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The recent explosion of interest and advances in machine learning

technologies has opened the door to new analytical capabilities in

microbiology. Using experimental data such as images or videos, machine

learning, in particular deep learning with neural networks, can be harnessed to

provide insights and predictions for microbial populations. This paper presents

such an application in which a Recurrent Neural Network (RNN) was used to

perform prediction of microbial growth for a population of two Pseudomonas

aeruginosa mutants. The RNN was trained on videos that were acquired

previously using fluorescence microscopy and microfluidics. Of the 20 frames

that make up each video, 10 were used as inputs to the network which outputs

a prediction for the next 10 frames of the video. The accuracy of the network

was evaluated by comparing the predicted frames to the original frames, as

well as population curves and the number and size of individual colonies

extracted from these frames. Overall, the growth predictions are found to

be accurate in metrics such as image comparison, colony size, and total

population. Yet, limitations exist due to the scarcity of available and comparable

data in the literature, indicating a need for more studies. Both the successes

and challenges of our approach are discussed.

KEYWORDS
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1. Introduction

Recurrent Neural Networks, RNNs, are a type of Artificial Neural Network that takes

a temporal sequence as inputs, learns the spatiotemporal variations, and predicts future

data. RNNs were originally created for tasks related to Natural Language Processing,

such as text classification and translation, but were subsequently extended to temporal

sequences of images (i.e., videos) by incorporating convolutions. These convolutions

combine collections of pixels in previous images to predict each individual pixel in the

next image of a sequence, allowing the network to capture spatiotemporal dynamics for

prediction. RNNs are now used in a variety of applications such as video captioning and

video frame prediction (Shi et al., 2015; Su et al., 2020). In biology and microbiology,
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RNNs have recently been used to study proteins (Alley et al.,

2019; Le, 2019; Tng et al., 2022), whole bacteria genomes

(Alley et al., 2019), and bacterial growth (Cheroutre-Vialette and

Lebert, 2002; Baranwal et al., 2022). For example, in the case

of proteins, RNNs can be used on large numbers (millions) of

amino acid sequences to learn the statistical representations that

effectively approximate the encoded protein features, which does

not necessarily require structural or evolutionary data (Alley

et al., 2019). On the other hand, in Baranwal et al. (2022)

and Cheroutre-Vialette and Lebert (2002) an RNN was used

to predict growth curves. In a similar manner, RNNs could

be trained on multiple images, rather than multiple amino

acid sequences, of bacterial cells as they grow under different

conditions. To the best of our knowledge, however, RNNs have

not been used to perform video frame prediction of bacterial

growth. This is the focus of the work presented here: instead of

predicting growth curves, we predict fluorescence microscopy

images of growth. It’s important to mention that growth curves

can be obtained directly from such images by simply counting

the number of pixels for each bacteria species.

Over the last few years, new advances have made video

frame prediction with RNNs more accurate. A comprehensive

review on this matter can be found in Oprea et al. (2020).

One such advance has been named predRNN (Wang et al.,

2021), which has been successfully used for performing video

frame prediction of numbers moving across a screen (the so-

called “movingMNIST” dataset 1), humans performing different

actions (KTH action dataset2), traffic flow, and moisture

movement in weather systems (Wang et al., 2021). In each of

these scenarios, predRNN outperformed previous RNNs. Here

we investigate whether predRNN could be used to perform video

frame prediction of microbial growth using videos generated by

fluorescence microscopy and microfluidics.

Training an RNN to perform video frame prediction

requires a large number of videos. For example, predicting the

random movement of numbers across a screen required 10,000

videos of 20 frames each (Wang et al., 2021). In microbiology,

combining microfluidics with fluorescence microscopy has the

potential to produce large amounts of videos. Timm et al. (2017)

used microfluidics with fluorescence microscopy to investigate

the growth of Pseudomonas aeruginosa, an antibiotic resistant

bacteria that is responsible for many clinical infections (Pang

et al., 2019). Using a photolithographic procedure, this group

built a chip consisting of an array of microwells with different

diameters. The diameters ranged from 5 to 100 µm, and each

1 MNIST is the Modified National Institute of Standards and Technology

database of handwritten digits. It is commonly used to test neural network

classification performance.

2 KTH action is a dataset made up of videos of people moving created

by KTH Royal Institute of Technology in Sweden. It is commonly used for

testing neural networks in video prediction.

FIGURE 1

Brightened snapshots at time steps 1, 4, 7, 10, and 13 for one of

the videos obtained in Timm et al. (2017) for the 30 µm well.

The two mutant strains of P. aeruginosa, T6SS-positive and

T6SS-negative, appear in green and red, respectively.

well had several replicates to ensure the data collected was

statistically significant. The chip was seeded with a mixed

microbial population that contained two mutant strains of P.

aeruginosa at different concentrations. One mutant possessed

the Type VI Secretion System, called here T6SS-positive, while

the other mutant, T6SS-negative, lacked it, which made it more

susceptible to attacks by the T6SS-positive mutant. The T6SS

involves a needle-like pilus that some bacteria use to attack

others (Sana et al., 2017). To monitor the growth of this mixed

population, the T6SS-positive and T6SS-negative mutants were

tagged with green and red fluorescent protein, respectively,

and their growth monitored with fluorescence microscopy. This

microwell fabrication andmixed bacterial population seeding on

a chip has opened the door to large scale data-driven analysis of

bacterial population interactions (Halsted et al., 2016; Hansen

et al., 2016). Five snapshots of a microwell video obtained via

this procedure are shown in Figure 1.

Here we show that predRNN (Wang et al., 2021) can be

used to accurately predict future frames for the microwell videos

collected in Timm et al. (2017). We show this by directly

comparing predicted and original frames as well as bymeasuring

the population curves and individual colony attributes of the

predicted and original frames.

2. Methods

Timm et al. (2017) collected videos of microbial growth by

generating fluorescence microscopy images of 24 x 24 pixels

in RGB (Red, Green, and Blue) format every 30 min for a

period of approximately 24 h. In these images, T6SS-positive and

T6SS-negative P. aeruginosa mutants appeared as green and red,

respectively. Of all the well sizes in the micro-fluidic array, we

found that the 30 µmwell-contained the most useful data. First,

this well size allowed for microbial populations to completely fill

the well during growth, resulting in a distinct partitioning of the

population into colonies of both strains. Second, more videos

were collected for this well size than for the other sizes, giving

a more complete set for training predRNN. For this reason, we

focus the present study on videos collected for the 30 µm wells.

A total of 48 videos of 14 frames were collected for the 30µm

well. In these videos, frames 1–7 showed the most interesting
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dynamics, which corresponded to the exponential growth of the

population from a few initial colonies to a large community that

covered the entire well. By contrast, frames 8–14 were practically

static, as growth reached a saturation state around frame 8. As a

consequence, we discarded frames 8–14 and focused on frames

1 through 7 giving a dataset comprised of 48 videos of seven

frames of 24 x 24 pixels in RGB format.

These frames were subjected to a series of four

transformations aimed at optimizing the training of the

predRNN network. First, we transformed the images from RGB

to HSV (Hue, Saturation, Value) format. This transformation

aimed to separate the population information contained in each

image more clearly than with RGB. Specifically, the presence

of either population in a given pixel was recorded by the Value

channel (black or not black pixel), the species of the population

in the pixel was recorded by the Hue channel (red or green

pixel), and the concentration of the species in the pixel was

accounted for by Saturation (how bright red or green in the

pixel were). Second, each frame was adjusted to match the

center of the images with the center of the well. This was done

by cropping a square around the brightest pixels of the images

averaged over time after triangle thresholding (Zack et al., 1977)

which accentuates the brightest pixels in the image. Third, the

number of frames per video was increased from 7 to 20 and each

frame was expanded from 24 x 24 to 32 x 32 pixels. The number

of frames per video was increased using temporal interpolation

across frames, and was performed with the scikit-image Python

package (van der Walt et al., 2014). The size increase was

performed with the bilinear interpolation in the OpenCV

library (Bradski, 2000). These three sets of transformations led

to a dataset of 48 videos of 20 frames of 32 x 32 pixels recorded

in the HSV format. At this point, five of the videos were set aside

as a "test" set which would be later used to assess the predictive

ability of the neural network on previously unseen data.

As the resulting 43 videos still made a relatively small

dataset for training predRNN, we performed a fourth set

of transformations that consisted of flipping, rotating,

blurring, and adding Gaussian noise to all the videos. These

transformations were performed with the AtomAI Python

package (Ziatdinov et al., 2021) developed for material science

applications of deep learning. These final transformations gave

a dataset of 392 videos with 20 frames of 32 x 32 pixels in the

HSV format. Figure 2 shows schematically the transformations

and the workflow for preparing the input dataset.

In order to train the network, the 392 video dataset was

randomly split into training and validation sets in a 80/20

proportion which are used in the training process. This is a

customary practice in machine learning meant to verify that the

model can perform well on new data (i.e., data not used to tune

the parameters of the model). Specifically, the training set is used

to update the “weights” or parameters of the neural network. The

model is then tested on the validation set to get a measure of how

well it is performing on new data. The process is then repeated.

To assess the final quality of the trained network after training, a

test set, which is withheld earlier and never seen by the network

during training, is used. This procedure is shown schematically

in Figure 2.

During the training procedure, the first 10 frames of a video

sequence were used as inputs and the remaining 10 were used for

predictions. In what follows, the original 11–20 frames will be

referred to as groundtruth (the images we want the network to

output), whereas those predicted by the network will be referred

to as predicted frames.

There are a variety of network parameters, called

hyperparameters, that can be adjusted for improving the

training process including size and step of convolutions,

parameter normalization, patch sizes of the input images,

random sampling of the training data, number of total

parameters, learning rate, size of training data batches, and

total number of training rounds or “epochs.” Together, these

represent over 100 million possible parameter permutations,

each of which would require retraining the model (a process

that could take hours using a GPU accelerated computer). Due

to this prohibitive complexity, we used the standard parameters

from the original PredRNN model and varied only the layer

size and learning rate. We tested the models performance

with each parameter set by iterating across a range of layer

sizes and learning weights. To evaluate the success of each

set of hyperparameters, we evaluated the mean-squared error

(MSE) of the predictions with the groundtruth, which is a

pixel-wise comparison of two images and the learned perceptual

image patch similarity (LPIPS). The LPIPS metric was recently

developed as an image similarity metric to mimic the perception

of the human eye (Zhang et al., 2018). It should be noted that

the smaller the MSE and LPIPS values are, the more similar

the predicted frame is to the corresponding groundtruth. We

ultimately determined to use layers of size 32 and a learning rate

of 0.0003. A link to GitHub repository that contains the trained

network, as well as the list of optimal hyperparameter values, is

included in the Supporting Information.

3. Results and discussion

Figure 3 shows the changes in the training loss (the MSE of

“predictions” using the training data) and the MSE and LPIPS

of the validation set, with the number of epochs (the number of

iterations used to train the network). It is seen that after 50,000

epochs the network had converged to a somewhat steady state in

the training loss as well as theMSE and LPIPS validationmetrics.

This means that when given an input of 10 frames from one

of the training videos, the network will accurately output the

next 10 frames (good training loss) and when given 10 frames

from one of the validation videos the network will output a

prediction of 10 frames that are similar pixel-wise (good MSE)
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FIGURE 2

Flow chart of the data and model pipeline including preprocessing steps, dataset separation, and validation metrics.

and similar by human examination (good LPIPS) to the actual

next 10 frames in the video.

Figure 4 shows the video frame predictions for four

different wells from the test dataset. It can be observed

that the groundtruth frames (upper panel) and the predicted

frames (lower panel) are visually very similar. To quantify

this similarity, we computed the per-frame and average MSE

and LPIPS. Figure 5 shows the per-frame MSE and LPIPS,

respectively, and both increase with time. In other words, the

predicted and groundtruth frames differ more for predictions

performed later in time. This is an expected result because errors

accumulate as more frames are predicted. For example, frame 12

is predicted from frame 11, and any error in predicting frame

11 carries on to frame 12. Despite this, the accuracy of the

predictions is satisfactory and comparable to the results obtained

in Wang et al. (2021) for the moving MNIST database. Further,

the average MSE and LPIPS values obtained for the test set are

13.7 and 0.002, which are smaller than the values 48.4 and 0.071

obtained in Wang et al. (2021).

The results above are encouraging as they suggest that video

frame prediction of microbial growth can indeed be performed

with predRNN. However, aside from directly comparing images,

neither MSE nor LPIPS are particularly insightful in the context

of microbial experiments. It is instead preferable to compare

images with metrics that provide quantitative information

on microbial growth and which are commonly used by

microbiologists.

Many previous studies for microbial growth use population

growth curves for the respective species as quantitative metrics

(Timm et al., 2017). As discussed previously, Timm et al. used

green and red fluorescent proteins to tag the T6SS-positive

and T6SS-negative mutants of P. aeruginosa, respectively. The

growth of each mutant, and of the whole community, was then

monitored by plotting the intensity of the fluorescent signal vs.

time. Here we do not measure the intensity of the fluorescent

signal, but instead extract population curves directly from the

groundtruth and predicted frames by summing the pixels for

green and red. Figure 6 shows the population curves calculated

for the four test wells. In general, the agreement between

prediction and groundtruth is better for the T6SS-positive

(green) than for the T6SS-negative (red) mutant. The reason for

this is not entirely clear to us and the scarcity of data has posed a

challenge for additional analysis. However, our hypothesis is that

as T6SS-positive attacks, the growth of T6SS-negative is more

susceptible to fluctuations, which causes predRNN to have more

difficulties to learn the spatiotemporal evolution from frame to

frame. This can be observed most acutely in the population

curves of test well 2 which show an almost equal number of

the two strains, causing the most aggressive of fluctuations in

population. This particular case is investigated further below.

Finally, it is also seen that the T6SS-positive mutant grows less

than the T6SS-negative. Understanding the reasons behind this

observation is beyond the scope of this work, but some studies

have suggested that possessing the T6SS pilus puts a significant
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FIGURE 3

Convergence metrics of predRNN (Wang et al., 2021) during training. (A) MSE loss for training images. (B) MSE loss for validation images. (C)

LPIPS loss for validation images.

FIGURE 4

Qualitative comparison between the groundtruth and predicted frames for four wells in the test dataset. In each figure, the upper panel

represents the groundtruth frames, and the lower the predicted frames. The images progress from left to right and the wells are numbered

according to their position in the test dataset. Data taken from Timm et al. (2017) then expanded in size and interpolated in time as explained in

Section 2.

FIGURE 5

Quantitative comparison between the groundtruth and the predicted frames for the test wells in Figure 1. (A) Average mean-squared error (MSE)

for all test wells; (B) Average learned perceptual image patch similarity (LPIPS) for all test wells. Each dot represents a frame.
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FIGURE 6

Comparisons between the population curve extracted from the groundtruth frames and the corresponding predicted population curves. See

text for an explanation of how the population curves were extracted.

energy burden on the T6SS-positive strain, which ultimately

limits its growth (Wilmoth et al., 2018).

To gain insights into the discrepancy between predictions

and observations for test well 2, we extracted two more metrics

from the predicted and groundtruth frames. These metrics are

the number of colonies for each mutant and the number of

pixels comprising each colony. The results obtained for all

four test wells are shown in Figure 7. For clarity, the data is

shown only for three different frames taken from the whole

sequence of groundtruth and corresponding predicted frames.

For both mutants, and for wells 1, 3, and 4 the agreement

between prediction and groundtruth is in general very good.

Minor differences are seen for the T6SS-positive mutant: for

well 1, the number of predicted colonies are overestimated,

and for well 4, frames 15 and 19 show one colony less for the

predicted frame than for the groundtruth one. However, the

differences are more significant for test well 2, especially for the

T6SS-negative mutant (red). In this case the number of T6SS-

negative colonies in the groundtruth and predicted frames, and

the corresponding number of pixels in the colonies, are different.

On the other hand, for the T6SS-positive mutant, the predictions

are very good.

From these results, it is clear that the origin of the differences

in the population curves for test well 2 are rooted on differences

at the level of individual colonies. To further understand this,

we refer to Figure 4: It is seen that, in general, the growth in

test wells 1, 3, and 4 is characterized by the partitioning of

the population into a large T6SS-negative colony and a few

smaller T6SS-positive ones. By contrast, the growth in test

well 2 is characterized by the appearance of small colonies

for both mutants. It is unknown what might have caused this

distinct growth pattern, but visual inspection of the original

dataset (48 videos of 14 frames) reveals that this pattern is

uncommon. The dataset is thus imbalanced, which leads to

a bias in the training of predRNN, hampering its ability to

accurately predict the growth for test well 2, specifically for the

T6SS-negative mutant. Indeed, for this well the T6SS-positive

mutant predictions are accurate because the growth pattern

is similar to the patterns observed in other wells. However,

for the T6SS-negative mutant, the growth pattern in test well

2 is unusual and the network is not capable of predicting it

since it was not trained with many similar cases. Imbalanced

datasets are a major yet subtle issue in machine learning, as

accurate predictions depend on the specifics of each dataset. In

our case, the difficulty is compounded by the scarcity of video

data. For example, in this case any effort to balance the dataset

by removing videos with uncommon growth patterns would

reduce the size of the dataset even further. Finally, our trained

Frontiers inMicrobiology 06 frontiersin.org

https://doi.org/10.3389/fmicb.2022.1034586
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Robertson et al. 10.3389/fmicb.2022.1034586

FIGURE 7

Comparison of the number and size of individual colonies in the

groundtruth and predicted frames for wells in the test dataset.

The wells are numbered according to their position in the test

dataset.

model is not expected to accurately predict microbial growth

for other well sizes than the 30 µm one, because the training

dataset did not include them. To enable that, one would have to

retrain the model by including those wells, but unfortunately,

as already mentioned, this is not possible due to the scarcity

of data.

4. Conclusion

We trained an RNN, named predRNN (Wang et al.,

2021), to perform video frame prediction of microbial

growth for a population containing two mutants of P.

aeruginosa. For training, we used 48 videos that were previously

collected by Timm et al. (2017) with microfluidics and

fluorescence microscopy.

To assess the quality of the predictions, we used image-

to-image metrics, in particular MSE and LPIPS, as well as

microbially significant metrics such as population curves and

the characteristics of individual colonies. It was found that

predRNN (Wang et al., 2021) can, in general, predict correctly

the growth of this population. However, we also noticed that

in some cases the predicted growth could be inaccurate. In

this particular setting, these inaccuracies were found to be

caused by an imbalanced training dataset, which contained

more wells with faster T6SS-negative mutant growth than

the T6SS-positive mutant. As a consequence, the network

tended to favor the growth of the T6SS-negative mutant

over the other mutant, which led to large errors in frame

prediction for wells where both mutants happened to grow

similarly. This emphasizes the need to create large databases of

microbial growth, which could be accomplished by combining

microfluidics and fluorescence microscopy. A recent study,

however, offers a new possibility for increasing the dataset:

In Pawlowski et al. (2022) used deep learning style transfer

to create a dataset of synthetic images of realistic microbial

growth. This technique could be useful for augmenting the

dataset for video frame prediction. Nonetheless, despite the

challenges associated with the size of the dataset, our results

provide promising steps toward the possibility of performing

autonomous experiments in microbiology, where time spent in

image acquisition could be saved by predicting microbial growth

with RNNs.

The successful application of this recurrent model

architecture for the included fluorescence images also suggests

future applications in predictions of cell morphology such as

shape and size (Li et al., 2021; Way et al., 2021), in different

spatiotemporal resolutions, or in predicting compositions

of more heterogeneous mixtures of diverse bacterial strains

(e.g., each strain could be labeled with a unique fluorescent

protein; Larsen et al., 2015). Although these applications lie

within the scope of the predRNN model architecture, successful

predictions would require training using the a large dataset

of high resolution images with consistent time and space

scales (see Supplementary material for more details on this

limitation). For example, to predict cell morphology changes,

we could follow the same procedure as documented in this

manuscript with high resolution images of cell populations

rather than fluorescence microscopy images of populations. The

metrics of success would also need to be adjusted to measure

characteristics of cell shape or size rather than population

or colony level measurements. Each of these applications

promise a new range of machine learning based predictive

analytics beyond the scope of current quantitative image

analysis methods.
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