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Methanogens are anaerobic archaea which conserve energy by producing 

methane. Found in nearly every anaerobic environment on earth, methanogens 

serve important roles in ecology as key organisms of the global carbon 

cycle, and in industry as a source of renewable biofuels. Environmentally, 

methanogenic archaea play an essential role in the reintroducing unavailable 

carbon to the carbon cycle by anaerobically converting low-energy, terminal 

metabolic degradation products such as one and two-carbon molecules 

into methane which then returns to the aerobic portion of the carbon cycle. 

In industry, methanogens are commonly used as an inexpensive source of 

renewable biofuels as well as serving as a vital component in the treatment 

of wastewater though this is only the tip of the iceberg with respect to their 

metabolic potential. In this review we will discuss how the efficient central 

metabolism of methanoarchaea could be harnessed for future biotechnology 

applications.
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Methanogen ecology and diversity

Methanogens are single-celled organisms that conserve energy via the conversion of 
substrate carbon compounds into methane gas (Ferry, 2012). The majority of methanogens 
subsist in anaerobic environments by the reduction of one carbon (C1) compounds 
including carbon dioxide and carbon monoxide, methanol, methylamines, and methyl 
sulfides as well as the fermentation of acetate (Daniels et al., 1977; Rother and Metcalf, 2004; 
Buan, 2018). The gaseous methane they produce then bubbles back into the aerobic world 
where it is consumed by methanotrophic organisms and is returned to the carbon cycle. 
The methane produced by methanogens is of interest due to methane’s ecological impact 
resulting from agricultural production by livestock (Johnson and Johnson, 1995) and rice 
cultivation (Schütz et al., 1989) as well as methane’s benefits as a renewable source of natural 
gas (Luo and Angelidaki, 2012; Huang et al., 2017) which is a high energy fuel used for heat, 
electricity generation, and for transportation including as a propellant for rocket engines 
(Neill et al., 2009; Sheehan, 2021). In nature, methanogenic archaea have been identified in 
environments spanning the boundaries of life sustaining conditions, from acidic to alkaline 
(pH 3.0–10.2), thermophilic to psychrophilic (−2°C to 110°C), and including both fresh 
and saline aquatic environments (Martin and Sousa, 2016). In addition to these 
environments, methanogens are found symbiotically communing in a wide range of 

TYPE Mini Review
PUBLISHED 
DOI 10.3389/fmicb.2022.1034674

OPEN ACCESS

EDITED BY

Sabine Kleinsteuber,  
Helmholtz Association of German Research 
Centres (HZ), Germany

REVIEWED BY

James Ferry,  
The Pennsylvania State University, 
United States
Barny Whitman,  
University of Georgia,  
United States

*CORRESPONDENCE

Nicole R. Buan  
nbuan@unl.edu

SPECIALTY SECTION

This article was submitted to  
Microbial Physiology and Metabolism, 
a section of the journal  
Frontiers in Microbiology

RECEIVED 01 September 2022
ACCEPTED 28 October 2022
PUBLISHED 

CITATION

Carr S and Buan NR (2022) Insights into the 
biotechnology potential of Methanosarcina.
Front. Microbiol. 13:1034674.
doi: 10.3389/fmicb.2022.1034674

COPYRIGHT

© 2022 Carr and Buan. This is an open-
access article distributed under the terms 
of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that 
the original publication in this journal is 
cited, in accordance with accepted 
academic practice. No use, distribution or 
reproduction is permitted which does not 
comply with these terms.

15 December 2022

15 December 2022

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2022.1034674%EF%BB%BF&domain=pdf&date_stamp=2022-12-15
https://www.frontiersin.org/articles/10.3389/fmicb.2022.1034674/full
https://www.frontiersin.org/articles/10.3389/fmicb.2022.1034674/full
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2022.1034674
mailto:nbuan@unl.edu
https://doi.org/10.3389/fmicb.2022.1034674
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Carr and Buan 10.3389/fmicb.2022.1034674

Frontiers in Microbiology 02 frontiersin.org

single-and multi-cellular hosts ranging from amoebae (Holmes 
et al., 2014) and protozoa (Stumm and Zwart, 1986) to termites, 
(Brune, 1998, 2018) bovines (Whitford et al., 2001), and humans 
(Fricke et al., 2006; Rajilić-Stojanović et al., 2007).

As more methanogen species are discovered, it is becoming 
evident that methanogens may be able to use a wider variety of 
substrates than previously known. Biomethane generation has 
been observed from subsurface coal beds (Ulrich and Bower, 
2008; Mayumi et al., 2016) as well as oceanic oil sinks (Laso-Pérez 
et al., 2019; Zhou et al., 2022). Methanogens may form syntrophic 
partnerships with other microorganisms such as hydrocarbon-
degrading bacteria, thereby indirectly facilitating the 
reintroduction of crude oil carbon into a bioavailable state 
(Zengler et  al., 1999; Dolfing et  al., 2008; Jones et  al., 2008). 
However, methanogens are suspected of being capable of alkane 
oxidation independent of any other archaeal or bacterial partner 
(Borrel et al., 2019; Laso-Pérez et al., 2019). Ecological methane 
accumulation has been observed in correlation with colonized oil 
droplets at deep-sea oil seeps. These proposed alkane utilizing 
methanogens are not limited to short-chain alkanes; Candidatus 
Methanoliparum has been shown to degrade long-chain 
hydrocarbons with methanogenesis (Zhou et  al., 2022). The 
mechanism by which these so far uncultured alkanotrophic 
methanogens are capable of utilizing hydrocarbons is still being 
investigated, though the phenomenon does not appear to be a rare 
occurrence. Alkane-degrading methanogens are widely 
distributed, (Zengler et al., 1999; Laso-Pérez et al., 2019; Zhou 
et al., 2022) indicating that methanogens are directly or indirectly 
involved in the bioconversion of crude oil to methane on a large 
scale and may serve a benefit to bioremediation efforts in 
anaerobic environments such as deep-sea sediments.

The ability for methanogens to thrive in these diverse 
environments is testament to their metabolic robustness. 
Regardless of the environment they inhabit, methanogens share a 
similar metabolic niche, the bioconversion of low-energy 
substrates into biomass and high-energy molecules with a high 
degree of efficiency. All cultured methanogens to date are strict 
obligate anaerobes and produce methane as an essential byproduct 
of metabolism (Daniels et al., 1977; Rother and Metcalf, 2004; 
Ferry, 2012; Buan, 2018). To grow on these energy poor substrates 
methanogens have adopted a highly efficient pathway for 
conserving energy called methanogenesis (Figure 1; Thauer, 2012; 
Gonnerman et  al., 2013). In this review we  discuss how 
methanogen metabolism allows these organisms to thrive under 
strict energetic conditions and how their special metabolic 
features could be utilized in biotechnology.

Expanding the methanogenesis 
pathway

Despite their ability to live in a wide diversity of habitats, 
methanogens are united by their unique central metabolism. In 
the five characterized versions of the methanogenesis pathway, 

substrates are reduced to methane while formate, primary 
alcohols/amines/thiols, or H2 are oxidized to CO2 or H2O (Ermler 
et  al., 1997; Buan, 2018). Redox cofactors associated with the 
methanogenesis pathway are regenerated through formation of a 
transmembrane ion gradient which is coupled to ATP synthesis 
via ATP synthase (Costa and Leigh, 2014; Diender et al., 2015). 
These reactions yield a small amount of energy for the methanogen 
amounting to between 0.5 and 2 moles of ATP per mole of 
substrate (Buan, 2018). A result of this low energy yield is a high 
relative flux through energy conservation pathways, with over 
99% of the chemistry within the cell being directly tied to 
methanogenesis (Feist et al., 2006). The remaining 1–2% of carbon 
substrate is used to generate biomass for replication. The average 
macromolecular composition of a methanogen includes 63% 
protein, 0.1% fatty acid lipids, 5% isoprenoid lipids, 0.5% 
carbohydrates, 28% nucleic acids, and 4% metabolites and 
metabolic precursors (Gonnerman et al., 2013). The relatively high 
abundance of isoprenoid lipids and high protein concentration 
make them an appealing source of difficult-to-synthesize lipids 
and molecules from inexpensive C1 compounds or acetate, yields 
and titers of which could be further enhanced through genetic 
engineering. The unique properties of methanogenesis and highly 
efficient energy conservation mechanisms make methanoarchaea 
ideal organisms for the production of renewable biofuels as the 
vast majority of feed substrate is converted efficiently to methane.

It should be noted, however, that while methanogenesis is 
highly conserved and exceedingly efficient, it can also be modified 
to better serve biotechnological goals without necessarily 
undermining methanogenic growth. Methanosarcina in particular 
may be  well-suited to metabolic engineering, as they can use 
multiple methanogenesis pathways and are genetically tractable 
(Metcalf et al., 1997; Ehlers et al., 2005).

Methanogenesis is inherently limited by substrate availability 
though this limitation can be overcome by expanding the carbon 
and energy sources available to methanoarchaea. Methanosarcina 
acetivorans has been successfully engineered to expand its substrate 
use and to enhance metabolic efficiency. M. acetivorans is a marine 
methanogen that can use methylotrophic and acetotrophic 
methanogenesis pathways, but unusually cannot use H2 for 
methanogenesis (Sowers et al., 1984; Guss et al., 2009). As a result, 
M. acetivorans appears to use very efficient intracellular redox 
balancing mechanisms, thus avoiding loss of H2 reducing 
equivalents by gas diffusion, which is a possibility for methanogens 
that use H2 cycling to generate transmembrane proton gradients 
(Kulkarni et al., 2009). Methylotrophic methanogenesis relies on 
substrate specific methyltransferases to convert substrates to 
CH3-CoM for entry into the pathway. It has been demonstrated that 
heterologous expression of the bacterial broad-specificity esterase 
from Pseudomonas veronii in M. acetivorans increased esterase 
activity 80-fold and greatly enhanced growth on methyl acetate and 
methyl propionate substrates (Lessner et al., 2010). Once substrates 
have entered the methanogenesis pathway, energy conservation 
occurs by the regeneration of methanogenic cofactors (Thauer, 
2012). Cofactor regeneration is catalyzed by membrane bound, 
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redox-driven enzyme complexes such as Rnf (Schlegel et al., 2012) 
and HdrED (Duszenko and Buan, 2017), which combine cofactor 
regeneration with ion transport or by cytoplasmic enzymes such as 
Fpo (Welte and Deppenmeier, 2011), or the terminal oxidase 
HdrABC (Catlett et  al., 2015; Buckel and Thauer, 2018). By 
enhancing cofactor regeneration it is possible to stimulate increased 
methanogenesis. For example, when the cytoplasmic enzyme 
heterodisulfide reductase (HdrABC) is overexpressed, methane 
production on methanol is 30% faster without a detectable change 
in growth rate compared to the parent strain (Catlett et al., 2015). 
The exogenous addition of methanophenzine (MPh), an electron 
carrier found in methanogens which fulfils a similar role as 
quinones in other electron transport chains, was found to 
significantly increase growth in Methanosarcina spp (Duszenko 
and Buan, 2017). Additionally, it is possible that the regeneration of 
methanogenic cofactors could be  achieved through pathway 
engineering (Aldridge et al., 2021). The reduction of the disulfide 
complex between coenzyme M and coenzyme B is the final step in 
all methanogenic pathways and is restricted to the heterodisulfide 
reductases HdrABC and HdrED (Buan and Metcalf, 2010; Yan and 
Ferry, 2018). Providing an alternative means of cofactor reduction 
would eliminate this metabolic bottleneck, freeing up cofactors at 
a greater rate (Aldridge et  al., 2021). If a methanogen were 
engineered to produce a non-native metabolite which allows for the 
reduction of ferredoxin, F420, coenzyme M, or coenzyme B then 

production of that metabolite has the potential to increase the rate 
of methanogenesis while also synthesizing the desired product 
(Aldridge et al., 2021).

Due to the tight energetic restrictions methanogenesis is 
proposed to rely heavily on substrate channeling to minimize 
entropic effects (Costa et al., 2010; Matschiavelli et al., 2012; Catlett 
et al., 2015; Yan and Ferry, 2018; Watanabe et al., 2021). Substrate 
channeling allows methanogenesis to function efficiently but 
presents challenges for metabolic engineers as the metabolite pools 
for methanogenesis have limited availability outside of the 
channeled enzyme complexes. To overcome this metabolic obstacle 
metabolic engineers must choose products which draw from 
metabolites which are not directly channeled or incorporate the 
production of their products within methanogenesis. Table 1 lists 
potential strategies to increase substrate variety, optimize growth 
rates and culture conditions, or generate new metabolic products 
by engineering methanogenesis.

Anaerobic oxidation of methane and 
reverse methanogenesis

Given the efficiency of methanogenesis and the abundance 
of anaerobic environments around the world, methanogens are 
distributed across every continent. Yet of the approximately 1 Gt 

FIGURE 1

Pathways for methanogenesis (adapted from Buan, 2018). The direction of arrows represents the direction of biochemical reactions. Reactions 
which are utilized in every methanogenic pathway are represented in black. Hydrogenotrophic methanogenesis (aka. The Wolfe Cycle) (Thauer, 
2012) is represented in red. Methyl oxidation is represented in orange. Methylotrophic methanogenesis is represented in green. Acetotrophic 
methanogenesis is represented in fuchsia. Degradation of polyaromatic hydrocarbons is represented in dark blue (Siegert et al., 2011). Ethylene 
and long chain alkane reduction is represented in purple (Lemaire and Wagner, 2022). Carboxydotrophic methanogenesis is represented in cyan. 
CoB-SH, coenzyme B thiol; CoM-SH, coenzyme M thiol; CoM-S-S-CoB, coenzyme M-coenzyme B heterodisulfide; Fd, ferredoxin; Fdred, reduced 
ferredoxin; H4MPT, tetrahydromethanopterin; MFR, methanofuran; MPh, methanophenazine; MPhH2, reduced methanophenazine. Enzymes 
involved in methanogenesis: (a) Formyl-methanofuran dehydrogenase (Fmd), (b) Formyl-methanofuran:H4MPT formyl transferase (Ftr), 
(c) Methenyl-H4MPT cyclohydrolase (Mch), (d) F420-dependent Methylene-H4MPT dehydrogenase (Mtd), (e) F420-dependent Methylene-H4MPT 
reductase (Mer), (f) Methyl-H4MPT:coenzyme M methyltransferase (Mtr), (g) Methyl-coenzyme M reductase (Mcr), (g*) Atypical methyl-coenzyme 
M reductase (Mcr),(Wang et al., 2019) (h) Electron-bifurcating hydrogenase:heterodisulfide reductase complex (Mvh:HdrABC), (i) F420-reducing 
hydrogenase (Frh), (j) Energy-converting sodium pumping ferredoxin hydrogenase, (k) Ferredoxin reducing hydrogenase (Eha/Ech), (l) Proton-
translocating methanophenazine:heterodisulfide reductase (HdrED), (m) Sodium–proton antiporter (MrpA), (n) F420 proton-pumping 
methanophenazine reductase (Fpo).
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of methane produced by methanogens in the wild each year in 
anaerobic and microanaerobic environments, roughly half 
escapes into the aerobic carbon cycle (Conrad, 2009). It is 
estimated between 43–90% of biogenic methane is oxidized my 

aerobic methanotrophs at the anaerobic/aerobic interface (Hao 
et al., 1988; Roslev and King, 1995; Le Mer and Roger, 2001; 
Conrad, 2009). The remainder of this methane is either trapped 
within anaerobic environments (as gas or methane gas hydrates) 

TABLE 1 Strategies for expanding the metabolic potential of the methanogenesis pathway.

Desired trait Potential mechanism

Increased methanogenesis and methane production  • Overexpression of genes associated with methanogenesis or addition of parallel heterologous methanogenic  

pathways.

 • Exogenous addition of metabolites or pathway engineering to supply limiting metabolites.

Research has shown that overexpression of redox-active cofactors such as methanophenazine in Methanosarcinales 

relieves the metabolic bottleneck caused by cofactor regeneration and increases the production of methane (Catlett 

et al., 2015). Vitamins addition often stimulates growth (Tanner and Wolfe, 1988; Jin et al., 2017). Many methanogens 

are fully prototrophic, but some strains are dependent on exogenous addition of CoM or other vitamins (Catlett et al., 

2022). Additionally, magnetite nanoparticles have been demonstrated to serve facilitate increased acetotrophic 

methanogenesis in cocultures between acetogens and methanogens (Tanner and Wolfe, 1988; Catlett et al., 2015; 

López Muñoz et al., 2015; Jin et al., 2017; Fu et al., 2019; Catlett et al., 2022).

Increased substrate uptake rates  • By overexpressing endogenous or ortho/heterologous methyltransferases and hydrogenases more substrate carbon 

could enter methanogenesis.

In methylotrophic methanogenesis entry point methanogenesis is limited by the substrate-specific methyltransferase 

whereas hydrogenotrophic methanogens rely upon membrane bound methyltransferase to conserve energy and 

maintain the methanogens sodium motive force (Kurth et al., 2020).

Increased substrate diversity and mixotrophy  • Introduction of multiple substrate input pathways would allow more rapid substrate uptake, faster unitrophic 

growth, and mixotrophic growth.

Substrate entry into methanogenesis is limited by substrate specific methyltransferases and whether the methanogen 

can directly utilize H2 as an electron source. By introducing methyltransferases from different methanogens one can 

expand the substrates usable to the methanogen. Increasing extracellular-facing hydrogenases may allow increased 

rates of H2 uptake and hydrogenotrophic methanogenesis. Upregulation of pyruvate ferredoxin oxidoreductase (por) 

in M. barkeri has been demonstrated to facilitate growth on pyruvate as a sole carbon and energy source (López 

Muñoz et al., 2015).

Controlled energy conservation  • Selective uncoupling biomass from methanogenesis could allow maximal growth for bioreactor scale-up with a 

methanogenesis-only production phase.

This could be accomplished by bypassing ATP synthesis, managing macromolecular accessibility, by adding protein 

synthesis inhibitors, or futile cycling for redox cofactors either chemically or genetically (Catlett et al., 2015).

Increased stress resistance  • Increased stress tolerance could increase growth rate, improve expression of introduced enzymes, enable 

production of xenobiotic chemicals, and expand biorefining process parameters.

All methanogens are strict anaerobes. Increased oxygen tolerance was observed in Methanosarcina acetivorans when 

gradually passaged with increased O2 concentrations over a course of 6 months (Jasso-Chávez et al., 2015). Transcripts 

from adapted Methanosarcina suggest the over expression of superoxide dismutase, catalase, and peroxidase will 

confer increased aerotolerance to other methanogens. Methanogens engineered to express the bacterial catalase 

EcKatG demonstrated increased tolerance of hydrogen peroxide, though no increase in resistance to O2 was observed 

(Jennings et al., 2014). Though non-spore-forming, methanogens are capable of revival after desiccation with no 

significant loss of viability observed in aerobic environments (Anderson et al., 2012). Cocultivation with sulfate 

reducing bacteria has shown to mitigate heavy metal stress in methanogenic cultures (Paulo et al., 2015). The 

introduction or overexpression of the betaine transporter from Methanosarcina thermophila TM-1 increases internal 

ionic balance conferring protection against osmotic stress (Macario and Macario, 2003). Additionally, it has been 

noted that under high ammonia conditions which inhibits acetotrophic methanogenesis, the addition of magnetite 

reduces inhibition (Macario and Macario, 2003; Anderson et al., 2012; Horne and Lessner, 2013; Jennings et al., 2014; 

Jasso-Chávez et al., 2015; Paulo et al., 2015; Wang et al., 2020).

Multiple  • Trait stacking for process optimization.

By stacking the above traits may be possible to maximize methanogenic efficiency in mixed substrate environments 

such as the treatment of waste biomass or in process conditions that require multiple extremophilic conditions.

Genetic methods in methanoarchaea are available in several species. Current tools have been recently reviewed or published (Tumbula et al., 1994; Pritchett et al., 2004; Ehlers et al., 2005; 
Guss et al., 2008; Atomi et al., 2012; Kohler and Metcalf, 2012; Nayak and Metcalf, 2017; Innard, 2018).
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or consumed by methanotrophic archaea and bacteria (Knittel 
and Boetius, 2009; Thauer, 2011). Given the estimated 70Gt of 
CO2 fixed by photosynthesis into biomass, methane as a product 
of methanogenesis accounts for approximately 2% of the annual 
total carbon utilization (Thauer et al., 2008). Previously it was 
believed that the anaerobic oxidation of methane (AOM) was 
possible through the symbiotic exchange of metabolites and 
electrons between the methanotrophic archaea and sulfate 
reducers (Alperin and Hoehler, 2009; Summers et al., 2010). 
Within this process anaerobic methane-oxidizing archaea 
(ANME) consisting of Methanomicrobiales (ANME-1) and 
Methanosarcinales (ANME-2 and ANME-3) form granular 
aggregates with delta-proteobacteria in which electrons are 
transferred between organisms via multi-heme cytochromes 
(McGlynn et al., 2015). Metabolic modeling has suggested that 
iron and sulfate can be co-substrates in AOM (Riedinger et al., 
2014) and 16S rRNA gene-sequences for Candidadus 
Methanoperedens correlated with increased AOM in sulfate-rich 
anoxic sediments suggesting the occurrence of AOM 
independent of a bacterial partner (Su et al., 2020). In laboratory 
conditions it was found that trace amounts of AOM was 
observed in Methanothermobacter marburgenis (Scheller et al., 
2010) and Methanosarcina acetivorans (Moran et  al., 2005) 
though it was not observed that these strains were able to use 
methane as the major source of carbon and energy for growth. 
However, by scouring the metagenomes of unculturable 
ANME-1 samples from aquatic regions with high amounts of 
AOM, a novel variant of methyl-coenzyme M reductase (Mcr) 
was discovered which correlated to AOM without the need for a 
syntrophic sulfate-reducing partner (Meyerdierks et al., 2010; 
Shima et al., 2012). When the uncultured ANME-1 Mcr was 
introduced into M. acetivorans it was found that isotope labeled 
methane was converted into acetate while also facilitating 
growth, (Soo et  al., 2016). Furthermore, methanogen strains 
containing this ANME-1 Mcr gene can be utilized along with a 
consortia of microbes including Geobacter sulfurreducens to 
produce electricity in a microbial fuel cell utilizing only methane 
as a substrate (McAnulty et  al., 2017). As every step of 
methanogenesis is reversible, reverse methanogenesis is 
theoretically possible for any methanogen though under most 
conditions these reactions are non-energy yielding (Thauer, 
2012). These observations indicate that the bidirectionality of 
methanogenesis enables methane to be  utilized as growth 
substrate for methanogens, particularly by Methanosarcina spp. 
For example: a Methanosarcina culture which has been 
engineered to produce a high-value terpenoid product is grown 
using methyl compounds until stationary phase is achieved and 
biomass accumulation is no longer necessary; this culture could 
then be induced to produce the terpenoids utilizing potentially 
any C1 compound or mixtures of compounds including CO, 
CO2, or CH4 based on substrate availability. This potential 
extends beyond the production of secreted products, as the 
biomass of methanogens itself can be  utilized as a source of 
valuable lipids.

Potential for engineering the lipid 
membrane biosynthesis pathway as a 
valorization strategy

Methanogen membranes, like those found in all archaea, are 
distinct from those found in bacteria and eukarya. In bacterial and 
eukaryotic organisms lipid membrane structures are composed of 
fatty acid chains ester liked to glycerol-3-phosphate (G3P) (Koga 
and Morii, 2007). Archaeal lipids membranes instead utilize 
isoprenoid alkyl chains ether linked to glycerol-1-phosphate (G1P; 
Figure 2; Koga and Morii, 2007; Koga, 2012). This fundamental 
differentiation in membrane composition is the basis of the so 
called ‘lipid divide’ separating archaea from the other two domains 
of life (Villanueva et al., 2021). Given the high quantity and the 
molecular uniformity of lipid membranes, comprising on average 
5% of total methanogen dry weight (Gonnerman et al., 2013), and 
the relatively high metabolic flux through the archaeal mevalonate 
lipid biosynthesis pathway, high-value isoprenoid lipids are 
attractive metabolic engineering targets. The isoprenoid lipids 
used by archaea allow them to tolerate a wide range of 
environmental stressors. The most abundant archaeal lipid 
structures are archeol, consisting of a pair of phytanyl chains ether 
linked to G1P and caldarcheol, a cyclic dimer of archeol. 
Caldarcheol is of particular biotechnological interest as the 
cyclized tetraether lipids maintain cellular homeostasis in the 
presence of extreme pH and thermal stress (Boyd et al., 2013; 
Siliakus et al., 2017). Archaeal ether linked lipids are more stable 
than ester linked membranes when exposed to extremes of pH 
and thermal conditions, and the unique monolayer structure of 
tetraether linked lipids imparts resistance to degradation to 
phospholipases (Jacquemet et al., 2009). These stable properties 
and the intrinsic monolayer formed by caldarcheol represents an 
enticing alternative to traditional phospholipids in liposome-
based commercial applications. One such application is in the 
delivery of chemotherapeutic compounds via archaeal derived 
liposomes. It has been found that tetraether linked artificial 
liposomes reduce leakage of chemotherapeutic compounds by 
9-fold compared to conventional eukaryotic derived liposomes, 
which results in a lower dose required for therapeutic effects 
(Leriche et  al., 2017). The archaeal liposomes themselves also 
contribute therapeutic effects as archaeal liposomes utilized to 
transport vaccine components induce robust antigen specific 
humoral and cellular immune responses exceeding those found 
from traditional delivery mechanisms (Conlan et al., 2001; Patel 
and Chen, 2010; Haq et al., 2016; Landi et al., 2017).

In addition to the direct application of archaeal lipids, the high 
metabolic flux through the archaeal mevalonate pathway presents 
an opportunity for low-cost production of terpene compounds. 
Terpenes are the largest class of natural compounds and have a 
wide range of commercial applications. Odorant terpenes such as 
limonene, eucalyptol, and linalool are cornerstones of the $29B 
flavor and fragrance industry (Markets, 2021). In addition to 
odorants, terpenes are often the active compound in 
pharmaceuticals including the anti-cancer drug paclitaxel and the 
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antimalarial artemisinin. Hundreds of natural terpenes have 
shown promising bioactivity (Gould, 1997; Sgadari et al., 2000; 
Friedman et al., 2002; Paduch et al., 2007; Ajikumar et al., 2008) 
yet are limited in application due to their availability. Many of 
these terpenes are currently harvested from their native plant, 
fungal, and marine producers which are limited by the endogenous 
expression levels which are prohibitively low (Long et al., 1998; 
Sills et al., 1998; Newman and Cragg, 2004) or non-renewably 
synthesized from petroleum precursors. Organically produced 
terpenes are primarily produced via compounds derived from one 
of two isoprenoid synthesis pathways, the mevalonate (MVA) 
pathway and the deoxyxylose 5-phosphate (DXP) pathway (Lange 
et al., 2000). These pathways in non-archaeal organisms suffer low 
carbon flux and depletion of precursors towards non-target 
compounds (McGarvey and Croteau, 1995; Rodriguez-
Concepcion and Boronat, 2002; Vranova et al., 2012). Archaea, 
however, synthesize the majority of membrane lipids through the 
mevalonate pathway, accounting for a higher flux as compared to 
eukaryal or bacterial organisms (Boucher et al., 2004; Jain et al., 
2014; Villanueva et al., 2014). As such, there is a naturally higher 
abundance of metabolic precursors available for the synthesis of 
isoprenoid and terpene products using methanoarchaea. 
Concerns over the depletion of these membrane precursors have 
been alleviated by the synthesis of mono-isoprene from engineered 
strains of M. acetivorans and Methanosarcina barkeri (Aldridge 
et  al., 2021; Carr et  al., 2021). These strains demonstrate that 
methanogens are able to withstand the metabolic burden of 
membrane substrate depletion without a significant decrease in 
growth rate or final carrying capacity, opening the door for further 
isoprenoid products that could be  produced by addition of 
relatively few genes (Table 2). Inducible promoters such as Ptet 
could also be  used to drive expression of genes for terpenoid 

biosynthesis in two-stage fermentation processes to increase 
bioreactor carrying capacity and maximize terpenoid titer and 
yield (Urlinger et al., 2000; Loew et al., 2010). One challenge is that 
some terpenes require molecular oxygen for complete biosynthesis 
and this might be difficult for anaerobic organisms to achieve. 
However, Methanosarcina acetivorans is remarkably oxygen-
tolerant and it is possible to further enhance resistance to oxidative 
stress through engineering or adaptation (Horne and Lessner, 
2013; Jasso-Chávez et  al., 2015). Therefore, it is theoretically 
feasible to use O2 availability as a biosynthetic inducer during 
terpene fermentation with oxygen-tolerant methanogens.

Benefits and challenges of methanogen 
biotechnologies

The use of methanogens in bioproduction is beneficial in a 
myriad of ways including ease of selection, low cost of media, and 
flexibility of products (Table 3). Methanogens have been shown to 
be an excellent source of metabolically active compounds such as 
coenzyme M (CoM) which acts as a potent chemotherapy 
adjuvant as the drug mesna (Shaw and Graham, 1987) as well as 
immune stimulating lipids for vaccine delivery (Patel and Chen, 
2010; Haq et al., 2016). Due to their anaerobic metabolism which 
requires a lack of O2, they are able to produce novel chiral 
precursors which could later be  tailored by chemists through 
custom oxidation steps and subsequent functionalization.

In large scale industrial fermentations pure aseptic 
environments are difficult to maintain, and often media and 
growth conditions are utilized to ensure continuous selection 
during the fermentation (Mosier and Ladisch, 2011; Doran, 
2013). Methanogens circumvent this issue by growing in selective 

FIGURE 2

Comparison between structures of bacterial and archaeal lipids. Glycerol molecules are shaded in orange. Phosphate groups are shaded in cyan. 
The isoprenoid subunits which make up the archaeal lipids are highlighted in green brackets. Fully saturated lipids are shown; organisms may 
produce versions of unsaturated alkane lipids with multiple double bonds or hydroxyl moieties.
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TABLE 2 Potential terpenoids to be produced by methanogens based on category.

Name Terpene class Structure Synthesis Enzyme Substrate Initial citation

Isoprene Hemiterpene Isoprene synthase 

(4.2.3.27)

Dimethylallyl 

pyrophosphate

Silver and Fall (1991)

Geranyl pyrophosphate 

(GPP)

Monoterpene (2E,6E)-farnesyl 

diphosphate synthase 

(2.5.1.10)

Dimethylallyl 

pyrophosphate

Cornforth et al. (1966)

Geraniol Monoterpene Geraniol synthase 

(3.1.7.11)

Geranyl diphosphate Iijima et al. (2004)

Linalool Monoterpene S-linalool synthase 

(4.2.3.25)

Geranyl diphosphate Pichersky et al. (1994)

Ocimene Monoterpene (E)-beta-ocimene 

synthase (4.2.3.106)

Geranyl diphosphate Bohlmann et al. (2000)

Myrcene Monoterpene Myrcene synthase 

(4.2.3.15)

Geranyl diphosphate Bohlmann et al. (1997)

Sabinene Bicyclic Monoterpenoid (+)-sabinene synthase 

(4.2.3.110)

Geranyl diphosphate Wise et al. (1998)

Pinene Bicyclic Monoterpenoid Pinene synthase (4.2.3.14) Geranyl diphosphate Gambliel and Croteau 

(1984)

Farnesyl diphosphate Acyclic Sesquiterpenoid Farnesyl diphosphate 

synthase (2.5.1.1)

Dimethylallyl diphosphate 

and isopentenyl 

diphosphate

Vandermoten et al. 

(2009)

Farnesol Acyclic Sesquiterpenoid Farnesyl diphosphatase 

(3.1.7.6)

Farnesyl diphosphate Meigs and Simoni (1997)

(Continued)
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environments free of oxygen using substrates that cannot be used 
by the majority of common contaminating factors such as lactic 

acid bacteria and fungi (Skinner and Leathers, 2004; Beckner 
et al., 2011). Methanogens are prototrophic organisms, able to 

Name Terpene class Structure Synthesis Enzyme Substrate Initial citation

Nerolidol Acyclic Sesquiterpenoid (3S,6E)-nerolidol 

synthase (4.2.3.48)

Farnesyl diphosphate Donath and Boland 

(1995)

Farnesene Acyclic Sesquiterpenoid Alpha-farnesene synthase 

(4.2.3.46) and beta-

farnesene synthase 

(4.2.3.47)

Farnesyl diphosphate Pechous and Whitaker 

(2004)

Humulene Monocyclic 

Sesquiterpenoid

Alpha-humulene synthase 

(4.2.3.104)

Farnesyl diphosphate van Der Hoeven et al. 

(2000)

Bisabolene Monocyclic 

Sesquiterpenoid

Alpha-bisbolene synthase 

(4.2.3.38)

Farnesyl diphosphate Bohlmann et al. (1998)

Zingiberene Monocyclic 

Sesquiterpenoid

Zingiberene synthase 

(4.2.3.65)

Farnesyl diphosphate Zhuang et al. (2012)

Curcumene Monocyclic 

Sesquiterpenoid

Gamma-curcumene 

synthase (4.2.3.94)

Farnesyl diphosphate Deguerry et al. (2006)

Amorphadiene Bicyclic Sesquiterpenoid Amorpha-4,11-diene 

synthase (4.2.3.24)

Farnesyl diphosphate Bouwmeester et al. 

(1999)

Valencene Bicyclic Sesquiterpenoid Valencene synthase 

(4.2.3.73)

Farnesyl diphosphate Sharon-Asa et al. (2003)

Terpenoid clasess requiring molecular oxygen for biosynthesis have been omitted. However, oxygen-tolerant Methanosarcina have potential to be used in this context.

TABLE 2 (Continued)
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synthesize all vitamins and cofactors required for growth from 
inorganic material, allowing for additional selection by limiting 
available vitamins and nutrients required for contaminating 
growth by exclusion (Patil and Muskan, 2009; Thauer, 2012; 
Buan, 2018). While viral predation on methanogens has been 
observed (Park et  al., 2007) there is little evidence that these 
methanophage/methanovirus particles have a substantial effect 
on methanogenic digestor performance as viral titers did not 
correlate with a significant decrease in methane output and 
methanogen carrying capacity.

Another major challenge in industrial fermentations is the 
large amounts of fresh water required for E. coli or yeast (Chen, 
2012). Methanogens, however, thrive in environments with high 
salt concentrations, allowing for the utilization of seawater in 
fermentations. Non-sterile hypersaline environments such 
ocean water and hydraulic fracking fluids have been 

demonstrated to select for methylotrophic methanogens such 
as Methanohalophilus, Methanohalobium, and Methanosarcina 
spp. while also presenting a high concentration of 
non-competitive substrates such as methylamines (McGenity, 
2010; Guan et al., 2015). Methanogens are utilized worldwide 
for the production of renewable biogas in non-selective 
environments with high degrees of contamination such as 
municipal and agricultural wastewater treatment. In these 
environments methanogens are exposed to a wide variety of 
stressors including dramatic shifts in ammonia, osmotic shifts, 
and exposure to heavy metals (Yan et  al., 2020). Many 
methanogens are natively capable of withstanding these 
stressors (Macario and Macario, 2003) though as stated above, 
using genetic tools it is possible to combine or “stack” desirable 
traits onto a single methanogen strain to gain the maximum 
benefit from a single organism.

TABLE 3 Benefits and challenges of methanogen biotechnology.

Benefits Challenges

Methanogens are some of the fastest-replicating organisms, particularly members of 

Methanococcus (Jones et al., 1983; Goyal et al., 2016; Long et al., 2017) and Methanopyrus (Takai 

et al., 2008) genus. (Jones et al., 1983; Takai et al., 2008; Goyal et al., 2016; Long et al., 2017).

Strain differences in growth rate and carrying capacity. Growth is flux-

controlled depending on substrate feed rates. Gas-phase fermentation 

presents similar problems as oxygenation in traditional fermentations 

(Mosier and Ladisch, 2011; Chen, 2012; Luo and Angelidaki, 2012).

Methanogens can grow on inexpensive substrates including negative value substrates such as 

wastewater (Daniels et al., 1977; Schiraldi et al., 2002; McGenity, 2010; Ferry, 2012; Costa and 

Leigh, 2014; Borrel et al., 2016; Buan, 2018; Chadwick et al., 2022).

Methanogens already scaled up worldwide for water treatment and biogas production.

Process disfavors growth of aerobic pathogens. Co-product can be water 

ready for discharge to aquifers and waterways.

Can be coupled directly or indirectly to electrodes for carbon capture by electrosynthesis or for 

electricity generation from biomass (Ragab et al., 2020).

Surface-to-area, substrate solubility, and other challenges commensurate 

with microbial fuel cell technologies.

Oxygenation not required. Can grow on non-gas substrates. No contamination by aerobic 

organisms.

Methanogens require specialized culture environments to maintain 

anaerobicity (Balch et al., 1979; Rouviere and Wolfe, 1988; Buan, 2018).

Mesophilic and thermophilic strains available to tailor to the desired product and process needs. Methanogen chassis organisms may need different optimization strategies.

Novel metabolic pathways are constantly being discovered (Costa and Leigh, 2014; Guan et al., 

2015; Borrel et al., 2016; Mayumi et al., 2016; Buan, 2018; Yan and Ferry, 2018; Chadwick et al., 

2022; Zhou et al., 2022).

Methanogen genetics and biochemistry are less characterized than other 

model organisms.

Synthetic biology pathways often use archaeal or methanogen genes to improve yields and 

reduce feedback inhibition.

Bacterial synthetic biology and genetic strategies have been successfully translated to 

methanogens.

Methanogens have a high substrate to volume ratio with low accumulation of biomass relative to 

products (Thauer et al., 2008; Ferry, 2012; Buan, 2018).

High titers of intracellular products may be difficult to obtain unless 

accumulated into vacuoles or secreted extracellularly.

Multiple validated genetic tools available including tools for Methanosarcina spp., (Metcalf et al., 

1997; Buan et al., 2011; Nayak and Metcalf, 2017) Methanococcus maripaludis,(Blank et al., 1995; 

Bao and Scheller, 2021) and Methanothermobacter thermautotrophicus (Buan et al., 2011; 

Sarmiento et al., 2011; Nayak and Metcalf, 2017; Bao and Scheller, 2021; Fink et al., 2021).

Variability in genome copy number can present challenges when 

performing chromosomal modifications (Hildenbrand et al., 2011; 

Aldridge et al., 2021).

The lack of cell wall and envelope in most methanogens ensures that products generated through 

methanogen fermentations are not contaminated with peptidoglycan or endotoxin (Jones et al., 

1987; Claus and König, 2010).

Some methanogen species produce pseudomurein cell walls or 

extracellular polysaccharide capsules, although these are generally non-or 

weakly immunogenic (Sirohi et al., 2010; Subedi et al., 2021).

Methanoarchaea are non-pathogenic, though there have been studies suggesting a link between 

methanogens and other microbes in dysbiotic anaerobic abscesses (Drancourt et al., 2017; 

Sogodogo et al., 2019).

Not currently recognized as a GRAS (Generally Regarded as Safe) 

organism.
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Conclusion

Methanogens are biologically important organisms with a 
wide-reaching impact both in ecological and biotechnological 
applications. Their extremely efficient central metabolism 
makes them an ideal source of renewable biofuels that can 
be  captured through anaerobic digestion or fermentation 
processes. They are able to grow prototrophically with 
inexpensive feedstocks and can produce endotoxin- 
free protein, carbohydrates, and valuable isoprenoid lipids. 
Their unique membrane composition can be used to expand 
the biotechnological toolbox for the delivery of 
chemotherapeutics as well as source for novel terpene 
compounds previously not available via conventional 
extraction means. By continuing to investigate the molecular, 
genetic, and synthetic biology potential of these unique 
organisms, researchers may unlock a wide range of 
applications from environmental and ecological management, 
renewable energy, agriculture, chemical manufacturing, and 
pharmaceutic industries.
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