2021; Wang L. et al., 2022), and
element limitations (Liu et al., 2022), studies about the effects
of grazing on the microbial community compositions and the
microbial networks are relatively scant (Magalí et al., 2019).
Although evidence is mounting that dissecting the relative
importance of plants and soils for the impact of the microbiome
(Ding et al., 2020; Chen et al., 2021), the linkages of soil physical
environment, available elements, and element limitations with
the niche width, structure, function, and network of soil
microorganism remain relatively scarce, which hinders our
understanding of the mechanisms by which grazing changes
the soil microorganisms. Soil microorganisms, especially the
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most frequently studied bacteria and fungi, have an engine effect
on multiple ecosystem functions individually (e.g., nutrient
transformation) and simultaneously (i.e., multifunctionality,
MF) (Ding and Wang, 2021). Grazing strongly alters the biotic
diversities and ecosystem functions of grasslands (Zhang et al.,
2021b). Previous research studies have typically centered on the
influences of diversity and composition on ecosystem functions
(Chen et al., 2022; Du et al., 2022). For instance, animal
trampling has a major effect on the soil-denitrifying community,
which in turn promotes higher denitrification with a higher
N2O emission (Treweek et al., 2016). Recently, increasing
numbers of evidence that highlights ecosystem function are
performed via the complex network (Chen et al., 2022).
Nevertheless, existing studies did not evaluate the relative roles
of diversity, composition, and network of soil community on
multifunctionality.

Global grasslands are subjected to drastic declines in
biodiversity and ecosystem functions (Bai and Cotrufo, 2022),
and grazing is the predominant driving factor of the soil
microbial community composition (Chen et al., 2021) and
function (Eldridge et al., 2016; Xun et al., 2018; Zhang et al.,
2021b). Notwithstanding, the underlying driving mechanisms
are unclear.

In mountainous regions, since tillage is limited by steep
slopes (Hiltbrunner et al., 2012), livestock grazing has the
largest deleterious effects on grassland soils, especially in
subtropical mountain areas of Guizhou, China. However,
evidence supporting the above assumptions remains speculative.
The purpose of this study is thus to test the following
assumptions: (1) grazing reduces the multiple ecosystem
functions, (2) grazing changes the niche width, structure,
function, and network of soil microorganisms, (3) grazing-
induced alterations in soil physical environment, available
elements, and element limitations change the attributes of
soil microbiome, and (4) herbivores grazing influences the
soil multifunctionality by microbial diversity. This study is
the first attempt to systematically tease apart the effects of
diversity, composition, and network of soil community on
multifunctionality; therefore, it provides a useful basis for
understanding grassland grazing.

Materials and methods

Sampling sites, design, and soil
sampling

The sampling region was in Longli county
(N26◦19′′44′−26◦23′′59′, E106◦51′′9′−106◦54′′37′, 1490–
1620 a.s.l.) of Guizhou Plateau, SW China. This region
undergoes a subtropical monsoon humid climate, with an
annual average temperature of 14.8◦C, the coldest monthly
average temperature of 4.6◦C, and the hottest monthly average

temperature of 23.6◦C; The precipitation is abundant, with an
annual precipitation of about 1,100 mm, mostly concentrated
in summer; the heat is sufficient, the annual sunshine hours
are about 1,160 h, and the non-frost period is 283 days. The
regional soil type is Haplic alisols (Ding and Wang, 2021), and
the dominant species are Eulalia pallens, Arundinella hirta,
and Carex cruciata wahlenb (Ding et al., 2020). The natural
grassland covers 6,000 hectares (Ding et al., 2020), including
grazing lands. The grazing land (50 hectares in this study) is
a natural grassland before grazing. The aboveground biomass
of grazing land is about three times that of non-grazing land
(Xu et al., 2015). The grazing livestock is Qianzhong buffalo.
The grazing intensity of the 20-year grazing grassland is one
buffalo/hm2.

Sampling was carried out at three sampling sites under
grazing or ungrazing, respectively, with nearly identical terrain,
climate, and soil type (Ding and Wang, 2021), between late
September and early October 2017. In total, three 0- to 5-cm soil
samples were drilled with stainless steel ring cutting in each site
and then mixed into mixed soil samples as a replicate (Ding and
Wang, 2021). The mixed soil sample is divided into self-sealed
sterile bags, one for the assay of soil moisture, pH, and chemical
property, and the other for the assay of soil microorganisms.
Soil core was collected from each site using the ring cutting for
measuring soil bulk density. Soil hardness was determined using
a portable penetrometer (Zhang et al., 2019) (TYD-1, Zhejiang
topu Instrument Co., China).

Assay of soil physicochemical attribute
and extracellular enzyme activity

Methods for determining soil physicochemical attributes
and extracellular enzyme activity have been described in detail
in our recent studies (Ding et al., 2020; Ding and Wang,
2021). Briefly, pH was assayed with 1:2.5 suspension (w/v)
(Wang P. et al., 2022). Water content and bulk density
were measured oven-dried at 105◦C. Organic carbon content
was measured using an Elementar analyzer (Bao, 2000).
Inorganic carbon content was measured by the hydrogen
chloride method (Bao, 2000). Total carbon content = Organic
carbon content + Inorganic carbon content. Total nitrogen
content was measured by an automatic nitrogen determiner
(Bao, 2000). Total phosphorus content was measured by
ammonium-molybdate colorimetry (Bao, 2000). Nitrogen
availability was measured by the alkali hydrolysis method (Bao,
2000). Phosphorus availability was measured by an ultraviolet
spectrometer (Bao, 2000). Potassium availability was measured
by a flare photometer (Bao, 2000). Calcium availability and
magnesium availability were measured by a spectrophotometer
(Bao, 2000). The soil stoichiometric ratios (OC:TN, OC:TP, and
TN:TP) were represented as mass ratios. The activities of β-1-4-
glucosidase, leucine aminopeptidase, N-acetylglucosaminidase,
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and acid phosphatase were measured using ELISA test kits
of Enzyme-linked Biotechnology Co. (Shanghai, China) (Ding
et al., 2020). Vector length and angle were used to quantify
the soil microbial carbon limitation and nitrogen/phosphorus
limitation based on the four extracellular enzyme activities
(Moorhead et al., 2013) using a user-defined function with the
setting “trans = 1” (Ding and Wang, 2021).1

DNA extraction, PCR amplification,
sequencing, and bioinformatics
analysis

This part is performed by Shanghai Major Biotech. Co.
(China) (Ding et al., 2020). Briefly, soil DNA was extracted
using a DNA isolation kit, and its quality and quantity were
checked using 0.8% agarose gel electrophoresis. The 16S rRNA
gene V4 region was amplified using the primers 515F and
907R, and the fungal rRNA gene ITS region was amplified
with the primers ITS3_KYO2 and ITS4 (Ding et al., 2020). The
Hiseq 2500 platform (PE250 mode) was used for sequencing.
After the filtering, splicing and quality control of raw reads
were performed using FLASH (Magoc and Salzberg, 2011) and
UCHIME (Edgar et al., 2011) software, and the effective tags
were clustered into an OTU using USEARCH (Edgar, 2010)
with a cut-off of 97%. The OTU was named and the diversity
indices (observed species, Shannon, Simpson, Chao1, and goods
coverage) were produced by USEARCH (Edgar, 2010). The
function of the soil bacterial community was annotated using
FAPROTAX v1.2.6 (Functional Annotation of Prokaryotic Taxa)
(Louca et al., 2016) and the “tax4fun” package (Asshauer et al.,
2015). The function of the soil fungal community uses the
“FUNGuildR” package2 in Rv3.6.1.3

Quantification of soil multifunctionality

Soil multifunctionality is defined as the synthesis of
multiple supporting ecosystem properties at a small scale
(Ding and Wang, 2021), and it can provide an insight
into the overall change of multiple soil properties. A total
of three complementary methods [the entropy-based
multifunctionality when considering a maximum number
of functions and considering the increasing number of
functions (Ding and Wang, 2021) and the threshold approach-
based multifunctionality (Byrnes et al., 2014; Ding and Wang,
2021)] were used to quantify the soil multifunctionality based
on the following soil properties: AN, AP, AK, ACa, AMg, pH,

1 https://github.com/dlltargeting/evcmdl

2 https://github.com/brendanf/FUNGuildR

3 https://cloud.r-project.org/bin/windows/base/old/3.6.1/R-3.6.1-
win.exe

WC, BD, SH, βGC, NAG, LAP, ACP, C limitation, and vector
angle (NP limitation). These variables were included in soil
multifunctionality since they either measure real soil functions
or are good proxies of soil functioning (Delgado-Baquerizo
et al., 2017; Bagousse-Pingueta et al., 2019; Chen et al., 2020a,b).
Inherent soil properties often define the soil’s basic functions
(Amsili et al., 2021). Soil pH can be considered as the result
of the complex interaction of various soil materials, such
as nitrogen, phosphorus, potassium, calcium, magnesium,
and organic materials (Xu et al., 2006; Jiang et al., 2015;
Neina, 2019; Penn and Camberato, 2019). The changes in
soil BD can reflect the changes in organic matter content,
porosity, and compaction (Aşkin and Özdemir, 2003; Pravin
et al., 2013), especially under long-term grazing. SH is a soil
mechanical property comprehensive reflection of soil organic
matter, humus, water content, texture, and structure. SH
was determined using a portable penetrometer (Zhang et al.,
2019) and reflected the degree of difficulty of root and water
penetration (Ono et al., 2020). In addition, other soil properties
are often included in soil multifunctionality (Byrnes et al., 2014;
Ding and Wang, 2021; Du et al., 2022; Wang P. et al., 2022).
Before calculating soil multifunctionality, the C limitation,
SH, and BD were reflected using r(f) = –f + max(f), and the
vector angle was reflected using f(x) = x−45 when the value
of the vector angle was <45 (indicating N limitation) and was
reflected using f(x) = −x + 45 when the value of vector angle
was >45 (indicating P limitation). By doing so, the high value
corresponds to the desired good value (Byrnes et al., 2014; Ding
and Wang, 2021).

Statistical analysis

Kruskal–Wallis test, Wilcox test (William, 1971; Myles and
Douglas, 1973), or t-test (Zar, 2014) was applied to test the
significance of the difference in soil physicochemical attributes,
stoichiometric ratios, enzyme activities, C/NP limitations,
and multifunctionalities. Principal component analysis (PCA)
and non-metric multidimensional scaling (NMDS) (Oksanen
et al., 2019) analysis were applied to distinguish the soil
microbial community between grazing and ungrazing. Linear
discriminant analysis (LDA) effect size (LEfSe) analysis (Segata
et al., 2011) was applied to identify the differential taxa
between grazing and ungrazing. Microbial network analysis
was used to reveal the microbial interaction strength at
the threshold of Pearson correlations r > 0.8 and the
Benjamini and Hochberg corrected p < 0.01 using the
“igraph” package (Csardi and Nepusz, 2006) in R v4.05.4

Kolmogorov–Smirnov test (William, 1971) was used to compare
the distribution of node degree, closeness, transitivity, and

4 https://cloud.r-project.org/bin/windows/base/old/4.0.5/R-4.0.5-
win.exe
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eigenvector centrality of the microbial network between grazing
and ungrazing. Kolmogorov–Smirnov test and Kruskal test
(William, 1971) were run to compare the distribution and
difference in the microbial network stability (average degree
and network connectivity) after 50% nodes were randomly
removed. Microbial network stability was visualized using
network robustness analysis that shows the declines in microbial
average degree and natural connectivity with the increasing
proportion of removing nodes or edges (Fan et al., 2018). The
subnetwork attributes are extracted for each sample using the
“igraph” package (Csardi and Nepusz, 2006). Niche breadth
was calculated using the “spaa” package (Zhang, 2016) and was
tested using the Wilcox test (Myles and Douglas, 1973), and
the dispersal–niche continuum index was applied to quantify
the relative role of niche or dispersal process for understanding
the drivers that shape community assembly (Vilmi et al., 2020).
Zero- and first-order Pearson correlation analyses were used to
test the linkages of the available element, physical environment,
element limitation with niche width, soil microbial diversity,
composition, network complexity and stability, the linkages of
soil microbial diversity, composition, and network complexity
and stability with multifunctionality using the “ppcor” package
(Kim, 2015) in R3.6.1. Before Pearson correlation analysis,
the first principal component (PC1) of PCA was used to
reduce multiple variables into a single virtual variable (available
element, physical environment, bacterial network complexity,
and fungal network complexity), which covers more than 96.7%
of the original information. The composition was indicated by
NMDS1. The “ggplot2” package in R and Gephi 0.9.75 were
applied to visualize the results.

Results

Soil properties and multifunctionality
under grazed and ungrazed

Compared with the ungrazing, grazing significantly
increased the soil SH, ACa, and AMg by +6.5 (p = 0.0160),
+1.9 (p = 0.00015), +1.9 (p = 0.0064) times and elevated soil
BD, pH, ßGC, ACP, and microbial C limitation by +59%
(p = 0.0370), +0.5 unit (p = 0.0014), +90% (p = 0.0120), +8%
(p = 0.0310), and +78% (p = 0.0260), respectively, whereas
ungrazing decreased the soil WC and AP by −47% (p = 0.0270)
and −73% (p = 0.0250), respectively (Figure 1). However,
statistical differences were not observed in other soil properties
(p = 0.10–1) (Supplementary Figure 1). Besides, the grazing
significantly increased the entropy-based multifunctionality by
−21% when considering the maximum number of functions
(t-test, p = 0.0435) and by −13.8–20.9% when considering the

5 https://gephi.org/users/download/

increasing number of functions (t-test, p = 0 – 1.5e−144). The
grazing also significantly increased the threshold approach-
based multifunctionality by −9 to −14% (Kruskal–Wallis test,
p = 0.0340–0.0460, Figure 2), supporting our first hypothesis.

Soil microbial structure under grazed
and ungrazed

As expected, grazing significantly reduced the bacterial
Simpson diversity by −0.24% (p = 0.0079, Figure 3A).
Unexpectedly, no statistical differences were found in
fungal diversity between grazed and ungrazed (p > 0.05,
Supplementary Figure 2). However, PCA and NMDS showed
that there was a clear distinction between the grazed and
the ungrazed (Supplementary Figure 3). Furthermore,
LEfSe analysis for bacterial communities showed that
Subgroup_2 order belonging to Acidobacteria phyla and
Rhodospirillales order and Deltaproteobacteria class belonging
to Proteobacteria phyla were evidently enriched in the
ungrazed soils; Ktedonobacteria class, Ktedonobacterales
order, JG30a_KF_32 family, Ktedonobacteraceae family
belonging to Chloroflexi phyla, and Chloroflexi phyla were
evidently enriched in the grazed soils (LDA score > 3.6,
Figure 3B). LEfSe analysis for fungal communities showed
that Helotiales_fam_Incertae_sedis family, Acidomelania genus,
Acidomelania_panicicola species, Sordariomycetes class, and
Chaetosphaeriales order, which belong to Ascomycota phyla,
Trechisporales genus, and Hydnodontacea family, which
belong to the Basidiomycota phyla were evidently enriched
in the ungrazed soils. The Clavulinopsis genus belonging to
Ascomycota phyla was evidently enriched in the grazed soils
(LDA score > 3.6, Figure 3C).

Soil microbial putative functions under
grazed and ungrazed

Compared with the ungrazed, the grazed significantly
decreased the relative abundance of intracellular parasites, non-
photosynthetic cyanobacteria, anoxygenic photoautotrophy
S oxidizing, and methanol oxidation (Welch’s t-test with two
sides p = 1.62e−3 to 0.034, Supplementary Figure 4A). The
grazed significantly decreased the relative abundance of C
fixation genes (accA, accB, and FBP), lignin decomposition
gene (tyrosinase), starch decomposition gene (bglA) chitin
decomposition gene (E3.2.1.96), nitrogen fixation gene (nifD),
denitrification gene (napB, NO3

−
→N2), and antibiotic

resistance gene subtypes (ampG, emrA, and acrA) and
significantly increased the relative abundance of C fixation
genes (frdA, frdB, frdC, and gap2), antibiotic resistance gene
(ARGs) type (bacitracin), and ARGs subtypes (bceS and
lmrP) (Welch’s t-test with two sides p = 4.59e−3 to 0.049,
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FIGURE 1

Soil physical, chemical property, enzyme activity, and carbon limitation under grazed and ungrazed. The differences in (A) soil hardness (SH),
(B) soil bulk density (BD), (C) pH, (D) water content (WC), (E) phosphorus availability (AP) content, (F) calcium availability (ACa) content,
(G) magnesium availability (AMg) content, (H) β-1-4-glucosidase (βGC), (I) acid phosphatase (ACP), and (J) microbial carbon limitation between
grazed and ungrazed. *p < 0.05, **p < 0.01, and ***p < 0.001.

Supplementary Figure 4B). The fungal functional analysis
showed that the grazed significantly decreased the relative
abundance of two growth forms (Thallus and Polyporoid,
Welch’s t-test with two sides p = 0.035–0.036) and three guilds
(Wood Saprotroph, Lichen Parasite, and Orchid Mycorrhizal,
Welch’s t-test with two sides p = 0.041–0.044, Supplementary
Figure 4C), whereas insignificant differences were found in
the relative abundance of plant pathogen fungi, arbuscular
mycorrhizal fungi, and ectomycorrhizal fungi between the
grazed and the ungrazed (Welch’s t-test with two sides
p = 1, 1, 1).

Soil microbial networks under grazed
and ungrazed

To decipher the influences of grazing on microbiome
associations, the bacterial and fungal networks under the grazing
and ungrazing treatments were built. Different association
patterns were observed (Figures 4A–D), supporting our second
hypothesis. Compared to the ungrazed, the grazed increased

the number of edges (by +40.00%, +4.23 times), average degree
(+48.24%, +1.06 times), natural connectivity (+1.01 and +4.52
times), and the number of negative edges (+10 unit and +1
unit) and negative edge proportion (+0.1829 unit and +0.0049
unit) of bacterial and fungal networks, whereas decreased the
positive edges proportion (28.57%, 0.49%) and vulnerability
(−39.05%, −48.86%) of bacterial and fungal networks. The
grazed decreased the number of nodes (by −5.56%), number
of clusters (−33.33%), centralization degree (−10.00%), center
eigen (−11.11%), and modularity (−4.51%) of the bacterial
network; however, increased those (+153.33, +21.87, 66.67,
+10.64, +8.33, and +18.66%) of fungal networks. The grazed
increased the connectance (+57.50%) of the bacterial network,
whereas decreased that (−21.87%) of the fungal network. The
grazed did not change the number of positive edges of the
bacterial network (0%), but increased that of the fungal network
(+4.21 times) (Supplementary Table 1). Kolmogorov–Smirnov
test indicated that the node degree, closeness, transitivity,
and eigenvector centrality under the grazed were statistically
distinct from those under ungrazed (p = 0–0.0001, Table 1).
We assessed the difference in network stability (average degree
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FIGURE 2

The entropy-based multifunctionality [(A), considering
maximum number of functions; (B), considering the increasing
number of functions] and threshold approach-based
multifunctionality (C) of soils under grazed and ungrazed.
*p < 0.05.

and network connectivity) between the grazed and ungrazed
treatments by network bootstrapping after 50% of nodes were
randomly removed. Kolmogorov–Smirnov test indicated that
the grazed significantly changed the network stability (average
degree, p = 0 and network connectivity, p = 0), and the Kruskal
test revealed that the average degree and network connectivity
of the fungal network were 1.36–9.30-folds those of bacterial
network, regardless of the grazed and ungrazed (Table 2).
Interestingly, the grazed soils significantly increased the average
degree and network connectivity of the bacterial network by

+30.37% (p = 0) and +4.01 times (p = 0) and those of the
fungal network by +9.46% (p = 0) and + 2.65 times (p = 0),
respectively. Furthermore, we performed the robustness analysis
of networks based on removing an increasing proportion of
nodes and edges. The results showed that the average degree and
network connectivity of the fungal network were higher than
those of the bacterial network, and those of the grazed were
higher than those of the ungrazed, irrespective of the remove
of nodes and edges (Figures 4E, F).

Niche breadth and assembly
mechanism of microbial communities

Wilcox test revealed that compared with the ungrazed, the
grazed decreased the niche breadth index of bacteria and fungi
by −10.43% (p < 2.22e−16) and −3.88% (p < 2.22e−16),
respectively (Supplementary Figure 5A). This supported
our second hypothesis. The dispersal–niche continuum
index showed that the E-values from the niche-controlled
model were clearly lower than those from the niche– and
dispersed-controlled model and dispersal-controlled model
(Supplementary Figures 5B, C), indicating that niche and
dispersal limitations were the main driving force of bacterial
and fungal community assembly.

The relationships of driving forces and
soil microbial structure and network

The zero-order Pearson correlation analysis showed that
fungal composition (indicated by NMDS1) was not significantly
related to C limitation (Supplementary Figures 6A, B), and the
vulnerability of the fungal network was significantly related to
AP, pH, and BD (Supplementary Figure 6B). Other zero-order
relationships were significant (Supplementary Figures 6A,
B). The first-order Pearson correlation analysis demonstrated
that soil microbial composition and network were evidently
associated with the available element, physical environment, C
limitation, and niche width (Supplementary Figures 6C–I).

Discussion

Grazing changed the soil’s physical
property, chemical property, and
ecto-enzyme activity

This study found that grazing evidently elevated the SH
(Shan et al., 2011; Zhang et al., 2019; Li et al., 2021; Liu
et al., 2021), BD, pH (Blank et al., 2006; Ajorlo et al., 2011;
Rong et al., 2022), ACa, AMg (Jusoff, 1988; Blank et al., 2006),
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FIGURE 3

Soil bacterial diversity (A) under grazed and ungrazed, and LEfSe analysis for bacterial (B) and fungal (C) communities showing the significantly
enriched taxa under grazed and ungrazed. **p < 0.01.

ßGC, ACP, and C limitation (Goenster-Jordan et al., 2021),
but decreased the WC and AP (Niu et al., 2016; Sigcha et al.,
2018; Chen et al., 2021; Fenetahun et al., 2021; Rong et al.,
2022; Figure 1). The buffalo squeezed the soil pores that
include those pores originally storing water and air, through
treading, which caused soil compaction (Ludvíková et al.,
2014), elevated the bulk density (Li et al., 2008; Zhan et al.,
2020; Fenetahun et al., 2021; Wade et al., 2022) and soil
hardness, and reduced soil water infiltration (Daniel et al., 2002).
Soil compaction is a global environmental issue of increasing

importance occurring in grasslands and other lands (Anneke
et al., 2010). Furthermore, buffalo decreased the vegetation
cover (Wang and Tang, 2019) through eating and treading and
enhanced the evaporation of soil water to air (Zhan et al.,
2020). All finally depleted the soil water content (Hao and
He, 2019; Tang et al., 2020). The returns of ACa and AMg
in form of dung and urine (Saunders, 2012) and accelerated
soil weathering by grazing (Lin et al., 2021) could elevate the
availability of calcium and magnesium, which, in turn, are
conducive to improving soil pH (Figure 1C). Decreases in
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FIGURE 4

Soil bacterial (A,B) and fungal (C,D) co-occurrence networks under grazed (A,C) and ungrazed (B,D), and network robustness analysis (E–H) for
microbial communities between the grazed and ungrazed. A node suggests an individual OUT, its color and size are proportional to its degree; a
link represents the significant Pearson correlations with r > 0.8 and the Benjamini and Hochberg corrected p < 0.01. A red line suggests a
positive relationship, but a blue line suggests a negative relationship. Network robustness analysis showing smaller decline at the same
proportion indicates more stability within networks.

plant biomass and coverage (Wang and Tang, 2019; Lin et al.,
2021) and removal of aboveground biomass by buffalo eating
and treading, and root biomass (Wade et al., 2022) due to the
depletion of soil water content, and increased bulk density (Lin
et al., 2021) and soil hardness (Figure 1A), generally reduced
the C inputs, which, in turn, commonly reduced the bioavailable
soil C (Ravhuhali and Moyo, 2021), aggravated C limitation
(Goenster-Jordan et al., 2021) as indicated by the increased
investment in C-capturing enzyme (ßGC, Figure 1H), which
can hydrolyze sugars and release labile C. The vector angle
under ungrazed was <45, indicating that the soil microbial
communities were limited by N; the vector angle under grazed
crossed with 45, indicating that the soil microbial communities
were under N and P co-limitation. This showed that grazing
shifted soil microbial communities from under N limitation
to under NP limitation. The decrease of AP explained the P

limitation, and this resulted in the increased investment of
P-capturing enzyme (ACP, Figure 1I). In brief, grazing changed
the soil’s physical and chemical properties and ecto-enzyme
activities and exacerbated microbial C limitation.

Grazing altered soil microbial niche
width, structure, and functions

Decreases in soil microbial niche width could be driven by
soil available elements and physical environment rather than
C limitation, and the interconnections were further evidenced
by the first-order Pearson correlation analysis (Supplementary
Figures 7A–D). This supported our third hypothesis. The
negative correlation between soil available elements and
bacterial-/fungal-niche width (i.e., the zero-order correlation
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TABLE 1 Results of the Kolmogorov–Smirnov test comparing
bootstrapped node attributes of networks under
grazed and ungrazed.

Comparison Degree Closeness Transitivity Eigenvector
centrality

Grazed B vs.
Ungrazed B

0.4133**** 0.4444**** 0.3281**** 0.2443****

Grazed F vs.
Ungrazed F

0.7109**** 1**** 0.0283**** 0.4183****

Ungrazed B vs.
Ungrazed F

0.5348**** 0.8689**** 0.3097**** 0.3089****

Grazed B vs.
Grazed F

0.7109**** 1**** 0.0099*** 0.2611****

For each network, node attributes were computed by bootstrapping 100,000 times.
Kolmogorov–Smirnov test compares the cumulative distribution of two properties where
the null hypothesis is that the properties have same distribution patterns. The values
in each cell represents the maximum difference in the absolute cumulative distribution
function. ***P < 0.001, ****P < 0.0001. B, bacteria; F, fungi.

TABLE 2 Results of the Kolmogorov–Smirnov test and Kruskal–Wallis
test comparing network stability (average degree and network
connectivity) of networks under grazed and ungrazed after 50%
nodes were randomly removed.

Method Comparison Average
degree

Natural
connectivity

Kolmogorov–
Smirnov
test

Grazed B vs.
Ungrazed B

0.2442**** 0.2835****

Grazed F vs.
Ungrazed F

0.9822**** 0.9579****

Ungrazed B vs.
Ungrazed F

0.6554**** 0.6074****

Grazed B vs.
Grazed F

0.9994**** 0.9909****

Kruskal–Wallis test Grazed B vs.
Ungrazed B

0.1322± 0.0004 vs.
0.1014± 0.0003****

1.2514± 0.0014 vs.
1.1433± 0.0008****

Grazed F vs.
Ungrazed F

1.2298± 0.0021 vs.
0.2456± 0.0007****

5.6659± 0.0107 vs.
1.5511± 0.0029****

Ungrazed B vs.
Ungrazed F

0.1014± 0.0003 vs.
0.2456± 0.0007****

1.1433± 0.0008 vs.
1.5511± 0.0029****

Grazed B vs.
Grazed F

0.1322± 0.0004 vs.
1.2298± 0.0021****

1.2514± 0.0014 vs.
5.6659± 0.0107****

For each network, node properties were computed by bootstrapping 100,000 times. The
values in top four cells represent difference for Kolmogorov–Smirnov test, which the
maximum difference in the absolute cumulative distribution function; The values in
bottom four cells represent mean value ± 95% confidence interval for Kruskal–Wallis
test. ****P < 0.0001. B, bacteria; F, fungi.

with Pearson’s r = −0.99) slightly weakened after removing the
effect of C limitation (r = −0.95) and physical environment
(r = −0.97). The negative effect of pH was weakened (from
r = −0.97 to −0.91) if the effect of the C limitation was
controlled. So were the effect of BD (from r = −0.93 to
−0.91) and WC (from r = 0.95 to 0.89) if the effect of
ACa was controlled. In addition, the negative effect of ACa
was maintained or weakened after removing the effect of C
limitation, SH, BD, WC, pH, and AMg.

As the consequences of the reduction of niche width
(r of zero-order Pearson correlation between niche width
and microbial composition = −0.97 to −0.99), bacterial and
fungal communities under grazed were distinct from those
under the ungrazed (Rong et al., 2022; Wang L. et al., 2022).
Interestingly, shifts in bacterial composition could be driven
by the soil’s physical environment and available elements
(Supplementary Figures 6A, C, 7E). The positive effect of soil
physical environment, available elements, and C limitation was
weakened (from r = 0.97, 0.98, 0.87–0.90, 0.94 ns) after removing
the effect of C limitation (Supplementary Figures 6A, C). The
positive effect of soil pH and ACa was weakened (from r = 0.97,
0.97 to 0.89–0.93) after removing the effect of C limitation,
BD, and AP (Supplementary Figures 6B, 7E). Consistent with
previous findings, grazing maintained the fungal diversity (Qin
et al., 2021) but declined the bacterial diversity (Chen et al., 2021;
Foley et al., 2022). This indicated that the bacterial community
and fungal community have distinct responses to grazing in
terms of diversity. Interestingly, recent work suggested that light
grazing intensity raised the soil microbial α-diversity, while
high grazing intensity decreased diversity, whereas moderate
grazing maintained a soil microbial diversity level close to that
of ungrazing (Xun et al., 2018). This may suggest that in this
study, grazing is the moderate intensity for fungi, while it is
high intensity for bacteria. Intriguingly, the negative effect of
soil available elements on the bacterial Simpson diversity was
weakened (from r =−0.95 to−0.90) after removing the effect of
C limitation (Supplementary Figures 6A, I). The negative effect
of SH was weakened (from r = −0.98 to −0.89 to −0.96) after
removing the effect of C limitation, BD, WC, pH, AMg, and AP.
The negative effect of ACa was weakened (from r = −0.95 to
−0.88 to −0.90) after removing the effect of C limitation and
AMg (Supplementary Figures 6B, 7K).

Shifts in fungal composition could be driven by soil C
limitation and available elements. The positive effect of the soil’s
physical environment was weakened (from r = 0.95 to ns), and
the positive effect of the soil’s available elements was enhanced
(from r = 0.95 to 0.97) after removing the effect of C limitation
(Supplementary Figures 6A, D). The effect of the C limitation
was also enhanced after removing the effect of available elements
(from r = 0 to −0.89) and ACa (from r = 0 to −0.88). The
positive effect of soil pH and ACa was slightly weakened and
enhanced (from r = 0.97, 0.95 to 0.92, 0.97) after removing the
effect of the C limitation. The positive effect of soil pH was
slightly weakened (from r = 0.97 to 0.89–0.91) after removing
the effect of AMg and AP (Supplementary Figures 6B, 7F).

The shifts in microbial composition might have important
implications for soil element cycling. Interestingly, contrary
to our expectation that the genes responsible for regulating
C and N cycling were heightened by grazing in Qinghai-
Tibetan Plateau (Dong et al., 2020a), the grazing might slow
the anoxygenic photoautotrophy S oxidizing and methanol
oxidation (Supplementary Figure 4A), probably owing to
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an oxygen-limiting condition induced by grazing-driven soil
compaction (Tang et al., 2020). Grazing in Qinghai-Tibetan
Plateau also fasted C fixation (accA and frdA) and degradation
(mnp, apu, and amyA), CH4 metabolism (pmoA and mxa),
the ammonia-oxidizing (amoA2), nitrification (hao), and
denitrification (nirS3 and nirK1) processes (Dong et al., 2020a);
however, in Guizhou plateau, grazing might slow C fixation
(accA, accB, FBP) and lignin decomposition (tyrosinase), starch
decomposition (bglA) and chitin decomposition (E3.2.1.96),
nitrogen fixation (nifD), and denitrification (napB) while
grazing might fast other C fixation processes (frdA, frdB, frdC,
and gap2) (Supplementary Figure 4B). Grazing intensities,
climate, soil type, and vegetation are often used to explain
this inconsistency. Denitrification is a microbially mediated
stepwise reduction process. In this process, NO3

− was reduced
gradually to NO2

−, NO, N2O, and finally N2. This process
can leak N2O. Since N2O has a global warming potential
nearly 296 times higher than that of CO2 (Fang et al., 2020),
grazing-induced declines of denitrification may be beneficial to
the emission reduction of N2O. In addition, grazing-induced
declines of denitrification may help to unchanged TN and AN
(Supplementary Figures 1D, F).

Furthermore, the decreases in the relative abundance of two
growth forms (Thallus and Polyporoid) and three guilds (Wood
Saprotroph, Lichen Parasite, and Orchid Mycorrhizal funfus)
induced by grazing (Supplementary Figures 4F, G) may be
attributed to the reduction of litter and shifts in plant hosts
(declined in the Lichen and Orchid) by grazing or tramping
(Kuske et al., 2012). Besides, some implications for soil health
have also been observed. On the one hand, intracellular parasites
represent a diverse and widely distributed group of pathogenic
microbes related to some acute and chronic diseases,6 and
the grazing decreased the relative abundance of intracellular
parasites, indicating that grazing improved soil health. On the
other hand, the propagation of ARGs has been widely perceived
as a great threat to global public health. Grazers could propagate
ARGs to clinical pathogens (Du et al., 2020) and soils. In the
Eurasian steppe, grazing reduced or did not alter ARGs (Du
et al., 2020; Zheng et al., 2021). In this work, the grazing
decreased the resistance to Beta-Lactam (ampG) and Multidrug
(emrA and acrA) subtypes, whereas increased the relative
abundance of one ARGs type (bacitracin), Bacitracin (bceS),
and Multidrug (lmrP) subtypes (Supplementary Figures 4D, E).
Although the transmission mechanism of ARGs in grazing soils
remains unknown, the focus should be centered on the grazing
system, which may enrich ARGs and threaten the health of soil
and human beings dependent on these soils, especially when the
influence of grazing on the diversity and abundance of soil ARGs
are controversy (Du et al., 2020; Zheng et al., 2021).

6 https://www.sciencedirect.com/topics/immunology-and-
microbiology/intracellular-parasite

Grazing changes soil bacterial and
fungal networks

Beyond shifts in microbial community composition, grazing
also altered the potential interaction patterns of soil microbiome
(Magalí et al., 2019; Chen et al., 2021), which supported our
second hypothesis. The increases in the average degree and
network connectivity of fungal networks in response to the
grazing were greater than those of bacterial networks (Figure 4),
indicating that the fungal network was more sensitive to grazing
than the bacterial network (Chen et al., 2021). Contrary to
the previous findings that grazing increased positive network
links (Magalí et al., 2019), in this work, both the bacterial
network’s and fungal network’s positive links were slightly
reduced by grazing (Supplementary Table 1). This is contrary
to the stress-gradient hypothesis (Ding and Wang, 2021),
which suggests that cooperative interactions are increased in
a community, and this is a survival strategy for soil microbial
communities under grazing stress (Magalí et al., 2019).
Nonetheless, grazing might enhance the selection for microbes
with identical niche demand, intensifying competition among
microbes (Eldridge et al., 2017) and ultimately showing an
increase in negative links within the community (Figures 4A–
D and Supplementary Table 1), further suggesting that
grazing boosted network complexity. Since positively correlated
microorganisms are more likely to be suppressed by the same
interference than negatively correlated microorganisms, this
negative links may also be the basis for grazing to enhance
the stability of the network. Our study provides an alternative
scenario different from the previous study, and this may
enhance an understanding of the influences of grazing on
microbial networks. Because the negative correlation has a
great effect on ecosystem function (Romdhane et al., 2022),
the negative correlation may have unknown enlightenment
on the soil function of grazing grassland that needs further
study.

Soil microbial network complexity (indicated by PC1 of
subnetwork attributes) could be mainly driven by the soil’s
physical environment. The negative effect of the physical
environment and available element on soil bacterial network
complexity was maintained when controlling for the NP
limitation (from r = −0.97, −0.90), whereas the negative effect
of the physical environment was weakened (from r = −0.97 to
−0.93) when controlling for the C limitation (Supplementary
Figures 6A, B, E, F). The negative effect of SH (r = −0.88),
BD (r = −0.94), pH (r = −0.97), AMg (r = −0.88), and ACa
(r = −0.90) was maintained, and the positive effect of WC
(from r = 0.97 to 0.98) and AP (from r = 0.93 to 0.98) was
enhanced when controlling for the NP limitation; however, the
negative effect of pH (from −0.97 to −0.92) and the positive
effect of WC (from r = 0.97 to 0.92) was weakened when
controlling for the C limitation. Unexpectedly, the C limitation
and the NP limitation did not significantly impact the bacterial
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network complexity. Interestingly, although on the whole level,
physical environment, available element, C limitation, and the
NP limitation did not significantly impact the fungal network
complexity (p = 1), the effect of AMg was enhanced (from ns
to r = 0.98) when controlling for the C limitation at the single
variable level. More interestingly, the effect of C limitation was
enhanced (from ns to r =−0.97) when controlling for the AMg.
Besides, the effect of pH was also enhanced (from ns to r = 0.88,
0.92, 0.91) when controlling for the C limitation, SH, and ACa
(Supplementary Figures 6B, 7G, H).

Soil microbial network stability (indicated by network
vulnerability) could be mainly driven by the soil’s physical
environment. The negative effect of the soil’s physical
environment on the bacterial network vulnerability was
weakened (from r = −0.99 to −0.89 to −0.95) after removing
the effect of C limitation and available element (Supplementary
Figures 6A, G, H). The negative effect of SH was enhanced and
weakened after removing the effect of BD (from r = −0.97 to
−0.99) and WC (from r = −0.97 to −0.88), respectively. The
negative effect of BD on the bacterial network vulnerability was
weakened (from r = −0.97 to −0.88 to −0.91) after removing
the effect of ACa (from r = −0.97 to −0.91) and AMg (from
r = −0.97 to −0.88). The negative effect of BD (from r = −0.97
to −0.89 to −0.99) and the positive effect of WC (from r = 0.97
to 0.90) were weakened after removing the effect of C limitation,
SH, and AP. The positive effect of one driving force on the
fungal network vulnerability was immensely weakened (from
r = 0.88–0.92 to ns) after removing the other driving forces.
The positive effect of SH (from r = 0.91 to 0.94) and ACa (from
r = 0.95 to 0.91) was enhanced and weakened after removing
the effect of pH (Supplementary Figures 6B, 7I, J).

Multifunctionality is linked to soil
microbiome

In line with previous findings, grazing had a negative
impact on multifunctionality (Zhang et al., 2015; Eldridge
et al., 2016; Zhang et al., 2021b). This adverse effect
could be attributed to the response of soil microbiome
(Chen et al., 2021). Traditional classical studies have widely
confirmed that diversity is the strongest driving force of
multifunctionality (van der Plas, 2019). Nevertheless, increasing
numbers of studies have found that the complexity of biotic
networks dominates multifunctionality (Jiao et al., 2019;
Wagg et al., 2019). However, grazing-induced changes in
soil microbial community composition drove soil function
(Fan et al., 2021a,b). But a recent finding indicated that
it is not diversity loss induced by anthropogenic pressures
but the shifts in community composition and the declines
in microbial abundance altered soil function. Anthropogenic
pressures also eliminated biodiversity effects via the shifted
community composition and the declined abundance (Yang
et al., 2022). Our study first dissected the roles of soil
microbial diversity, composition, network complexity, and
stability on multifunctionality. The positive effect of bacterial
network stability was maintained and the negative effect of
fungal network stability was tremendously weakened (from
r = 0.91, −0.88 to 0.91, ns) after removing the effect
of fungal network complexity (Figure 5). Interestingly, the
positive effect of bacterial network complexity was enhanced
(from r = 0.86 to 0.95) after removing the effect of fungal
network complexity, whereas fungal network complexity has
never played a significant role (r = −0.44–0.82, p = 0.09–
1). Importantly, the negative effects of bacterial and fungal

FIGURE 5

Zero-order (A) and first-order (B) Pearson correlation analysis showing the relationships of biotic driving forces and soil multifunctionality.
*p < 0.05, **p < 0.01.
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compositions were enhanced (from r = −0.87, −0.87 to −0.91,
−0.94) after removing the effect of fungal network complexity.
More importantly, the positive effect of bacterial diversity was
maintained and reduced (from r = 0.96 to 0.96, 0.89) after
removing the effect of fungal network complexity and bacterial
composition (Figure 5). This shows that our data support the
traditional view and our fourth hypothesis; nevertheless, the
network complexity also plays an important role to link the
soil microbiome and multifunctionality, which also supports
that the simplification of soil complex network links could
debilitate ecosystem function (Jiao et al., 2019; Wagg et al.,
2019). Interestingly, network complexity was enhanced while
multifunctionality was impaired by grazing. However, this
reflects the importance of diversity and composition due to the
negative impacts of composition (Figure 5) and the reduced
diversity by grazing (Figure 3A), which further indicates that the
positive effect of increasing complexity could not offset the effect
of decreasing diversity and the negative impacts of composition
(Supplementary Figure 8).

Collectively, our results showed that the bacterial diversity,
network complexity, and stability have enhanced the soil
ecosystem’s multifunctionality, while the turnover of bacterial
and fungal compositions induced by grazing can weaken the
soil ecosystem’s multifunctionality (Supplementary Figure 8).
It is expected to further maintain the function of the grazing
grassland soil ecosystem at a higher level by optimizing the
availability of soil nutrients and physical environment and
increasing the niche width of bacteria and fungi, thereby
improving the bacterial diversity, network complexity, and
stability. Moreover, further studies with the operation of
bacterial and fungal combinations will also assist to obtain a
higher ecosystem function and update knowledge on the behind
cause-and-effect mechanisms.

Conclusion

Grazing generally affects subtropical grasslands. In line
with our three assumptions, our evidence showed that grazing
decreased soil multifunctionality. Grazing shifted the soil
bacterial and fungal composition and function and reduced the
soil bacterial Simpson diversity and niche width. In addition,
grazing enhanced the complexity and stability of the bacterial
and fungal networks. Furthermore, the bacterial Simpson
diversity, network complexity, and stability had positive effects,
whereas bacterial and fungal compositions had negative effects
on multifunctionality. Our study provides a novel comparison
of the roles of soil microbial diversity, composition, network
complexity, and stability on multifunctionality, and this will
improve our understanding of the multidimensions of biotic
driving forces of multifunctionality. Indeed, our results may
occur in improving multifunctionality through directing future
efforts to optimize the composition of soil bacteria and fungi

and increase the diversity and the network complexity and
stability of bacteria.
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