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Background: ST-segment elevation myocardial infarction (STEMI) in young 

male patients accounts for a significant proportion of total heart attack 

events. Therefore, clinical awareness and screening for acute myocardial 

infarction (AMI) in asymptomatic patients at a young age is required. The gut 

microbiome is potentially involved in the pathogenesis of STEMI. The aim of 

the current study is to develop an early risk prediction model based on the gut 

microbiome and clinical parameters for this population.

Methods: A total of 81 young males (age < 44 years) were enrolled in this study. 

Forty-one young males with STEMI were included in the case group, and the 

control group included 40 young non-coronary artery disease (CAD) males. 

To identify the differences in gut microbiome markers between these two 

groups, 16S rRNA-based gut microbiome sequencing was performed using 

the Illumina MiSeq platform. Further, a nomogram and corresponding web 

page were constructed. The diagnostic efficacy and practicability of the model 

were analyzed using K-fold cross-validation, calibration curves, and decision 

curve analysis (DCA).

Results: Compared to the control group, a significant decrease in tendency 

regarding α and β diversity was observed in patients in the case group 

and identified as a significantly altered gut microbiome represented by 

Streptococcus and Prevotella. Regarding clinical parameters, compared to the 

control group, the patients in the case group had a higher body mass index 

(BMI), systolic blood pressure (SBP), triglyceride (TG), alanine aminotransferase 

(ALT), and aspartate aminotransferase (AST) and low blood urea nitrogen (BUN). 

Additionally, BMI and SBP were significantly (p<0.05) positively correlated with 

Streptococcus and [Ruminococcus]. Further, BMI and SBP were significantly 

(p<0.05) negatively correlated with Prevotella and Megasphaera. A significant 

negative correlation was only observed between Prevotella and AST (p < 0.05). 

Finally, an early predictive nomogram and corresponding web page were 

constructed based on the gut microbiome and clinical parameters with an 

area under the receiver-operating characteristic (ROC) curve (AUC) of 0.877 
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and a C-index of 0.911. For the internal validation, the stratified K-fold cross-

validation (K = 3) was as follows: AUC value of 0.934. The calibration curves 

of the model showed good consistency between the actual and predicted 

probabilities. The DCA results showed that the model had a high net clinical 

benefit for use in the clinical setting.

Conclusion: In this study, we combined the gut microbiome and common 

clinical parameters to construct a prediction model. Our analysis shows that 

the constructed model is a non-invasive tool with potential clinical application 

in predicting STEMI in the young males.

KEYWORDS
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Introduction

ST-segment elevation myocardial infarction (STEMI) is the 
most severe coronary artery disease (CAD), with a high risk of 
complications and even death. Recent studies have shown a 
significant increase in the incidences of STEMI and the rate of 
hospitalization in young males <55 years of age, which indicated 
the necessity to investigate this population (Zhang et al., 2016). 
Compared to elderly patients, young male patients with 
ischemic heart disease present different clinical characteristics, 
such as a higher proportion of single-vessel lesions, more 
percutaneous interventions (PCI), and an increased risk of 
adverse outcomes post-hospitalization (Bangalore et al., 2012; 
Gupta et al., 2014). Moreover, the absence of traditional risk 
factors such as diabetes, hypertension, and hyperlipidemia in 
these patients indicates a distinct disease pattern (Wittlinger 
et  al., 2020) and the obscurity of the underlying 
pathophysiology. Therefore, early diagnosis of these patients is 
crucial for better outcomes. However, the lack of characteristic 
risk factors for screening STEMI in the young population is a 
major challenge in timely diagnosis and intervention.

Studies have shown that the gut microbiome plays an 
important role in maintaining normal physiological functions in 
the human body (Lozupone et al., 2012; Pietroiusti et al., 2016). 
Disturbances in the gut microbiota have been associated with 
multiple human diseases, including CAD (Liu et  al., 2019). 
Previous studies have reported that Bacteroides and gut 
microbiome-derived metabolites such as trimethylamine N-oxide 
(TMAO) mediated atherosclerosis formation and are associated 
with the incidence of CAD (Koeth et al., 2013; Yoshida et al., 2018). 
The combination of clinical characteristics and gut microbiome 
could significantly enhance the diagnostic efficacy of CAD (Zheng 
et al., 2020). These findings are indicative of the potential role of 
the microbiome in STEMI in young males. However, studies on 
this issue are rare, and details regarding the relationship between 
the gut microbiome and STEMI in young men remain elusive.

The aim of the current study is to investigate the alteration in the 
gut microbiome in young male patients with STEMI. We investigated 

the correlation between the gut microbiome and clinical parameters. 
Further, we developed an early risk prediction model based on the 
gut microbiome and the clinical parameters and performed internal 
validation. Our results may provide novel insights into the 
pathogenesis and prevention of STEMI in young males.

Materials and methods

Study design and population

A total of 81 young males were enrolled in this case–control 
study. The case group comprised 41 young males diagnosed with 
STEMI at the department of cardiology of the Tangdu Hospital of 
Air Force Medical University. The inclusion criteria were as 
follows: (1) markedly acute chest pain in the last 24 h. (2) 
ST-segment elevation or depression or pathological Q wave 
detected by electrocardiogram. (3) elevation in serum cardiac 
troponin (cTnI) with values above the 99th percentile upper 
reference limit. (4) intraluminal obstruction revealed by coronary 
angiography. (5) age between 18 and 44 years old. The control 
group comprised 40 age-matched males with negative results per 
coronary angiography. In both groups, individuals with prior 
medical conditions like malignancy, severe liver or kidney disease, 
autoimmune disease, gastrointestinal disease, >3 days of antibiotic 
use in the past 3 months or an abnormal stool morphology, such 
as diarrhea and dry stools were excluded from the study. The study 
was approved by the ethics committee of Tangdu Hospital of Air 
Force Medical University. All patients provided written informed 
consent to participate in the study.

Baseline characteristics and biochemical 
tests

The demographic characteristics like age, height, weight, 
smoking, and alcohol habits, as well as the past medical history of 
the patients retrieved from the medical record system of the 
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Tangdu Hospital of Air Force Medical University. Five milliliter of 
venous blood was drawn from all patients in the morning on the 
second-day post-hospitalization after overnight fasting to test the 
liver and kidney function indices, lipid and blood glucose analysis 
at the Center Laboratory Medicine of Tangdu Hospital.

Collection and storage of stool samples

All subjects were asked to retain their stool sample in the 
morning post-hospitalization. The samples were collected with 
sterile stool collectors by professionally trained personnel. The 
samples were transported to the laboratory with 2 h of sample 
collection and stored at −80°C.

DNA extraction and 16S rRNA 
sequencing

The bacterial DNA was isolated from the patients’ fecal 
samples using the bead-beating method described previously 
(Yang et al., 2021). The extracted DNA was used as a template 
to amplify the 16S rRNA gene V3-V4 region by polymerase 
chain reaction (PCR). The sequencing libraries were generated 
using a TruSeq® DNA PCR-Free sample preparation kit 
(Illumina, CA, United States), and indexing codes were added 
per the manufacturer’s instructions. The quality of the library 
was assessed using the Qubit @2.0 fluorometer (Thermo Fisher 
Scientific, MA, United States) and the Bioanalyzer 2,100 system 
(Agilent, CA, United  States). The validated libraries were 
sequenced using the Illumina MiSeq platform (Personalbio, 
Shanghai, China) to generate 2 × 300 bp side reads per the 
manufacturer’s instructions.

Sequencing analysis

Microbiome bioinformatics were performed with QIIME2 
2019.4 with slight modification according to the official tutorials 
(https://docs.qiime2.org/2019.4/tutorials/). Briefly, raw sequence 
data were demultiplexed using the demux plugin following by 
primers cutting with cutadapt plugin. Sequences were then quality 
filtered, denoised, merged and chimera removed using the 
DADA2 plugin. Non-singleton amplicon sequence variants 
(ASVs) were aligned with mafft and used to construct a phylogeny 
with fasttree2. All samples included in these analyses included at 
least 2,800 reads. Exact read numbers per sample are included in 
Supplementary Table S2. ASV-level alpha diversity indices, such 
as Chao1 richness estimator, Observed species, Shannon diversity 
index, Simpson index, were calculated using the ASV table in 
QIIME2, and visualized as box plots. ASV-level ranked abundance 
curves were generated to compare the richness and evenness of 
ASVs among samples. Beta diversity analysis was performed to 
investigate the structural variation of microbial communities 

across samples using Jaccard metrics, Bray-Curtis metrics and 
UniFrac distance metrics and visualized via principal coordinate 
analysis (PCoA), nonmetric multidimensional scaling (NMDS) 
and unweighted pair-group method with arithmetic means 
(UPGMA) hierarchical clustering. Principal component analysis 
(PCA) was also conducted based on the genus-level compositional 
profiles. The significance of differentiation of microbiota structure 
among groups was assessed by PERMANOVA (Permutational 
multivariate analysis of variance), ANOSIM (Analysis of 
similarities), Permdisp using QIIME2. Taxonomy was assigned to 
ASVs using the classify-sklearn naïve Bayes taxonomy classifier in 
feature-classifier plugin against the Greengenes (Release 13.8, 
http://greengenes.secondgenome.com/). LEfSe (Linear 
discriminant analysis effect size) was performed to detect 
differentially abundant taxa across groups using the default 
parameters. OPLS-DA (Orthogonal Partial Least Squares 
Discriminant Analysis) was also introduced as a supervised model 
to reveal the microbiota variation among groups, using the R 
package “muma.” Random forest analysis was applied to 
discriminating the samples from different groups using QIIME2 
with default settings.

Construction and validation of diagnostic 
models

A univariate and multivariate logistic regression analysis with 
forward stepwise selection was performed to identify independent 
variables with a p < 0.05 and were entered into the final model. 
Next, the three diagnostic models, i.e., clinical, microbiome, and 
combined models, were established. The accuracy of each variable 
for predicting STEMI was confirmed using receiver-operating 
characteristic (ROC) curve analysis. The nomogram was used to 
visualize the risk of STEMI based on the selected clinical 
parameters and gut microbiota. The internal model validation was 
performed by the bootstrap resampling method with 500 
resamples. 70% of the population was used as the training set, and 
the remaining 30% of the population was used for K-fold cross-
validation (K = 3). The area under the curve (AUC) was used to 
evaluate the accuracy and generalizability of the model. The 
consistency between the predicted and the observed results were 
evaluated by plotting the calibration curve. The decision-making 
curve analysis (DCA) was used to evaluate clinical practicability. 
Finally, a dynamic nomogram web page with an interactive 
interface was constructed for clinical use.

Statistical analysis

The student’s t-test or Wilcoxon rank-sum test was used for 
continuous variables, and the χ2 test was used for categorical 
variables to compare the distribution of baseline characteristics of 
the study population. LDA effect size (LEfSe) statistical analysis 
and random forest analysis were performed to screen for the 
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differential gut microbiome between the two groups. The 
correlation heatmap between the microbiome and clinical 
variables was constructed based on Spearman’s rank correlation 
analysis. The association between STEMI and clinical parameters 
as well as microbial features was determined using logistics 
regression analysis. p < 0.05 was considered statistically significant. 
All statistical analyses were performed using R studio software 
(version 4.2.0).

Results

Baseline characteristics of the patients in 
the two groups

A total of 81 age and gender-matched patients were included 
in the study, of which 41 young male patients with STEMI were 
included in the case group, and 40 non-CHD males were included 
in the control group. As is shown in Table 1, compared to the 
control group, the patients in the case group had a significantly 
(p < 0.05) high body mass index (BMI), systolic blood pressure 

(SBP), triglyceride (TG), alanine aminotransferase (ALT), and 
aspartate aminotransferase (AST). However, a significantly low 
blood urea nitrogen (BUN) (p < 0.05) was observed in the patients 
in the case group compared to the control group. No statistically 
significant differences were observed between the two groups in 
the following parameters: age, beat per minute (BPM), 
hypertension (HTN), comorbidity, ejection fraction (EF), fasting 
blood glucose (FBG), total cholesterol (TC), high-density 
lipoprotein cholesterol (HDL-C), low-density lipoprotein 
cholesterol (LDL-C), creatinine (Cr), uric acid (UA), and habits 
like drugs, smoking, and alcohol.

Diversity in the gut microbiome between 
the two groups

The microbial diversity was measured based on the α and β 
diversity analysis. Chao1 and Shannon indexes were used to 
quantify α diversity, and results revealed a significantly low α 
diversity in patients in the case group compared to the controls 
group (Figures 1A,B). Rarefaction analysis was performed for 
Chao1 and Shannon indexes of α diversity. The results confirmed 
a significant decrease in estimated observed operational 
taxonomic unit (OTU) richness in patients in the case group 
compared to the control group (Figures 1C,D). The score plot 
based on Jaccard distances and Principal coordinates analysis 
(PCoA) analysis for β diversity showed that the two groups were 
separated, and an approximately symmetrical distribution was 
observed between the two groups (Figure 1E). Venn diagrams 
shown in Supplementary Figure S1 further displaying the overlaps 
between groups showed that 6,883 of the total 47,122 ASVs were 
shared between the two groups, and 22,224 of 29,107 ASVs were 
unique for the controls and 18,015 of 24,898 ASVs were unique 
for the STEMI patients. The results consistently indicated that the 
ASVs level in the STEMI group was significantly lower than that 
in the control group.

Taxonomic alterations in the gut 
microbiome between the two groups

At phylum level, Firmicutes, and Bacteroidetes were 
predominantly detected in the case and the control groups. The 
patients in the case group had a significantly high abundance 
of Firmicutes (74.08%) compared to the control group 
(60.49%). Whereas a significantly low abundance of Bacteroides 
(10.01%) and Proteobacteria (7.55) was observed in the 
patients in the case group compared to the control group (17.60 
and 14.82%, respectively; Figure 2A). At genus level, the case 
group showed a significantly high abundance of genus 
Streptococcus (7.55%), Megamonas (9.55%), and Gemmiger 
(3.70%) compared to the control group (2.50, 5.46, and 1.44%, 
respectively). As shown in Figure  2B, the case group had a 
significantly low abundance of Bacteroides (4.23%) and 

TABLE 1 Demographic and clinical characteristics of the control and 
STEMI groups.

Variables Control(n = 40) STEMI(n = 41) p-values

Age(years) 35.65 ± 6.52 38.27 ± 5.43 0.053

BMI(kg/m2) 24.47 ± 2.08 26.47 ± 2.57 <0.001

SBP (mmHg) 120.73 ± 15.33 135.90 ± 26.59 0.002

DBP (mmHg) 84.98 ± 16.01 80.63 ± 12.23 0.176

BPM 78.80 ± 12.00 78.54 ± 12.02 0.502

HTN (%) 8/40 16/41 0.061

HTN Drugs (%) 7/40 11/41 0.313

DM (%) 1/40 4/41 0.175

DM Drugs(%) 1/40 4/41 0.175

Smoking (%) 19/40 25/41 0.224

Alcohol (%) 9/40 12/41 0.487

Comorbidity (%) 5/40 7/40 0.562

EF (%) 60.73 ± 5.29 58.63 ± 8.19 0.177

FBG (mmol/L) 5.46 ± 0.89 5.67 ± 1.22 0.063

TG (mmol/L) 1.45 ± 1.44 2.53 ± 1.43 0.026

TC (mmol/L) 4.08 ± 1.37 4.33 ± 1.01 0.364

HDL-C (mmol/L) 0.91 ± 0.24 0.89 ± 0.17 0.7

LDL-C (mmol/L) 2.48 ± 1.11 2.62 ± 0.74 0.511

ALT (U/L) 35.37 ± 18.24 48.17 ± 17.63 0.002

AST (U/L) 31.30 ± 10.31 39.00 ± 28.00 <0.001

Cr (μmol/L) 69.49 ± 13.97 68.13 ± 12.60 0.646

UA (μmol/L) 356.67 ± 96.84 394.04 ± 84.07 0.068

BUN (mmol/L) 5.35 ± 2.64 4.79 ± 1.34 0.033

BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; BPM, 
beat per minute; HTN, hypertension; DM, diabetes mellitus; EF, ejection fraction; FBG, 
fasting blood glucose; ALT, alanine aminotransferase; AST, aspartate aminotransferase; 
TG, triglyceride; TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol; 
LDL-C, low-density lipoprotein cholesterol; Cr, creatinine; UA, uric acid; BUN, blood 
urea nitrogen.
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Prevotella (2.91%) compared to the control group (8.05 and 
9.05%, respectively). In previous studies Streptococcus was also 
associated with systemic inflammation and STEMI but so was 
Bacteroides (Zhou et al., 2018; Kwun et al., 2020), in apparent 
contradiction with our results. However, when analyzing the 
results on an ASV level, as shown further below (Figure 3), this 

apparent contradiction was resolved. The taxonomy of the gut 
microbiome was compared using LEfSe analysis to find relevant 
biomarkers. A total of 47 clades were screened in the stool 
sample based on a LDA threshold score of 2 (Figure  2C). 
Compared to the control group, significant (p < 0.05) decrease 
in 19 clades, including Prevotellaceae (f), Prevotella (g), 

A B

C D

E F

FIGURE 1

Physiological and microbial diversity in the two groups. (A) Chao1 index. (B) Chao1 curves for each group. (C) Shannon index. (D) Shannon curves 
for each group. (E) Observed species. (F) PCoA based on Jaccard distances of the physiological indexes among the two groups.
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phasolarctobacterium (g), Megasphaera (g) and 
Peptostreptococcaceae (f) were observed in the patients in the 
case group. A significant (p < 0.05) increase in 28 clades, 

including Firmicutes (f), Streptococcaceae (f), Streptococcus (g), 
Blautia (g), and [Ruminococcus] (g), were observed in the case 
group, compared to the control group. Moreover, combined 

A

B

C D

FIGURE 2

Taxonomic alterations in the patient and control groups. (A) Composition of gut microbiome communities at the phylum level. (B) Composition of 
gut microbiome communities at the genus level. (C) Cladogram and (D) Histogram of the linear discriminant analysis effect size (LEfSe) method 
(LDA > 2, p < 0.05) for differentially abundant gut microbiome between the two groups. Blue and red colors represent gut microbiome that were 
significantly overrepresented in the control groups and STEMI patients, respectively.
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with the data in Supplementary Table S1, the heatmap of the 
correlations between the top  200 most abundant ASVs 
(hierarchically clustered) showed a clear separation between 
the two groups with a downward trend in the STEMI group 
(Figure 3). Specifically, 6 ASVs (ASV 33261, 98,219, 71,889, 
68,420, 43,586, 1,139) belonging to Prevotella copri species, 3 
ASVs (ASV 54372, 36,256, 64,821) belonging to Bacteroides 
uniformis species, 4 ASVs (ASV 15897, 28,272, 13,691, 40,570) 
belong to Roseburia genus decreased in the STEMI group; 
However, ASV 59917 and ASV 53985 belonging to Bacteroides 
vulgatus species were very strongly positively associated with 
STEMI. Likewise, the ASV 31860 belonging to Blautia wexlerae 
species is diametrically opposed to ASV 24839 belong to 
Blautia massiliensis species. Consistent with the analysis of 
genus level, an increased abundance of 5 ASVs (ASV 5372, 
68,307, 92,336, 26,003, 100,573) belonging to [Ruminococcus] 
and Streptococcus genus, respectively, were also observed in the 
STEMI group. These results suggest that the alteration in the 
abundance of Streptococcus and Prevotella were the 

characteristic changes in the gut microbiome in young male 
patients with STEMI.

Correlation between clinical parameters 
and changes in the microbiome

Based on the ecological enterotype gradient by principal 
coordinates analysis of inter-individual differences in the 
microbiome profile, BMI, AST and SBP were identified to 
be contribute immensely to gene-level microbiome among all the 
clinical parameters (Supplementary Figure S2). Then spearman’s 
rank correlation analysis was performed on the clinical parameters 
and specific microbiomes between the two groups. As is shown in 
Figure  4, BMI and SBP were significantly (p < 0.05) positively 
correlated with Streptococcus and [Ruminococcus]. Further, BMI 
and SBP were negatively correlated with Prevotella and 
Megasphaera (p < 0.05). Both HTN history and AST were 
significantly (p < 0.05) positively correlated with Streptococcus, 

FIGURE 3

Heatmap of the correlations between the top 200 most abundant ASVs (hierarchically clustered).
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Megamonas, and [Ruminococcus]. A significant (p < 0.05) negative 
correlation was observed between Prevotella and AST. However, 
there was no significant difference in EF between the case and 
control groups. A significant (p < 0.05) negative correlation was 
observed between EF and Streptococcus. A significant (p < 0.05) 
positive correlation was observed between EF and Prevotella. The 
Prevotella enterotype gradient analysis further confirmed this 
phenomenon. These results suggest that alterations in the 
microbiome compositions and abundances of microbial groups 
specifically Prevotella and Streptococcus, could indicate 
biochemical and metabolic changes in young male patients 
with STEMI.

Combined prediction model of the gut 
microbiome and clinical variables

The relative abundance of 20 gut microbiome markers was 
detected using random forest analysis. Logistics regression analysis 
was used to calculate the probability of disease (POD) index based 
on these screened 20 gut microbiome markers (Figure 5A). As 
shown in Figure 5B, a significantly (p < 0.001) high POD index was 
observed in the case group compared to the control group. The 
candidate clinical parameters intended to be incorporated into the 
clinical model were based on the univariate and multivariate 
logistic regression analysis (Supplementary Table S2). Finally, three 

clinical parameters such as BMI (p < 0.05), SBP (p < 0.05), and AST 
(p < 0.01) were included in the model (Figure 5C). However, the 
clinical model barely achieved an AUC value of 0.797 (Figure 5D). 
The AUC value for the microbiome model based on the POD 
index was 0.845. These results indicate that the microbiome model 
was superior to the clinical model (Figure 5E). A weak to moderate 
correlation was observed between the gut microbiome markers 
and clinical parameters. The multicollinearity between gut 
microbiome markers and clinical parameters was analyzed and 
excluded prior to their incorporation into the combined model. As 
expected, the performance of the combined model was optimum. 
The performance of the combined model was better compared to 
the clinical model (AUC: 0.877 vs. AUC: 0.797) or the microbiome 
model (AUC: 0.877 vs. AUC: 0.845; Figure 5F) individually.

Nomogram construction and validation 
of subjects

The POD index of the gut microbiome and the screened 
clinical parameters were combined to construct a nomogram 
(Figure 6A). The diagnostic index (DI) was calculated using the 
following formula: −15.464 + 0.227 × BMI (kg/m2) + 0.040 × SBP 
(mmHg) + 0.048 × AST (U/L) + 5.803 × POD of microbiome. A 
web-based dynamic nomogram was constructed to predict the 
risk of STEMI in patients (https://lucky-lmc-nomogram.

FIGURE 4

Heatmaps of Spearman’s correlations between altered gut microbiome and physiological indices. *p < 0.05; **p < 0.01.
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shinyapps.io/DynNomapp/, Figure  6B). The diagnostic 
performance of the nomogram was evaluated using the 
consistency index (C-index), and the C-index of the nomogram 
was 0.911. For the internal validation, the stratified K-fold cross-
validation (K = 3) was as follows: AUC was 0.934 (Figure 7A). The 
calibration curves of the model showed good consistency between 
the actual and predicted probabilities (Figure  7B). The DCA 
showed that the model curve was far from the two reference 
curves (all and none), indicating a high net clinical benefit (NCB) 
for clinical use (Figure 7C). These results show that the nomogram 
model based on the gut microbiome and clinical parameters has 
good diagnostic efficacy and practicability.

Discussion

In this study, we performed a comprehensive analysis of the 
gut microbiome and clinical parameters between age and gender-
matched patients with STEMI and non-CAD males. Our results 

revealed a significant difference in the α and β diversity between 
the two groups. The gut microbiome was significantly altered 
between the two groups, specifically alterations in the abundance 
of Streptococcus and Prevotella. Based on these results, prognostic 
models were established. The model was internally validated and 
optimized by combining it with clinical parameters. Our study is 
novel in the following aspects: We have performed comprehensive 
analyses of biodiversity to alterations at taxonomy levels in the gut 
microbiome. We  have used a robust methodology to identify 
prognostic factors with internal validations and established an 
easy-to-use, non-invasive risk prediction model. The model 
constructed based on a combination of the gut microbiome and 
clinical parameters had satisfactory diagnostic efficacy and 
practicability in predicting risk in young male patients with STEMI.

The richness and diversity of the gut microbiome are 
important for maintaining the homeostasis and performance of 
the body. Multiple studies have demonstrated that dysbiosis in 
the  gut microbiome is associated with various diseases, 
including CAD (Schirmer et al., 2018; Zhou et al., 2018, 2022). 

A
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B D

E
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FIGURE 5

Combined prediction model of gut microbiome and clinical variables. (A) The top 20 bacteria belong to the genus level based on the random 
forest analysis. (B) Comparison of the POD of gut microbiome between the two groups. (C) Candidate variables for clinical model development 
were presented as forest plots. The AUCs for the diagnostic performances of the clinical model (D), the gut microbiome model (E), and combined 
model (F).
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Previous studies have demonstrated a decrease in the richness and 
diversity of the gut microbiome in patients with hypertension or 
heart failure (Li et al., 2017; Luedde et al., 2017). Similarly, our 
results showed a decrease in microbiome diversity in young male 
patients with STEMI. Further, the alterations in the genus level 
were analyzed, and the results showed a reduction in the 
abundance of Prevotella and an increase in the abundance of 
Streptococcus. Jie et  al. performed a metagenomic association 
analysis, and the results showed a close association between an 

increase in the abundance of Streptococcus spp. and atherosclerosis 
(Jie et al., 2017). A previous study has also demonstrated that oral 
Streptococcus causes infective endocarditis and aortic valve lesions, 
which eventually progress to acute myocardial infarction (AMI), 
characterized by chest pain, dyspnea, and heart failure (Sugi et al., 
2015). An increase in the abundance of Streptococcus was also 
detected in coronary atheromatous plaque specimens of AMI 
patients (Joshi et al., 2021). Therefore, our results were consistent 
with previous studies. We  would like to speculate that the 

A

B

FIGURE 6

Nomogram and its corresponding web page. (A) Construction of the nomogram based on BMI, SBP, AST and Microbiome to assign the probability 
of developing STEMI. (B) Web-based risk calculator (Dynamic Nomogram (shinyapps.io)) to predict incidence rate of STEMI.

https://doi.org/10.3389/fmicb.2022.1031878
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Liu et al. 10.3389/fmicb.2022.1031878

Frontiers in Microbiology 11 frontiersin.org

translocation of periodontal and intestinal Streptococcus to the 
coronary atheroma via systemic circulation may accelerate the 
development of STEMI in young males. Various studies have 
shown that the role of Prevotella is controversial. Clinical studies 
have shown that an increase in the abundance of Prevotella in 
mucosal sites was associated with local inflammatory and systemic 
metabolic diseases, including rheumatoid arthritis, diabetes, and 
hypertension (Larsen, 2017; Li et  al., 2017; Yang et  al., 2021). 
However, Yin et  al. reported a decrease in the abundance of 
Prevotella in patients with large artery atherosclerotic ischemic 
stroke/ transient ischemic attack compared to the matched control 
group (Yin et  al., 2015). We  used multiple analysis methods, 
including composition, LEfSe, and random forest analysis, and the 

results revealed that Prevotella was consistently down-regulated in 
young male patients with STEMI. This indicates that Prevotella 
conferred protection against the occurrence of STEMI in young 
male patients. Moreover, our results show an inverse relationship 
between Prevotella and obesity, consistent with previous findings 
(Ley et al., 2006). Most patients in our study were overweight or 
obese (BMI exceeded 25 kg/m2 in 75% of patients). In obese 
patients, the decrease in the abundance of Prevotella could not 
restrain the upregulation inflammatory factors levels, including 
endotoxin and IL-6 (Claesson et  al., 2012). This activated 
inflammatory response ultimately ruptures the atherosclerotic 
plaque. Consistent with other studies, the LEfSe or random forest 
analysis performed in our study also show alterations in the 
abundance of [Ruminococcus], Megasphaera, and Megamonas (van 
den Munckhof et al., 2018; Liu et al., 2020; Zheng et al., 2020). 
Furthermore, it is crucial to focus on how mediation of these 
characterized gut microbiome exerts effect on STEMI. Current 
potential treatment opportunities, such as the administration of 
probiotics, prebiotics and fecal transplantation, may be appropriate 
treatment options for STEMI. Studies have demonstrated that 
probiotic Lactobacillus and rhamnosus GR-1 can attenuate 
postinfarction remodeling and heart failure in rats and humans 
(Gan et al., 2014; Moludi et al., 2021). Fecal transplantation from 
hypertensive human donors into germ-free mice showed 
increased blood pressure in the mice (Li et al., 2017). A large 
retrospective cohort study demonstrated that transplantation of 
fecal content into Clostridioides difficile patients increased the risk 
of myocardial infarction (Dawwas et al., 2022). Thus, our results 
may provide a new strategy for the prevention, treatment, and 
management of STEMI based on the gut microbiome.

For decades, common clinical parameters and novel 
biomarkers, including lipid metabolites and exosomal miRNA, 
have been used to predict AMI. However, the predictive value 
of these biomarkers is moderate (Eichler et al., 2007; Su et al., 
2020; Liu et al., 2022). In our study, the analysis of the clinical 
parameters revealed a correlation between parameters like BMI, 
SBP, AST, and STEMI in young males. Our results are different 
from Sagris et al. study, where tobacco use, dyslipidemia, and 
diabetes mellitus were the risk factors for young adults 
(age < 45 years) with AMI (Sagris et  al., 2022). In contrast, 
we enrolled young (average age < 40 years) male patients with 
STEMI male during the active phase. The discrepancies in the 
results between the studies could be due to differences in the 
enrollment time frames and study populations. Mounting 
evidence has indicated that obesity, blood pressure, and AST 
were significantly associated with the development and 
prognosis of patients with STEMI (Mentias et al., 2017; McEvoy 
et al., 2019; Konijnenberg et al., 2020). Unfortunately, the ability 
of the clinical prediction model to discriminate based on these 
three parameters was not satisfactory, with an AUC value of 
0.797. In our study population, a strong correlation was 
observed between multiple gut microbiomes and STEMI. Hence, 
a microbiome prediction model was established based on 20 
genera, including Streptococcus, Prevotella, [Ruminococcus], 

A
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FIGURE 7

Internal validation for the model performance. (A) The AUCs for 
stratified K-fold cross-validation (K = 3). (B) Calibration curves of 
the nomogram for predicting probability of developing STEMI. 
The x-axis represents the nomogram-predicted probability, 
whereas the y-axis represents the actual probability. (C) Net 
benefit of using a model to diagnose STEMI compared with the 
strategies of “treating all” or “treating none” for different decision 
thresholds.
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Megasphaera, and Megamonas. The performance of the 
microbiome prediction model was significantly better compared 
to the clinical model. These results show that the gut 
microbiome plays an important role in STEMI in young males. 
Despite its impressive performance, the prediction model based 
on the gut microbiome alone may not be sufficient due to the 
complex nature of the disease. Therefore, we incorporated the 
clinical parameters and gut microbiome into a combined model 
to optimize its performance in predicting the disease. As 
expected, the combination of clinical parameters and gut 
microbiome enhanced the predictive ability of the model with 
an AUC value of 0.877. To improve its clinical practicability, 
we  constructed a nomogram and accessible web page to 
visualize the model and provide an easily accessible individual 
prediction. A previous study constructed a prediction model 
based on the 24 genera and 72 serum metabolites for CAD with 
an AUC value of 0.897 (Liu et al., 2019). However, this model 
was relatively complex and consuming as it required invasive 
blood sampling to analyze extensive indices, and the cost of 
metabolomics analysis was high. This may limit its application 
in clinical settings. On the contrary, our combined model was 
advantageous due to its simple and non-invasiveness nature, as 
well as higher accuracy in predicting STEMI in young males. 
Further, our model could achieve predictive ability equivalent 
to other models with fewer parameters and did not require 
invasive sampling.

However, our study has a few limitations. First, our study is a 
single-center retrospective analysis which could lead to potential 
bias. However, consecutive patients were enrolled to reduce 
selection bias as much as possible. Further, the analysis performed 
at single-center guaranteed quality control. However, additional 
studies with larger sample sizes are needed to validate our results. 
Second, we did not analyze microbiome-related metabolites and 
associated pathways. Third, the sample size of our study was 
relatively small, which did not allow external validation. However, 
we used robust statistical methods such as bootstrap resampling 
to ensure good internal validity.

In conclusion, we enrolled age and gender-matched young 
male patients with STEMI and non-CAD males. Our analysis 
showed the alteration in microbiome diversity between the two 
groups, and the screened gut microbiome had significant 
predictive value. Further, a prediction model combining 
non-invasive clinical parameters and gut microbiome was 
established to predict the occurrence of STEMI in young males. 
Based on the underlying pathological mechanism for the early 
onset of STEMI, our results may provide new insights for 
predicting the occurrences of STEMI using fluid metabolites such 
as stool, urine, and saliva in the future.
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