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The importance of the One Health concept in attempting to deal with the increasing
levels of multidrug-resistant bacteria in both human and animal health is a challenge
for the scientific community, policymakers, and the industry. The discovery of the
plasmid-borne mobile colistin resistance (mcr) in 2015 poses a significant threat
because of the ability of these plasmids to move between different bacterial
species through horizontal gene transfer. In light of these findings, the World Health
Organization (WHO) recommends that countries implement surveillance strategies
to detect the presence of plasmid-mediated colistin-resistant microorganisms and
take suitable measures to control and prevent their dissemination. Seven years
later, ten different variants of the mcr gene (mcr-1 to mcr-10) have been detected
worldwide in bacteria isolated from humans, animals, foods, the environment, and
farms. However, the possible transmission mechanisms of the mcr gene among
isolates from different geographical origins and sources are largely unknown. This
article presents an analysis of whole-genome sequences of Escherichia coli that
harbor mcr-1 gene from different origins (human, animal, food, or environment)
and geographical location, to identify specific patterns related to virulence genes,
plasmid content and antibiotic resistance genes, as well as their phylogeny and their
distribution with their origin. In general, E. coli isolates that harbor mcr-1 showed a
wide plethora of ARGs. Regarding the plasmid content, the highest concentration
of plasmids was found in animal samples. In turn, Asia was the continent that led
with the largest diversity and occurrence of these plasmids. Finally, about virulence
genes, terC, gad, and tral represent the most frequent virulence genes detected.
These findings highlight the relevance of analyzing the environmental settings
as an integrative part of the surveillance programs to understand the origins and
dissemination of antimicrobial resistance.
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Introduction

Over the last two decades, the evolution and dissemination of new
antibiotic resistance determinants has led to one of the most critical
health scenarios worldwide. According to the United Nations and the
World Bank, antimicrobial resistance (AMR) will cause, in the worst
scenario, 10 million deaths every year and a loss of 3.8 percent of the
annual global gross domestic product (GDP) by 2050 (World Bank,
2017; TACG, 2019). A recently published systematic analysis on the
worldwide burden of bacterial AMR estimated that in 2019 there were
nearly 5 million deaths associated with AMR in that year alone, and 1.3
million deaths were directly attributable to bacterial AMR (Murray
et al., 2022). The Global Burden of Diseases, Injuries and Risk Factors
Study (GBD) estimates that in 2019 out of 13.7 million deaths, the
leading pathogen responsible for global deaths was Staphylococcus
aureus, followed closely by Escherichia coli, Streptococcus pneumoniae
and Klebsiella pneumoniae (GBD, 2019, Antimicrobial Resistance
Collaborators, 2022).

Although bacterial AMR represents a threat to humankind,
pharmaceutical research and development have failed to identify
and deploy new antibiotics that can reduce and minimize this
substantial danger (Tacconelli et al., 2017). In this context, the
dependence on antibiotics of last resort to treat the increasing
levels of multidrug-resistant bacteria in both human and animal
health is a challenge for the scientific community, policymakers,
and the industry, and hence the importance of the One Health
concept in attempting to deal with this global problem (Mendelson
etal., 2018). Colistin (polymyxin E) is considered one of the crucial
last-resort antibiotics and is regarded as an essential option for use
against infections caused by multidrug-resistant Gram-negative
bacteria (Falagas et al., 2005; Kaye et al., 2016). Unfortunately,
colistin is commonly used in the animal world for treating
infections and as a growth promoter in animal feeds. These
practices have contributed to widescale and rapid global resistance
to this antibiotic (Elbediwi et al., 2019).

Traditionally, colistin resistance mechanisms were triggered by
chromosomal mutations (Kim et al., 2019). However, the discovery of
the plasmid-borne mobile colistin resistance mechanism in 2015, called
mcr, poses a significant threat because of the ability of these plasmids to
move between different bacterial species through horizontal gene
transfer (Liu et al., 2015). In light of these findings, the World Health
Organization (WHO) recommends that countries implement
surveillance strategies to detect the presence of plasmid-mediated
colistin-resistant microorganisms and take suitable measures to control
and prevent their dissemination (PAHO/WHO, 2016).

Since 2015, the mcr gene has been reported in the chromosomal or
plasmid content in some bacterial species, mainly the Enterobacterales
(Zhang et al., 2021). Nowadays, the mcr gene is most frequently
harbored with E. coli (Forde et al., 2018). At present, ten different
variants of the mcr gene (mcr-1 to mcr-10) have been detected worldwide
in bacteria isolated from humans, animals, foods, the environment, and
farms (Dadashi et al., 2021; Hussein et al., 2021). However, the possible
transmission mechanisms of the mcr gene among isolates from different
geographical origins and sources are largely unknown.

The democratization of whole-genome sequencing (WGS)
techniques and the generation of bioinformatic platforms that allow a
deep characterization of pathogens can potentially transform
epidemiological surveillance and disease control systems worldwide
(NIHR Global Health Research Unit on Genomic Surveillance of AMR,
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2020; Ferdinand et al., 2021; Kovac et al., 2021). Using these new
technologies, the aim of this study was to re-analyze mcr-1 harboring
E. coli WGS sequences submitted to the greater public genomic
databases [such as the National Center for Biotechnology Information
(NCBI) and the European Nucleotide Archive (ENA)] to identify
specific patterns related to virulence genes, plasmid content and
antibiotic resistance genes, as well as their phylogeny and their
distribution with their origin (human, animal, food or environment)
and geographical location.

Materials and methods
Sequences

One hundred and twenty-three WGS sequences of mcr-1 harboring
E. coli were obtained from NCBI and ENA databases from 26 countries
from four continents (Asia, Africa, the Americas, and Europe). The
description of the sequences (years, country of origin, and NCBI/ENA
number) are included in Supplementary Table S1. Briefly, 42 sequences
were retrieved from the Americas, 32 from Europe, 10 from South and
East Asia, 15 from Western Asia, 22 from Southeast Asia, and two from
Africa. According to their origin, 55 were from animals, 47 were from
humans, 7 were from feeds, and 14 were from environmental samples.
In addition, the draft genome assembly quality was evaluated using
CheckM v1.0.18.

Bioinformatic analyses

Draft genomes were analyzed using the tools from the Center for
Genomic Epidemiology of the Technical University of Denmark.
Multilocus sequence types (MLSTs) were determined using MLST v2.0
(Larsen et al., 2012). The presence of plasmids was identified using
PlasmidFinder (Carattoli and Hasman, 2020). The prediction of
bacterial pathogenicity was evaluated using PathogenFinder v1.1
(Cosentino et al., 2013). The detection of E. coli virulence genes was
carried out using VirulenceFinder v2.0 (Tetzschner et al., 2020). The
identification of acquired genes and/or chromosomal mutations
mediating antimicrobial resistance was done using ResFinder 4.1
(Bortolaia et al., 2020). The core-genome multilocus sequence typing
phylogeny was carried out using the Galaxy Sciensano platform
(Bogaerts et al., 2019). The obtained Newick file was analyzed and
annotated using iTOL platform (Letunic and Bork, 2021).

Statistical analysis

The distribution of the genotypes between hosts and location was
calculated using a one-way analysis of variance (ANOVA). Tukey’s
multiple-comparison test was performed post hoc for pairwise
comparisons between groups, and p-values <0.05 were considered
significant. The data analysis for this paper was generated using the Real
Statistics Resource Pack software (Release 7.6). Copyright (2013-2021)
Charles Zaiontz."
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Ethics statement

This work does not involve the use of human subjects or

animal experiments.

Results and discussion

The phylogenetic tree of the core-genome multilocus sequence type
allelic profiles of mcr-1 harboring E. coli isolates evaluated in this study
is shown in Figure 1, which includes the MLST profile of the isolates, the
origin of isolation, and the continent. The name of the isolate
corresponds to their NCBI, ENA, or internal database, followed by the
country and the year of isolation. The virulence genes and plasmid
content of the evaluated E. coli sequences are shown in Figures 2, 3. The
antibiotic-resistance genes are indicated in Figures 4, 5. A comparison
of the topologies of the cgMLST-phylogenetic tree reveals that the
evolutionary relationships among mcr-1 harboring E. coli were not

10.3389/fmicb.2022.1032753

entirely correlated with the origin of the samples (animal, environmental,
human, and food/feed) and the geographical precedence.

Virulence

The presence of virulence genes stratified by the origin of the samples
(environmental, human, food and animal) was generally homogeneous
(p<0.05, one-way ANOVA with Tukey’s multiple-comparison test).
Globally, one of the most frequent virulence genes detected was the
virulence factor terC (resistance to tellurium), which had an incidence of
96%. However, even though the Ter operon role was associated with
pathogenicity and stress response, the biochemical mechanisms of this
association are still unclear (Turkovicova et al., 2016). The resistance
followed by the gad factor (glutamate decarboxylase system) had an
incidence of 77%, and traT (serum resistance in E. coli) had an incidence
of 76% of the evaluated genomes. The presence of gad genes was suggested
as a prescreening marker for the detection of pathogenic E. coli groups
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FIGURE 1

Phylogenetic tree of the core-genome multilocus sequence type allelic profiles of mcr-1 harboring Escherichia coli isolates evaluated in this study. Clusters
are colored and labeled according to their continent of origin and the source of isolation.
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FIGURE 2

Virulence genes and plasmid content of the evaluated E. coli sequences (Part one). The source of the isolates is specified by different colors in the genomic

cg-MLST tree branches. The presence and absence of virulence genes and plasmid incompatibility groups are indicated by star and circle symbols,

respectively.

presence might be a disadvantage for colonization in humans and

and this was applied to evaluate the load of pathogens in environmental

(Tkeda et al., 2021). In contrast, the gene iss (serum survival)

animals

,2021). Both genes,

gad and traT were often detected in clinical and animal isolates of E. coli

samples (Grant et al., 2001; Hoorzook and Barnard
worldwide (Firoozeh et al., 2014; Huang et al., 2021).

was highly correlated with isolates from human, animal, and food/feed

origin. This gene could influence capsule production in bacteria (Biran

et al, 2021). The rest of the virulence genes were distributed in

The sitA virulence vector (prevents unproductive conjugation) was

homogenous and lower densities among the isolates from different

sitA was

>

recorded in all of the animal samples from 2014 and 2018

sample origins. No significant differences were identified in the detection

applied as an excellent genetic marker for the identification of avian

>

of virulence genes according to their geographical origin (p>0.05

pathogenic E. coli, considering their significantly difference in the

one-way ANOVA with Tukey’s multiple-comparison test).

expression on pathogenic vs. non-pathogenic strains (Schouler et al.,

2012). In addition,

this gene was frequently detected in highly-

pathogenic extra-intestinal E. coli (ExPEC) isolates worldwide (Bakhshi

tance genes

ic resis

t

10

Anti

et al., 2020). In the E. coli isolates from environmental and food/feed

samples, the IpfA gene (long polar fimbriae associated with adherence)

-harboring E. coli commonly show different antibiotic

The mcr-1

resistance patterns, and the detection of multiresistant genotypes in

71 and 86% of the analyzed

(

genomes) in comparison with isolates from human and animal origin.

was detected with considerable frequency

these isolates increases their epidemiological relevance significantly.

IpfA was commonly associated with enteropathogenic E. coli (Ross et al.,

2015; Zhou et al., 2021).

Among the analyzed genomes, the variant mcr-1.1 is the most frequently

In a recent study carried out in Brazil, there was

detected globally. In western Asia, the variant mcr-1.26 from different

a statistically significant increased presence of the IpfA gene (p <0.05) in

STs was detected in avian isolates from Lebanon. The same variant was

E. coli from agricultural soils in comparison with the isolates from

detected in isolates from highly polluted water samples from Brazil that

non-agriculture origin (Furlan and Stehling, 2021), highlighting the role

included highly-pathogenic STs (Furlan et al., 2020). The variant mcr-1.5

of animal manure as potential source of virulence genes.

was detected in Bolivian E. coli isolate of human origin (NCBI Accession

SAMNO08290415). Nowadays, no additional information about this

isolate has been published.

Another virulence gene frequently detected in environmental

samples was iutA (ferric aerobactin receptor). The presence of this gene

was significatively higher in extraintestinal pathogenic E. coli, and their
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Interestingly, one isolate from animal origin in Denmark (NCBI run
ERR1399397, NCBI accession PRJEB13885, ENA submission
ERA613496) shows the co-harboring of two mobile colistin resistance
genes: mcr-1.1 and mcr-9. Additionally, this isolate encodes the
(ESBL)
blacyy. However, no additional information about this isolate was

extended-spectrum  p-lactamases genes blagy, and
published until now. The co-occurrence of mcr gene variants is not
frequently detected; however, there are a few recent reports from an
E. coli isolate of human origin in Thailand (mcr-2 and mcr-3; Phuadraksa
etal, 2022). Another study that reports the occurrence of co-harbored
mecr variants was conducted in Laos, detecting mcr-3 and mcr-8 genes
inside one isolate from Klebsiella pneumoniae (accession number
CP035204; Hadjadj et al., 2019). Furthermore, the detection in the same
strain of different variants of mcr genes poses a threat to the spread of
colistin resistance through horizontal and vertical gene transfer.

Most mcr-harboring bacteria possess multidrug resistance
phenotypes and their subsequent antibiotic-resistance genes (ARGs).
No significant differences were identified according to the sample origin
(p>0.05; one-way ANOVA). However, significant differences were
identified between geographic locations in the detection of ARGs
(p>0.05; one-way ANOVA with Tukey’s multiple-comparison test). This
was specifically found between the American and African groups and
South and East Asian and African groups. Among the vast plethora of
ARGs detected in silico, the most frequent genes detected were the ESBL
genes. blarg, was seen in higher proportions in environmental (93%),
human (68%), food/feed (71%), and animal (53%) samples. According
to the geographical distribution, this gene was detected worldwide in
50-100% of samples, showing a higher presence in Asian and African
isolates. Another ESBL gene with a considerable presence was blacrx
which has shown extended dissemination in the worldwide community
since the 2000s (Chong et al., 2018). Among the CTX-M variants of
clinical relevance, blacrxss represented the most frequent gene
detected, especially in environmental isolates (43%) and with lower
frequency in human and animal samples. The same trend was observed

Frontiers in Microbiology

in blacrxmes and blacrxas showing higher positive results in
environmental samples compared to animal and human isolates. The
variants CTX-M-65 and CTX-M-55 showed a familiar presence in
isolates from Asia, Europe, and America. Several questions still arise to
elucidate these trends that link the environmental sources as a potential
reservoir or origin of these CTX-M subtypes and the acceleration of the
dissemination in the community.

The increasing resistance to carbapenems (last-resort antibiotic
class) represents a severe threat to the healthcare system worldwide
(Garcia-Betancur et al., 2021). The WHO global priority pathogen list
of antibiotic-resistant bacteria includes Enterobacterales carbapenem-
resistant as critical (priority 1; WHO, 2017). The carbapenemase
enzymes detected in the mcr-1 E. coli included KPC, OXA, and NDM
in human and animal samples from Singapore, Brazil, Bolivia, Germany,
Ecuador, and China. No environmental or feed isolates evaluated show
a co-harboring of carbapenemases and mcr genes. The dissemination of
isolates that harbor mcr-1 and carbapenemases constitutes a public
health issue, although these isolates have been reported in low frequency
until now (Dalmolin et al., 2019; Bilal et al., 2021). The increasing
detection of isolates that co-harbor critically important ARGs
emphasized the importance of prompt surveillance strategies to reduce
the dissemination of these highly critical clones worldwide.

Other p-lactamases detected inside the mcr-E. coli, mainly in human
and animal origin isolates, are the blac,ps and the blacyy genes. The
carbenicillinase resistance gene blacgs, earlier known as blapg, is
commonly associated with a chromosomal cassette in different bacterial
genera, including Acinetobacter, Salmonella, Escherichia, and
Pseudomonas (Kamolvit et al., 2015; Monte et al., 2020). Furthermore,
the presence of blacyy AmpC-f-lactamases are one of the primary
mechanisms for resistance to extended-spectrum cephalosporins, and
were one of the most common f-lactamases detected in Enterobacterales
from poultry origin worldwide (Dandachi et al., 2018; Rizi et al., 2020).

Other ARGs commonly detected in mcr-1 harboring E. coli in all the
sample types and origins were the resistance genes sull, sul2, and sul3
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that codify resistance to sulfonamides. Considering the prolonged usage
of this antibiotic family, the resistance to sulfonamides was widespread
in different environments, including pristine locations (Pruden et al.,
2012; Lin et al.,, 2021). Although less commonly found, another group
of ARGs frequently detected was the tetracycline-resistance genes tetA
and tetB, which are widely reported on the current clones that circulate
worldwide. The extensive use of tetracyclines in veterinary and clinical
settings as prophylactics and growth promoters may lead to the selective
pressure for developing and disseminating those ARGs (Rose et al.,
2016; Samanta and Bandyopadhyay, 2020).

Another antibiotic group extensively used in veterinary practice and
which showed a considerable presence of ARGs was the macrolides,
which caused a concomitant rise in resistance to these drugs in animal
pathogens worldwide (Samanta and Bandyopadhyay, 2020). The ARG
mphA (macrolide 2’-phosphotransferase I) was detected in the 28% of
the evaluated isolates, showing a homogeneous distribution in animal,
human and environmental samples. However, a higher presence of this
gene was observed in the isolates of southeast and western Asia
compared to America and Europe. In addition, the presence of acquired
ARG:s to the trimethoprim gene dfrA (dihydrofolate reductase) variants
was considerably higher in Asian countries compared with European
and American countries. In Enterobacterales, these genes are usually part
of mobile gene cassettes associated with integrons (Partridge et al.,
2009). This ARG is widespread in Gram-negative bacteria and is found
in Staphylococci (Zinner and Mayer, 2015; Rossolini et al., 2017).
Surpringsily, the variants dfrA12, dfrA17, and dfrA5 showed higher
percentages in the isolates from environmental sources compared with
animal and human isolates, where the proportions were equal.

Plasmid content

The plasmids represent the mobile genetic element (MGE) that was
considered the principal vector for horizontal gene transfer (HGT) of
the variants of mcr-1 reported to date (Shen et al., 2016; Sun et al., 2018).
Unfortunately, the sequences data were mainly based on short-read
sequencing. This is because the identification of the specific location of
the resistance genes is unclear because de novo assembly of reads from
total genomic DNA does not allow the separation of the assemblies
according their original location (plasmids or chromosome; Wang
etal., 2021).

IncFIB, IncFIL, InclI2, Incll, IncFIC, IncFIA, IncX1, and IncX4 were
the plasmids with the highest occurrence in animal, human, food, and
environmental samples. Moreover, these plasmids have been reported
to be associated with HGT for mcr-1 variants and other ARGs
(Ghasemian et al., 2018; Daza-Cardona et al., 2022). Geographically,
there is an apparent homogeneity in the presence of the plasmids IncFIB,
IncFII, and IncI2. However, in Europe, the occurrence of the plasmid
Incl1 was notably higher in comparison with the other continents. The
same trend was observed with the plasmid IncX4, with a considerable
presence in isolates from western Asia and Europe compared to the rest
of Asia and America. In addition, the plasmid incompatibility group
IncN was more frequent in the southeast Asia region. IncHI2A and
IncHI2 exhibited similar occurrences according to the geographical
origin; however, these incompatibility groups were not present in
environmental samples. IncHI1B and IncHI1A were present only in
samples from America and Southeast Asia, and the higher incidence was
in human samples. The presence of these plasmids was null in
environmental isolates.
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Conversely, IncA/C2 was the only plasmid absent in America,
Europe and Africa but latent in Asia. This, in turn, had a low incidence
in animal and human samples, being absent in food and environmental
samples. Finally, the IncX2, IncX3 and Col plasmids were the only
plasmids that were not present in Asia but only present in America and
even there in small numbers. These in turn, were not present in food or
environmental samples. The difference between IncX3 and IncX2 and
Col was absent in animal samples.

Therefore, based on the information collected, it can be indicated
that the highest diversity of plasmids was found in animal samples,
followed by human, and environmental samples. In turn, Asia was the
continent that led with the largest diversity and occurrence of these
plasmids, followed by America and Europe.

Conclusion

Whole-genome sequencing allows the scientific community to
better understand the evolution and dissemination of antibiotic
resistance worldwide. However, several questions still need to
be answered. As noted above, the E. coli isolates that harbor mcr-1
showed a wide plethora of ARGs, plasmid-types and virulence genes,
demonstrating in most cases a multiresistance profile based on their
genotypic information. It is essential to note the higher percentages of
co-resistant ARGs detected in environmental samples of clinical
relevance, which highlights the critical role of the environment in the
AMR crisis. However, these results only represent the top of the iceberg,
considering that WGS is not considered as part of the surveillance
programs in the majority of countries. Additionally, it is remarkable how
limited are the number of isolates from environmental origin and the
geographical bias for the analysis of AMR worldwide. These findings
highlight the relevance of analyzing the environmental settings as an
integral part of the surveillance programs to understand the origins and
dissemination of AMR.
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