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The soil microbiome contributes to several ecosystem processes. It plays a 

key role in sustainable agriculture, horticulture and forestry. In contrast to 

the vast number of studies focusing on soil bacteria, the amount of research 

concerning soil fungal communities is limited. This is despite the fact that 

fungi play a crucial role in the cycling of matter and energy on Earth. Fungi 

constitute a significant part of the pathobiome of plants. Moreover, many of 

them are indispensable to plant health. This group includes mycorrhizal fungi, 

superparasites of pathogens, and generalists; they stabilize the soil mycobiome 

and play a key role in biogeochemical cycles. Several fungal species also 

contribute to soil bioremediation through their uptake of high amounts of 

contaminants from the environment. Moreover, fungal mycelia stretch below 

the ground like blood vessels in the human body, transferring water and 

nutrients to and from various plants. Recent advances in high-throughput 

sequencing combined with bioinformatic tools have facilitated detailed 

studies of the soil mycobiome. This review discusses the beneficial effects of 

soil mycobiomes and their interactions with other microbes and hosts in both 

healthy and unhealthy ecosystems. It may be  argued that studying the soil 

mycobiome in such a fashion is an essential step in promoting sustainable and 

regenerative agriculture.
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Introduction

The use of intensive agricultural production worldwide aims to supply sufficient food 
for humankind. However, the occurrence of sudden ecological disasters and wars show that 
this apparently stable situation is actually fragile, but overall, we may generally conclude 
that food security is growing. These benefits have been achieved at the cost of a damaged 
natural environment, which is causing increased levels of dissatisfaction with regard to 
modern industrial agriculture (Frouz and Frouzová, 2022). According to the Food and 
Agriculture Organization, current food systems account for more than one-third of global 
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greenhouse gas emissions (Crippa et al., 2021; FAO, 2021). The 
other adverse effect is the high degree of deforestation of areas 
which are significant to the whole planet, such as tropical 
rainforests. The recent drastic decrease in the area of ‘the lungs of 
Earth’ has adversely impacted both our climate and biodiversity 
(Nobre et al., 2016). Intensive farming with excessive ploughing 
causes land degradation, including its erosion by water and wind. 
Moreover, this degradation is also significantly changing the soil 
structure, water availability, and the availability of numerous 
macro- and microelements taken from the soil by crop plant 
monocultures (Beylich et al., 2010). The malfunctioning of current 
food and industrial systems with the resulting high impact on our 
climate has led to the novel phenomenon of environmental 
refugees – people who are displaced due to permanent 
environmental disasters (Myers, 2002).

The lack of nutrient cycling in intensive, high-input 
agriculture, and the use of considerable amounts of pesticides, has 
an impact on the natural soil microbiome, including its 
mycobiome (O’Brien, 2013). The soil mycobiome, which is also 
called the fungal microbiome, is one of the main components of 
an integrative microbiome which includes different microbial 
groups which inhabit agroecosystems (Geisen, 2021). At present, 
the soil mycobiome is still being poorly studied in relative terms 
as the main focus of recent global research has been connected to 
the bacterial component of the soil microbiome (Yadav et  al., 
2021). Despite the limited research undertaken to date, it is well 
known that fungi support many ecosystem processes and perform 
functions that are essential for the sustainable development of 
future agriculture (Fernandes et al., 2022), including plant–soil 
interactions, organic matter decomposition (Vétrovský et  al., 
2019), plant health promotion and nutrition (Põlme et al., 2020). 
A great majority of the agricultural land currently in use requires 
soil regeneration and the restoration of its biological processes 
(Gosnell, 2022), which includes restoring all components of the 
soil mycobiome. The solution to soil restoration in an agricultural 
setting is environmentally-friendly farming, which is usually 
referred to as sustainable agriculture. A holistic approach linking 
agricultural production with an unharmed environment is 
referred to as regenerative agriculture (Newton et al., 2020).

A clean environment and the maintenance of economic 
profitability are significant concerns in agriculture, horticulture 
and forestry (Dubey et al., 2019). Plant pathogenic fungi decrease 
plant yield and soil quality (Malarczyk et al., 2019), but beneficial 
fungi have the potential to contribute to soil stability and 
functioning and thus serve as vital components of regenerative 
agriculture. Below we provide an overview of mycobiome-based 
solutions and tools for sustainable and regenerative agriculture. 
The thrilling perspective is the possibility of neutralising plant 
diseases by controlling and altering mycobiome shifts in soils. The 
microbiome-mediated plant protection is an emerging direction 
of research (Bass et al., 2019), shifting the traditional ‘one pathogen 
– one disease paradigm’ towards pathobiome healing with 
microbial inoculants (Berg et al., 2021). Recent studies show that 
microbial communities in soils are much more diverse than 

we have previously thought. If so, is the control of myriads of soil 
microorganisms possible to any extent?

Soil mycobiome – from butterfly effect 
to Ariadne’s thread

Microbes play essential roles in the ecology and physiology of 
plants (Dastogeer et  al., 2020). Plants and their associated 
mycobiomes, including soil mycobiota, form complex and 
dynamic mutual interactions where the plants provide ecological 
niches and easily utilizable carbon to the mycobiome, which in 
turn influence plant growth, development and fitness (Vincent 
et al., 2020). The rhizosphere mycobiomes and plant endophytes 
suppress disease (Mendes et  al., 2011; Frąc et  al., 2018) and 
improve abiotic stress resistance (Lau and Lennon, 2012; 
Coleman-Derr and Tringe, 2014).

Fungi in the soil and rhizosphere operate in interlocking 
networks (van der Heijden and Hartmann, 2016), and form 
mycological hubs in the soil or in association with plants. The 
application of practices that promote the complexity and 
connectivity of these networks may serve to enhance the services 
that the mycobiome provides and this also has the potential to 
improve agricultural productivity due to positive soil feedback. 
Therefore, sustainability involves a greater degree of plant reliance 
on the beneficial functions offered by the soil mycobiome. In 
sustainable and regenerative agriculture, the dynamic interactions 
between soil mycobiome, plant mycobiome and plant health 
should be linked to agricultural practices (EASAC, 2022).

Microbial ecosystem balance, which is referred to as eubiosis, 
is accompanied by a high degree of suitable microorganisms 
(Iebba et  al., 2016) and it may be  regarded as a fundamental 
concept of ecosystem stability (Figure  1). According to this 
concept pathogens represent a small but important part of the 
microorganisms present. Their presence may lead to the loss of 
biodiversity and the dysbiosis state, which shifts microbe 
composition and influences pathogen emergence and outbreaks 
(Chen et al., 2020). Healthy balanced host–microbe interactions 
of the holobiont are termed eubiosis. At the same time, dysbiosis 
(pathobiome) refers to a holobiont disease state (Berg et al., 2020). 
Dysbiosis refers to the reduced capacity of host-microbiome 
regulation. This loss of function causes a decline in plant health 
(Arnault et al., 2022).

Dysbiosis can be  observed not only when plant disease is 
advanced but even at the initial stage, before planting, and it can 
predetermine future plant health (Wei et al., 2019). Detrimental 
mycobiota identified on time may be neutralised using various 
tools, leading to microbiome-mediated plant protection. 
Pathobiome analyses showed changes in community structure 
caused by pathogens (Dastogeer et al., 2022; Jia et al., 2022), and 
these small differences trigger great micro- and mycobiome 
modulations (Berg et al., 2021). Van Dijk et al. (2022) proved that 
soil microbiomes change aboveground plant-pathogen-insect 
interactions. In other words, small changes can have a great, 
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non-linear impact on a complex soil microbiome-plant health 
system, referred to as the ‘butterfly effect’.

Because fungi are important organisms around the world 
(O'Hanlon, 2017), this concept may be used in the context of 
mycobiomes, thereby indicating that soil and plant mycobiota 
determine both the healthy and unhealthy states of 
agroecosystems. The best example of this is suppressive and 
conducive soils (Schlatter et al., 2017), in which plants actively 
promote the selection of beneficial microorganisms which are 
active against soilborne pathogens (Weller et  al., 2002). The 
application of soil amendments to supply the missing parts of the 
microbiota, such as Streptomycetes, has received considerable 
attention (Wiggins and Kinket, 2005a,b; Li et al., 2020). Recent 
studies have shown that the application of biofertilizers actively 
induces soil suppressiveness, thereby promoting the control of 
both bacterial and fungal diseases in tomatoes (Deng et al., 2021, 
2022). Modulation of the microbiome using microbial inoculants 
is a promising tool for smart sustainable agriculture (Berg et al., 
2021). Soil mycobiome networks undergo complicated 
dependencies and a great role of science is to disentangle them 
and use fungal mycelium as Ariadne’s thread into the desired 
direction, to obtain a healthy crop.

Beneficial fungi for agricultural crops, 
fruits, and forests

Among the pathogens of crops, fungi are the most 
numerous and damaging (Agrios, 2005). A decrease in yield 
caused by fungi has been documented for all globally important 
crops, such as wheat, rice, maize, potato, soybean, rapeseed and 
many others (Savary et  al., 2019), this state of affairs has 
attracted a great deal of attention and caused concern (Jeger 
et al., 2021). Each crop has at least a few pathogens; while some 
have several of them, some are important on a worldwide scale 
and others are damaging at a regional or local scale; this is 
usually linked to conducive weather conditions. Most of them 
inhabit the soil and form their mycobiota for at least a part of 
their life cycle. Moreover, novel pathogens may emerge (Havis 
et al., 2015) because of adverse climate change, agricultural 
zones, crop diversity and changes in agronomic practices. Due 
to the Green Deal policy of the European Union (European 
Commission, 2020) and the general trend in favour of 
sustainable agriculture, the current focus of research, and 
development concerns beneficial microorganisms or their 
communities, including fungi. At present, the list of beneficial 

FIGURE 1

Soil mycobiome plays a vital role in sustainable agriculture, horticulture, and forestry.
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fungi in widespread use in agriculture is short and usually 
limited to Biological Control Agents developed for horticultural 
production, typically the generalists which are common in 
many habitats (Gostinčar et  al., 2019) with mycoparasitic 
properties (Kubicek et al., 2011). The most popular preparations 
are based on Trichoderma harzianum (Błaszczyk et al., 2014; 
Dawidziuk et al., 2016), Clonostachys rosea (Peng et al., 2011; 
Sun et al., 2020), Aureobasidium pullulans (Prasongsuk et al., 
2018) and other yeast-like fungi. A good example is 
Coniothyrium minitans, the super parasite of S. sclerotiorum 
(Smolinska and Kowalska, 2018).

Soft fruits are affected by various diseases caused by fungal 
pathogens inducing damage to roots, leaves, crowns and fruit. 
The most common and damaging diseases of soft fruit include 
grey mould, anthracnose, crown and root rot, plant wilt and 
fungi causing postharvest losses (Gubler and Converse, 1993; 
Garrido et al., 2016; Malarczyk et al., 2020). In recent years, 
under the pressure of a changing climate, pathogens which in 
the past, typically occurred mainly in tropical and 
Mediterranean climate zones, began to appear in the continental 
climate zone (Debode et al., 2011; Karimi et al., 2016; Torbati 
et al., 2019; Malarczyk et al., 2020). Key groups of beneficial 
mycobiota in soft fruit production include arbuscular 
mycorrhizal fungi (AMF), which for the most part, belong to 
the orders Glomerales, Archaeosporales, Paraglomerales and 
Diversisporales (Boyer et al., 2016; Begum et al., 2019). Ericoid 
mycorrhizal fungi can improve plant resistance to diseases 
(Jansa and Vosátka, 2000; Bizabani and Dames, 2015; Fehrer 
et al., 2019; Ważny et al., 2022). Many biopesticides are based 
on the entomopathogenic fungi (Bamisile et al., 2018; Canassa 
et al., 2020; Litwin et al., 2020). Fungal endophytes, such as 
Clonostachys rosea (Cota et  al., 2009), Piriformospora indica 
(Sinclair et al., 2013), Xylaria sp. (Ważny et al., 2022), Penicillium 
sp. (Hamim et  al., 2017), Hannaella coprosmae and 
Oberwinklerozyma straminea (Nguyen et al., 2021) are used in 
biocontrol and can have a beneficial impact on fruit yield 
(Murphy et al., 2019). The most common fungi able to promote 
plant growth and capable of acting as biocontrol agents belong 
to Trichoderma (Chen et al., 2019; Pylak et al., 2019; Lombardi 
et al., 2020; Mącik et al., 2020; Oszust et al., 2021; Rees et al., 
2022) and yeasts (Sun et al., 2018; Calderon et al., 2019; De 
Miccolis Angelini et al., 2019; Freimoser et al., 2019).

Fungi constitute a significant fraction of the forest soil 
microbiome (Pérez-Izquierdo et al., 2021). Their high degree of 
ecological and taxonomical diversity significantly impacts the 
functioning of forest ecosystems (Witzell and Martín, 2018). In 
forests, saprotrophs, endophytes, biomass degraders, and the 
decomposers of lignified plant materials perform multiple tasks 
and form mutualistic relationships with roots (Frąc et al., 2018; 
Yan et al., 2018; Li et al., 2021). They can positively influence tree 
health by acting as growth-promoting or protective agents. 
However, many fungal species are causal agents of forest diseases, 
although only a few are active pathogens (Witzell and Martín, 
2018). Nevertheless, the boundaries between the categories of 

fungus according to their function are not strictly defined, as some 
species can shift from one trophic state to another (Delaye 
et al., 2013).

Fungi are not homogeneously distributed in the forest 
soil (Lladó et  al., 2018). Their activity is driven by the 
dynamics of ecosystem processes, root exudates, and soil 
heterogeneity (Baldrian, 2017; Lladó et  al., 2018). 
Communities of litter saprotrophic and root-associated fungi 
are vertically separated within profiles. Within these layers, 
the fungal functional groups occupy different spatial niches 
according to their mode of C assimilation. Also, the 
competition for space and resources is an essential 
determinant of these communities (Boddy, 2000; Kennedy, 
2010; Bödeker et al., 2016). Changes in climatic conditions, 
atmospheric CO2 levels, forest management regimes, and 
nutrient availability may affect the various fungal functional 
guilds in different ways, leading to shifts in their competitive 
balance and niches (Bödeker et  al., 2016). Decomposers 
dominate the litter layer, while mycorrhizal fungi dominate 
the humus and mineral layers (Asplund et  al., 2019). Few 
studies have documented the microbial changes that occur 
after the emergence of a plant pathogen, especially in forest 
ecosystems (Stewart et al., 2021). Some species (e.g., Laccaria 
laccata, Hebeloma crustuliniforme, Paxillus involutus, 
Trichoderma harzianum, Pisolithus tinctorius, Tricholoma 
pessundatum) have been shown to play an essential role in 
decreasing the severity of disease caused by root pathogens 
(Chakravarty and Hwang, 1991; Suárez et al., 2018; Stewart 
et  al., 2021; Zaki et  al., 2021). However, some fungal 
pathogens can deactivate genes in non-pathogenic species; 
they are involved in antimicrobial production and further 
weaken tree symbionts by releasing secondary metabolites 
(Stewart et al., 2021).

Bioinformatics for mycobiome control in 
sustainable agriculture

In recent years the development of high-throughput 
sequencing has enabled scientists around the globe to identify soil 
fungi (Tedersoo et al., 2014); see Figure 2. Most of the published 
studies use Illumina MiSeq to characterize the fungi targeting ITS 
regions, particularly ITS2 (Schoch et  al., 2012), which is also 
deemed to be the best technique in comparative studies (Tedersoo 
et al., 2015; Frau et al., 2019). There has, however, been a recent 
call to use longer-read sequencing such as PacBio or Nanopore 
sequencing and to analyse both ITS2 regions and parts of the 18S 
and 28S genes (D’Andreano et  al., 2021; Runnel et  al., 2022). 
Obtaining longer-read will enable scientists to assign reads to 
particular species and strains with an increased level of confidence. 
This will be  crucial, especially when linking the identity of a 
species to its functionality. There are multiple options for 
bioinformatic analyses and pipelines, and the appropriate choice 
depends mainly on the sequencing technique used but also on the 
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individual preferences of the scientist. The most commonly used 
pipelines for the analyses of bacteria and fungi are DADA2 
(Callahan et al., 2016) and QIIME2 (Bolyen et al., 2019), which 
both rely on user-making decisions concerning quality filtering 
and error learning which is based on the region amplified and 
organism studied.

Some pipelines have been designed explicitly for fungi (such 
as PIPITS; Gweon et al., 2015) in which some decisions and 
steps are automated. For fungi, it is always advised to extract the 
ITS region amplified after joining pair-end reads to increase the 
quality of the data (Bengtsson-Palme et al., 2013). As the ITS 
region is variable in length (Schoch et al., 2014), the step of 
filtering reads of a specific size should be  omitted. Using a 
curated database like UNITE (Nilsson et  al., 2019) is highly 
recommended when studying fungi. UNITE relies on the species 
hypothesis concept, which clusters similar sequences into one 
hypothetical taxonomic unit. After the sequencing data is 
paired, filtered, clustered, and assigned the appropriate 
taxonomy, the hypothesis can be  tested using multivariate 
statistical analyses.

Similarly to bacteria, transformations of data and careful 
interpretation are required to reach reliable conclusions (Weiss 

et  al., 2017; Knight et  al., 2018). Unique to fungi, potential 
functional guilds (such as pathogens, mutualists and saprotrophs) 
may be  assigned using Funguild (Nguyen et  al., 2016) or 
FungalTraits (Põlme et al., 2020) and the richness and relative 
abundance of these groups can then be evaluated (Hannula and 
Träger, 2020). However, for many sequence types or taxonomic 
units, no information concerning their lifestyle is available, 
thereby rendering this prediction uncertain. Future studies should 
focus on the functioning of fungal species as well as the functional 
sequencing of the soils to shed light on the functional diversity of 
fungi in the soils.

Concluding remarks

Mycobiomes comprise a large part of the Earth’s biodiversity 
and play a key role in soils, where they perform numerous 
functions within the ecosystem. Soil fungi play a crucial role in the 
environment, and affect plant health as symbiotes, pathogens, or 
through matter degradation. Agroecosystem mycobiomes are 
increasingly recognized as beneficial to soil and plant health as 
they facilitate and even control numerous ecosystem processes. In 

FIGURE 2

Next Generation Sequencing and bioinformatic programs are modern tools for the monitoring of soil mycobiome composition.
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order to meet the various challenges of maintaining food security 
and the environment, mycobiome studies connected with plant 
pathology and protection should implement multidisciplinary 
approaches, including the use of traditional, molecular and 
bioinformatic tools. Further research into the identity, abundance, 
distribution and function of soil mycrobiomes, as well as their 
different roles in soils, is necessary to understand the dimensions 
of fungal biodiversity, its impact on plant health and to prevent 
fungal diseases. It is essential to focus on mycobiome shifts caused 
by climate change, their interactions with other microbes, and the 
determining relations between mycobiomes and microbiomes in 
both healthy and dysfunctional conditions.

The challenge for the future is not only to gain the ability to 
rapidly recognize the major and trace components of the soil 
mycobiomes and their functions within networks, as well as 
their interplay with plant roots and other constituents of the soil 
but also to gain the ability to redirect them into the desired 
composition and proportions, thereby healing the ecosystem in 
question. The coming years will show whether it is just a dream 
or the first solutions of this kind will start functioning 
in practice.
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