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Antimicrobial peptides (AMPs) are ancient antimicrobial weapons used by 

multicellular organisms as components of their innate immune defenses. 

Because of the antibiotic crisis, AMPs have also become candidates 

for developing new drugs. Here, we  show that five different AMPs of 

different classes are effective against non-dividing Escherichia coli and 

Staphylococcus aureus. By comparison, three conventional antibiotics 

from the main three classes of antibiotics poorly kill non-dividing bacteria 

at clinically relevant doses. The killing of fast-growing bacteria by AMPs 

is faster than that of slow-dividing bacteria and, in some cases, without 

any difference. Still, non-dividing bacteria are effectively killed over time. 

Our results point to a general property of AMPs, which might explain why 

selection has favored AMPs in the evolution of metazoan immune systems. 

The ability to kill non-dividing cells is another reason that makes AMPs 

exciting candidates for drug development.
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Introduction

Antimicrobial peptides (AMPs)—small, and most of the time, cationic molecules—are 
crucial elements of the humoral innate immune defenses of all multicellular life (Lazzaro 
et al., 2020). AMPs are also essential players at the host-microbiome interface (Bevins and 
Salzman, 2011; Mergaert, 2018). Because of their evolutionary success and diversity, AMPs 
are considered new antimicrobial drug candidates to alleviate the current antibiotic 
resistance crisis (Mookherjee et al., 2020). Currently, there are around two dozen AMPs 
from different origins under clinical trial (Koo and Seo, 2019).

Bacterial pathogens and bacteria, in general, encode several conserved and essential 
genes in their genomes, where inhibition could lead to bacterial growth arrest or killing. 
These genes are usually the targets of all known antibiotics. Such druggable pathways range 
from several tens to hundreds of genes (Juhas et al., 2011). It is striking, however, that 
metazoan immune effectors do not exploit these easy targets while chemical defenses of 
microbes do to gain competitive advantages (Letten et al., 2021). One possibility is that 
resistance evolution against antibiotics is relatively easy and ubiquitous (Blázquez et al., 
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2018). Toxicity or microbiome damage could be another reason to 
avoid using chemicals such as antibiotics for our chemical 
defenses (Blaser, 2016).

We have been studying why AMPs were selected during 
evolution and what properties made them more suitable as an 
antimicrobial defense strategy of metazoan than other types of 
molecules, such as antibiotics. These insights have also the 
potential to inform the application of AMPs as drugs. For example, 
we have found that AMPs differ significantly from conventional 
antibiotics: including their pharmacodynamics, resulting in 
narrower mutant selection windows (Yu et al., 2018). In contrast 
to conventional antibiotics, AMPs do not increase the mutation 
rate even at sub-lethal concentrations (Rodríguez-Rojas et  al., 
2014, 2015), and they do not increase recombination frequency 
(Rodríguez-Rojas et al., 2018). Taken together these features of 
AMPs combine to lower the probabilities of resistance evolution 
(Yu et  al., 2018). It seems that the emergence of AMPs as an 
antimicrobial weapon during evolution depends not on a single 
feature but several.

There are many physiological or pathological situations where 
microbes are slow growing, and the host needs to control them. 
For instance, Escherichia coli, a typical colonizer of humans and 
warm-blooded animals (Martinson and Walk, 2020) grows very 
fast in laboratory conditions, with a doubling time or generation 
time around 20 min. The proliferation rate in human guts, 
however, was estimated to be  near 40 h (Savageau, 2015). 
Situations such as this motivated our study.

We note that slow growing bacteria also occur in biofilms, a 
situation we  do not study here. It has been shown that some 
antimicrobial peptides have anti-biofilm activity (Huan et  al., 
2020). However, it should be  noticed that many of them are 
different from the classical AMPs from multicellular organism. 
The positive charges although being essential for antimicrobial 
action also represent an impediment to natural AMPs penetration 
into biofilms (Yasir et al., 2018). The main reason lies in the fact 
that polysaccharides (EPS) of the biofilm matrix is negatively 
charged and can trap positive AMPs. This undermines the activity 
of AMPs. Moreover, many AMPs in biofilms are subject to 
hydrolytic and proteolytic breakdown (Galdiero et al., 2019).

Stationary phase bacteria are significantly less susceptible to 
antibiotics than fast-growing counterparts (Gutierrez et al., 2017; 
Mccall et al., 2019). Conventional antibiotics are most often only 
effective when bacteria are actively dividing (Eng et  al., 1991; 
Lobritz et  al., 2015). It is known that colistin, a cationic 
antimicrobial peptide of microbial origin (Biswas et al., 2012), kills 
bacteria regardless of their metabolic state (Singhal et al., 2022). 
Based on a similar mode of action that colistin shares with other 
antimicrobial peptides, we  hypothesize that the ability to kill 
stationary phase bacteria is a general property of cationic AMPs 
from multicellular organisms. We specifically investigate whether 
AMPs can kill non-dividing bacteria and how the bacterial 
physiology of the stationary phase change this dynamic. We use 
five antimicrobial peptides from different origins (cecropin A, 
indolicidin, LL-37, melittin, and pexiganan) that are well 

characterized in their activities. For comparison, we also use three 
bactericidal drugs representing the three most relevant antibiotic 
families: beta-lactams, aminoglycosides and fluoroquinolones 
(ampicillin, gentamycin and ciprofloxacin, respectively). To 
extend the validity of our research, we carried out experiments 
using a Gram-negative bacterium (Escherichia coli) and a Gram-
positive bacterial model (Staphylococcus aureus).

Materials and methods

Bacteria and growth conditions

The Escherichia coli K12 from Yale University Microbial Stock 
Center and Staphylococcus aureus SH1000 (Horsburgh et al., 2002) 
were used for all experiments. All cultures related to antimicrobial 
tests and experiments were carried out in Mueller-Hinton I broth 
(Sigma) devoid of cations. Both strains were routinely cultured in 
Lysogeny Broth (LB medium).

Antimicrobials

For this study, we  used five different AMPs (cecropin A, 
indolicidin, LL-37, melittin, and pexiganan) and three antibiotics 
(ampicillin, gentamycin and ciprofloxacin, respectively). All 
antimicrobials were purchased from Sigma except pexiganan that 
was a generous gift from Dr. Michael A. Zasloff from 
Georgetown University.

Minimal inhibitory concentration

The minimal inhibitory concentration for each antimicrobial 
were determined according to CLSI recommendations by the 
microdilution method (CLSI, 2018) with minor modifications for 
antimicrobial peptides (Giacometti et al., 2000). For comparison, 
we kept these modifications also for antibiotics. Inoculum size 
that was adjusted to approximately 1 × 106 CFU/ml from a 2-h 
mid-exponential phase obtained by diluting 100 μl of overnight 
cultures in 10 ml of fresh medium in 50 ml Falcon tubes. The MIC 
was defined as the minimal antimicrobial concentration that 
inhibited growth, after 24 h of incubation in liquid MHB medium 
at 37°C. Polypropylene non-binding plates (96 wells, Th. Geyer, 
Germany) were used for all experiments. Results are presented in 
Table 1.

Fast-growing bacteria killing experiment

For exponentially growing bacteria, five independent cultures 
per treatment were diluted 1:100 from a 16-h overnight culture 
(by adding 100 μl to 10 ml of MHB medium in 50 ml Falcon 
tubes). Then, the bacteria were grown for 2 h for E. coli and 2.5 h 
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for S. aureus, to reach approximately 2 × 108 CFU/ml. The cultures 
were then diluted 1/100 in fresh medium to reach approximately 
2 × 106 CFU/ml. Two ml of diluted culture were exposed to 10x 
MIC to the AMPs and the antibiotics. Volumes of 100 μl-sample 
were extracted at 4 and 24 h. The aliquots were diluted and plated 
to determine cell viability. Non-treated cells were used as a control. 
All incubations took place at 37°C with shaking.

Generation of a stationary phase-like 
culture medium (spent medium)

In order to maintain bacteria in their non-dividing state, 
we generated a medium to carry out the killing assays. From the 
supernatant of 500 ml of 48-h culture from each bacterium, the 
cells were pelleted at 4000 ×g for 30 min. The pH of each culture 
was adjusted to match the original pH of 7.2. To remove 
additional cell debris, flagella rest and outer membrane  
vesicles that could potentially interfere with the activity of  
AMPs (Manning and Kuehn, 2011), the supernatants were 
ultracentrifuged at 100000 ×g during 16 h at + 4°C. Thereafter, 
250 ml of the supernatant from each flask was carefully recovered, 
without perturbing the pellet, and aseptically filtrated using 
0.22 μm syringe filters and 40 ml were transferred to sterile 
50 ml-falcon tubes, that were stored at −20°C until use. We refer 
to this medium as spent medium. The medium was tested to 
show its incapacity to sustain additional bacterial growth.

Stationary phase bacteria killing experiment

For stationary phase bacteria, five independent cultures per 
treatment were used. Bacteria from 48-h cultures containing 
approximately 3 × 109 CFU/ml for E. coli and 2 × 109 CFU/ml for 
S. aureus were diluted in spent medium (see preparation above) 
to a final cell density of 2×106 CFU/ml. Then, the bacteria were 
treated identically to the fast-growing bacteria killing experiment 
described above.

Statistical analysis

Statistical testing and plots were done in R version 3.3.2 (R 
Core Team, 2017), using Rstudio version 1.0.143 (R Development 
Core Team, 2015). To compare killing rates between bacteria 
growing in exponential and stationary phase for each antimicrobial 
after 4 and 24 h of exposure, a Welch’s t-test was used. Values 
below the detection limit (zero colony counts) were imputed for 
statistical purposes assigning a value of 1.

Results and discussion

First, we determined the minimal inhibitory concentration 
(MIC) for all antimicrobials (Table 1) and used these values as a 
reference for the killing experiments. Then, we exposed equivalent 
numbers of both bacterial species to a ten-fold concentration (10 × 
MIC) of cecropin A, indolicidin, LL-37, melittin, and pexiganan. 
We also used the same treatments with ampicillin, ciprofloxacin 
and gentamicin. Finally, we  measured bacterial survival at 
two-time points, 4 and 24 h post exposure for actively dividing 
bacteria (exponential phase) and slow-replicating ones (stationary 
phase). The results from these experiments are shown in 
Figures 1, 2 for E. coli and S. aureus, respectively. In this article, 
we refer to fast or actively replicating bacteria as the state of the 
bacterial population at the time of the addition of antimicrobials. In 
our experimental conditions, all antimicrobials drastically reduced 
bacterial counts at 4 and 24 h of treatment for the exponentially 
growing bacteria. For stationary phase bacteria, all AMPs reduced 
viability. However, after 4 h of exposure, there was some delay in 
killing by cecropin A, LL-37, melittin, and pexiganan while killing 
stationary phase bacteria compared to exponentially growing 
microbes. Indolicidin was the most efficient AMP, capable of 
completely killing (or reducing bacterial counts below the 
detection limit), bacterial cultures from both species but also for 
fast and slow-replicating bacteria for both time-points, 4 and 24 h.

The three antibiotics were very efficient in killing after 4 h for 
both bacterial species of exponentially growing cells while failing 
to kill stationary phase ones at 4 h. In particular, ampicillin did not 
kill stationary phase bacteria 4 h post treatment, with a poor killing 
capacity even at 24 h. Also after 24 h of exposure, gentamicin and 
ciprofloxacin reduced microbial count for both models with a 
significantly lower efficacy than killing fast-replicating cultures. All 
statistical inferences of the killing rate at 4 and 24 h for each 
antimicrobial and both bacterial species are provided in Tables 2, 3.

Indolicidin, the most effective AMP at killing non-dividing 
bacteria, is a 13-residue peptide belonging to the cathelicidin 
family, with a broad-spectrum activity against a wide range of 
targets, such as Gram-positive and Gram-negative bacteria, fungi 
and viruses (Batista Araujo et al., 2022). This peptide was isolated 
from neutrophil blood cells of cows (Selsted et al., 1992). Our 
findings suggest that the capacity of cationic AMPs to kill slow-
replicating bacteria is rather common and may be  conserved 
across the tree of life. In this work, we also used insect derivative 
peptides such as cecropin A, first isolated from the hemolymph of 

TABLE 1 Minimal inhibitory concentration (MIC) values for 
Escherichia coli K12 and Staphylococcus aureus SH1000 for different 
antimicrobials used in this study.

Antimicrobials Class MIC (μg/ml)

E. coli 
K12

S. aureus 
SH1000

Ampicillin Beta-lactam 2 4

Ciprofloxacin Fluoroquinolone 0.125 0.062

Gentamicin Aminoglycoside 1 4

Cecropin A Cationionic AMP 4 8

Indolicidin Cationionic AMP 16 8

LL-37 Cationionic AMP 4 8

Melittin Cationionic AMP 2 2

Pexiganan Cationionic AMP 4 8
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the moth Hyalophora cecropia (Lee and Brey, 1994), and melittin 
from the venom of honeybees (Habermann and Jentsch, 1966). In 
addition to indolicidin, we  used two more vertebrate AMPs, 
pexiganan, a derivative of magainin II from the skin of the African 
frog Xenopus laevis (Ge et al., 1999) and the human peptide LL-37, 
which also has antibiofilm activity (Ridyard and Overhage, 2021). 
All these five AMPs were efficient at killing non-dividing 
(stationary phase) bacteria. This property adds to the potential 
benefits of AMPs as antimicrobial drug candidates but also to our 
understanding of their role and evolution as main components of 
metazoan innate immune defenses.

All antimicrobials are sensitive to the inoculum effect or cell 
density, a phenomenon that decreases their efficacy (Udekwu et al., 
2009). This is one of the reasons why for example, biofilms are less 
sensitive to antimicrobials in general. This is particularly true for 
positively charged drugs, mostly aminoglycosides and the cationic 

antimicrobial peptide colistin with a very drastic diminishing of the 
killing activity within biofilm microenvironments (Kirby et  al., 
2012). The lower killing of AMPs due to high density bacterial 
population seems to be a prevalent phenomenon (Loffredo et al., 
2021). Although these problems have hampered the utilization of 
AMPs as drugs, efforts to make AMPs more stable by chemical 
modifications are widespread and could help to mitigate this issue. 
Because of the inoculum effect, we designed this study to investigate 
bacterial killing in low-density populations, a situation, which 
we think, is common enough to warrant study. During the onset of 
an infection, it is common that microbes enter the body in low 
proliferating state or close to the stationary phase. They usually are 
also in small numbers, where AMPs would work well as a first line 
of defense. In the same line, it is also known that the inoculum size 
plays a fundamental role in the probability of establishing an 
infection (Grant et al., 2008). Finally, we would like to mention that 

FIGURE 1

Killing of Escherichia coli K12 at 10× MIC for five antimicrobial peptides and three different antibiotics. The gray boxes indicate bacteria growing 
exponentially while the blue ones denote bacteria treated in the stationary phase in spent medium prepared as described in the Materials and 
methods section.
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FIGURE 2

Killing of Staphylococcus aureus SH1000 at 10× MIC for five antimicrobial peptides and three different antibiotics. The yellow light green boxes 
indicate bacteria growing exponentially while the orange ones denote treated bacteria in the stationary phase in spent medium prepared as 
described in the Materials and methods section.

TABLE 2 Killing fold-change of Escherichia coli K12 growing exponentially versus stationary phase cultures and their comparative statistical 
difference (Welsh’s test).

Antimicrobials
E. coli K12

Killing fold-change 4 h (median) p-value Killing fold-change 24 h p-value

Ampicillin 595.18 0.0183 4,150,000 0.0033

Ciprofloxacin 1,072 0.0018 13,300 0.0085

Gentamicin 10380.62 0.0041 317,000 0.0006

Cecropin A 1.21 ns 27 0.0220

Indolicidin 9.09E-02 0.0027 1 ns

LL-37 3.71 0.0235 1 ns

Melittin 65.79 0.0007 1 ns

Pexiganan 2.53 0.0168 1 ns
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a possible limitation of this study is that antimicrobial peptides 
could behave differently within the host compared to in vitro 
conditions. Therefore, future studies will be necessary to study how 
the cationic antimicrobial peptides kill stationary phase or slow 
replicating bacteria in vivo.
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