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Boletes are favored by consumers because of their unique flavor, rich 

nutrition and delicious taste. However, the different nutritional values of 

each species lead to obvious price differences, so shoddy products appear 

on the market, which affects food safety. The aim of this study was to find 

a rapid and effective method for boletes species identification. In this paper, 

1,707 samples of eight boletes species were selected as the research objects. 

The original Mid-Infrared (MIR) spectroscopy data were adopted for support 

vector machine (SVM) modeling. The 11,949 spectral images belong to seven 

data sets such as two-dimensional correlation spectroscopy (2DCOS) and 

three-dimensional correlation spectroscopy (3DCOS) were used to carry 

out Alexnet and Residual network (Resnet) modeling, thus we established 15 

models for the identification of boletes species. The results show that the SVM 

method needs to process complex feature data, the time cost is more than 

11 times of other models, and the accuracy is not high enough, so it is not 

recommended to be  used in data processing with large sample size. From 

the perspective of datasets, synchronous 2DCOS and synchronous 3DCOS 

have the best modeling results, while one-dimensional (1D) MIR Spectrum 

dataset has the worst modeling results. After comprehensive analysis, the 

modeling effect of Resnet on the synchronous 2DCOS dataset is the best. 

Moreover, we  use large-screen visualization technology to visually display 

the sample information of this research and obtain their distribution rules in 

terms of species and geographical location. This research shows that deep 

learning combined with 2DCOS and 3DCOS spectral images can effectively 

and accurately identify boletes species, which provides a reference for the 

identification of other fields, such as food and Chinese herbal medicine.
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1. Introduction

Wild edible mushrooms are rich in protein, vitamins and a 
variety of mineral elements. Regular consumption can enhance 
immunity and promote metabolism. In addition, it still has 
medicinal value, can effectively prevent and treat tumors, edema 
and other diseases (Li et al., 2008; Cheung, 2010; Yao et al., 2018). 
Recently, it has been reported in the literature that mushrooms, 
including Ganoderma lucidum, should be considered as functional 
foods. It also pointed out that Ganoderma lucidum can treat 
coronavirus disease of 2019 (COVID-19; El Sheikha, 2022). 
Another study suggests that mushrooms can be  used as 
bioinsecticidal agents (El Sheikha, 2021). China is the world’s 
largest producer of edible mushrooms and truffles (El Sheikha and 
Hu, 2018). Moreover, China is the main producer and exporter of 
edible mushrooms, accounting for more than 70% of the world’s 
annual output, with a total output of approximately 36 million 
tons, and export trade is up to more than 130 countries (Zhang 
et al., 2020; Yan et al., 2021). Bolete is a world-famous high-quality 
edible fungus. China is rich in natural resources and has great 
potential for its development and utilization. Yunnan has a unique 
climate and diverse vegetation, which provides a good 
environment for the growth of wild boletes, so it is one of the 
largest boletes production areas in the world (Yang et al., 2016, 
2017). 882 species of wild edible mushrooms are known to 
be distributed in Yunnan, accounting for 44.1% of the 2000 species 
in the world and 91.3% of the 966 species in China. In 2021, 
Yunnan province produced 280,400 tons of wild edible 
mushrooms, among which the boletes from Chuxiong are 
nationally famous1. Nevertheless, the price of boletes varies greatly 
depending on species, and some species of boletes may cause 
poisoning. At present, there are illegal traders in the market who 
use fake as real and use shoddy as good, which damages the 
interests of consumers and affects food safety at the same time (El 
Sheikha, 2018; Yan et al., 2022a). Therefore, rapid and accurate 
identification of bolete species is urgently required.

Mass spectrometry, chromatography, spectroscopy and 
other methods are often used to evaluate the quality of wild 
edible mushrooms. Malheiro et al. used headspace solid phase 
microextraction (HS SPME) and gas chromatography/ion trap 
mass spectrometry (GC/IT MS) to analyze the volatilities of 
edible mushrooms, and used stoichiometric methods to identify 
six species of edible mushrooms. The results showed that 
volatile substances could be used as an important classification 
basis (Malheiro et al., 2013). Marekov et al. (2012) used gas 
chromatography-mass spectrometer (GC–MS) to determine 31 
fatty acid components of 15 edible mushrooms belonging to 9 
genera and 5 families in Bulgaria. Stoichiometric methods were 
used to analyze the differences in fatty acid components and 
classify the species. Mohač ek-gro šev et  al. used Fourier 
transform infrared spectroscopy (FTIR) to make spectral 

1 http://www.yncoop.com/sxjs/zsjs/08196173330559241148

analysis of the spores and fruiting bodies of more than 70 
species of wild edible mushrooms belonging to 37 genera. The 
results showed that vibration spectroscopy could characterize 
the information of the content of polysaccharides in fungi, and 
the vibration spectra of spores of different species of the same 
genus and some of the fruiting bodies were very similar. The 
chemical composition of cap and stipe of the same fruiting body 
was quite different (Mohacek-Grosev et  al., 2001). Each of 
these  reported identification methods has advantages and 
disadvantages. Among them, morphological taxonomy 
identification technology is easily affected by subjective factors, 
and the identification accuracy is low. Mass spectrometry and 
chromatography are expensive and require expertise and 
technology (Mohacek-Grosev et al., 2001; Li et al., 2011, 2013). 
FTIR is an efficient and nondestructive discrimination 
technique, but its accuracy is not high because of spectral  
overlap.

In recent years, 2DCOS technology has been used to 
identify adulterants in food and herbal medicines. Walkowiak 
et al. (2019) successfully detected ginkgo biloba adulterants in 
dietary supplements using 2DCOS, and initially established an 
effective evaluation method for screening ginkgo biloba 
adulterants. Chen et  al. (2018) used i2DCOS to visually 
identify adulterated medicinal materials. The results showed 
that i2DCOS technology has potential development in the 
visual identification and quality control of traditional Chinese 
medicine and other complex mixtures. Ma et al. (2016) used 
2DCOS to accurately identify seven species of bolete 
mushrooms of the same genus, and applied the 2DCOS 
method to the identification of edible mushrooms. 
Nevertheless, these reports all use traditional machine 
learning methods that require complex data processing, high 
time costs, and accuracy needs to be improved. Recently, Dong 
et al. (2021b) used deep learning combined with 2DCOS and 
i2DCOS to identify the origin of Boletus Edulis, Yan et  al. 
(2022b) used Resnet combined with 2DCOS to identify bolete 
species, Yue et al. (2021) used the same method to identify the 
part and region of the medicinal plant. However, the deep 
learning methods in these reports are single, only Resnet is 
employed, and there is a lack of comparison with other deep 
learning models. Moreover, only 2DCOS data were obtained, 
so fewer datasets can be used.

In this paper, the generation method of the 3DCOS dataset is 
proposed for the first time, which is expanded from single 
2DCOS images to 1D MIR spectral images, 2DCOS images and 
3DCOS images. Among them, 2DCOS and 3DCOS datasets 
include synchronous spectrum, asynchronous spectrum and 
integrative spectrum, which significantly increases the types of 
datasets and enables full verification of the model on each dataset. 
At the same time, we used two deep learning algorithms, Alexnet 
and Resnet, to process the acquired data sets one by one and 
compared them with the traditional SVM algorithm. Finally, the 
optimal method for identifying species of boletes was obtained. 
In addition, in order to analyze the species information and 
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sample distribution of boletes more intuitively, we developed a 
large-screen of boletes data visualization using ECharts, HTML, 
CSS and JavaScript technology. We hope that the results of this 
study and the large-screen visualization technology can 
be  extended to the field of food and traditional Chinese 
medicine identification.

2. Materials and methods

2.1. Sample collection and preparation

We collected 1,707 samples of boletes which belong to eight 
species from 46 sampling sites in 13 regions of Southwest China. 
All samples were identified by Professor Honggao Liu from 
Yunnan Agricultural University. The appearances of these 8 
boletes species are shown in Supplementary Figure S1. The 
geographical information and other details of the sample are 
shown in Supplementary Table S1. In the laboratory, the sundries 
on the samples were removed, and they were cleaned with a 
SY3200-T type ultrasonic cleaning instrument. After that, the 
materials were dried to constant weight with a dryer at medium 
temperature. Finally, they were pulverized with a FW-100 high 
speed grinder, the power was sieved by an 80 μm mesh and stored 
for later use.

2.2. FT-MIR spectra acquisition

Precisely weigh 1.5 ± 0.2 mg powder of each sample and 
150 ± 20 mg KBr powder in the ratio of 1: 100, put them into agate 
mortar, mix and grind them into fine powder. Then pour the fine 
powder into a pressed grinding tool to produce thin slices with 
uniform thickness. The sample was measured after preheating the 
Fourier transform infrared spectrometer for 30 min, and the 
sample was repeated twice to get the average spectrum. The 
interference of CO2 and H2O was deducted from the blank sample 
before scanning.

2.3. The spectral images acquisition

In this paper, 11,949 spectral images were obtained from 1707 
boletes samples, including 1D MIR spectrum, 2DCOS 
(synchronous, asynchronous, integrative) and 3DCOS 
(synchronous, asynchronous, integrative). Among them, the 
theoretical basis of 2DCOS is as follows.

As shown in Equation 1, t represents the interval of 
perturbation, m represents the number of steps measured by the 
spectrum, the column vector P represents the dynamic spectral 
intensity at variable v (Yang et al., 2020).
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Then, the synchronous 2DCOS (Φ), asynchronous 2DCOS 
(ψ) and integrative 2DCOS (I) can be calculated as (Cheung, 2010; 
Chen et al., 2018; Dong et al., 2021b, 2022):

 
Φ v v

m
v vT

1 2 1 2
1

1
, P P( ) =

−
( ) ⋅ ( )

 
(2)

 
Ψ v v

m
v N vT

1 2 1 2
1

1
, P P( ) =

−
( ) ⋅ ⋅ ( )

 
(3)

 
I v v v v v v1 2 1 2 1 2, , ,( ) = ( ) ⋅ ( )Φ Ψ

 

=
−( )

( ) ⋅ ( )




⋅ ( ) ⋅ ⋅ ( )





1

1
2 1 2 1 2

m
v v v N vT T

P P P P

 

(4)

where N is the Hilbert-Noda matrix, which is defined as:
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If there are m samples, then the 1D spectral data of all samples 
can be converted into an m× n data matrix, where n is the feature 
points contained in the spectrum. In this study, the matrix P (m×
n) contains two spectra data (that is, m = 2), the average spectrum is 
the first and the i-th spectrum about each species of boletes is the 
second (Yang et al., 2013; Yang R. J.  et al., 2014; Dong et al., 2021a).

The synchronous 3DCOS, asynchronous 3DCOS and 
integrative 3DCOS is generated in the same way as 2DCOS, but 
using 3D display. We intercept 1,750–400 cm−1 fingerprint regions 
to generate various spectral images to reduce the computational 
burden. To improve efficiency and avoid generating spectral 
images one by one like Origin and OMNIC software, we wrote a 
program based on Matlab2017 to generate and automatically save 
these spectral images in bulk. All the spectral image generation 
processes are shown in Figure 1. Firstly, all spectral data were 
obtained, and Kennard–Stone algorithm was used to divide the 
train set and test set. Then, various spectral images were obtained 
according to Equations 2–4 and different display methods. Finally, 
these images were separately saved to prepare for later model  
establishment.
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2.4. Establishment of the identification 
model

2.4.1. SVM model
SVM is a classification method based on the realization of the 

minimization of constitutive risk. With strong generalization 
ability and good robustness, it is widely used in image recognition, 
text classification, biotechnology, face recognition and other fields 
(Hu et al., 2022). Based on the limited sample information, SVM 
seeks the best between the complexity of the model and the 
learning ability, in order to obtain the best generalization ability. 
It shows unique advantages in solving small samples, nonlinear 
and high-dimensional pattern recognition (Li et al., 2022). The 
SVM model has two very vital parameters c and g where c is the 
penalty coefficient. If c is too large or too small, the generalization 
ability of the model will deteriorate. If g increases, the number of 
support vectors increases which will affect the speed of training 
and prediction. Therefore, the SVM model has a good effect on 

small samples, but is not suitable for large samples. In this paper, 
libsvm-3.21 toolbox was used to identify eight species of boletes.

2.4.2. Alexnet model
Alexnet model was proposed by Alex in 2012 and won the 

championship of the 2012 image recognition competition, which 
makes CNN become the core algorithm model in 
image classification.

As is shown in Supplementary Figure S2, the input data of the 
first layer is the original 64×64 size image, which is convolved by 
96 11×11 convolution kernels, and each convolution of the 
original image generates a new pixel, batch normalization is then 
performed. These pixel layers are processed by the Maxpooling 
operation. The scale of the pooling operation is 3×3, and the step 
size of the operation is 2, so the size of the pooled image is 
(64–3)/2 + 1 = 32 and the image of 32×32×96 is obtained. The 
input data of the second layer is the pixel layer of 32×32×96 after 
the first pooling, which is convolved by 256 convolution kernels 
of 5 ×5 and then batch normalized. After the pooling operation 
with the scale of 3×3 and the operation step of 2, 16×16 ×256 
images are obtained. Then, it passes through three convolution 
layers with a convolution kernel of 3 × 3 and stride of 1, and the 
number of convolution kernels is 384,384,256, respectively. The 
third Maxpooling operation is also with the scale of 3×3 and the 
operation step of 2. Therefore, the size of the input data in the sixth 
layer is 8×8×256. The operation results are output through 4,096 
neurons, and then these 4,096 neurons in the seventh layer are 
fully connected to output 4,096 data. Lastly, the trained value is 
output after being fully connected to 8 neurons in the eighth layer.

In order to run Alexnet model, we used an 8-core 16G ECS 
cloud server, selected tensorflow deep learning framework 
developed by Google, installed anoconda3 deep learning 
environment, and used matplotlib library to visualize output data. 
All spectral images were uniformly clipped to 64×64 before input 
to the model.

2.4.3. Resnet model
ResNet was proposed by Microsoft Research’s Kaiming He in 

2015, and it won first place in the ImageNet competition 
Classification task. It solves the problems of overfitting, weight 
attenuation and gradient disappearance caused by the deepening 
of the layer of CNN, and has excellent performance.

According to the Resnet theory, we first construct the identity 
residual block and the convolution residual block. When the 
dimension of input data is consistent with the dimension of output 
data, the identity residual block (identity block) is employed, while 
the convolution residual block (conv block) is used when the 
dimension of input data is inconsistent with that of output data. 
Then a 12 layers Resnet network display in Supplementary Figure S3 
is established based on these two residual blocks. 1D, 2DCOS, and 
3DCOS images were fed into the model as input data, and 
convolution, batch normalization, Relu nonlinear activation were 
performed first. Then three identity blocks and two conv blocks 
are used for processing. After that, global average pooling (GAP) 

FIGURE 1

The spectral image generation processes, Asys: integrative.
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and flatten were carried out. Finally, softmax was used to output 
the discrimination results.

Similarly, we used an 8-core 16G ECS cloud server, selected 
Amazon’s Mxnet deep learning framework, installed anoconda3 
deep learning environment, and used matplotlib library to 
visualize output data. All spectral images were uniformly clipped 
to 64×64 before input to the model.

2.4.4. Data set partition
In classical machine learning, the ratio of training set to test 

set is 7: 3 or 8: 2. In general, the larger the proportion of samples 
in the training set, the more data information it contains, and the 
better the model training results will be. In order to enhance the 
accuracy of SVM model, the ratio of 8: 2 was selected to divide the 
training set and the test set. For deep learning based on image 
processing, the generalization ability of its model is essential. In 
order to evaluate the generalization error of the model and make 
a choice through the test set, the training set and test set of Resnet 
and Alexnet models are divided into 7: 3. The specific division 
results are illustrated in Supplementary Table S2.

2.5. The identification strategy of boletes 
species

The identification strategy of eight boletes species is shown in 
Supplementary Figure S4. There are two modeling methods. One 
method is to directly use spectral data for SVM modeling, and the 
other method is to convert spectral data into images, then conduct 
deep learning modeling based on image processing. We convert 
the spectral dataset into seven image datasets including 1D, 2D 
(synchronous, asynchronous, integrative), and 3D (synchronous, 
asynchronous, integrative). Then, seven Resnet and seven Alexnet 
models were established respectively, and the final identification 
results were output. Therefore, a total of 15 recognition models 
based on traditional machine learning and deep learning are 
established in this paper.

2.6. The large-screen visualization

Data visualization large-screen is a means to transform 
boring, professional and unintuitive data content into interesting, 
simple and intuitive content with the help of visual language 
expression and convey it to large-screen viewers. With the support 
of the current new technology, data visualization is not only 
visible, but also communicative and interactive. The essence of this 
technique is the mapping of data space to graphics space 
(Yao, 2021).

In this paper, based on ECharts, HTML, CSS and JavaScript 
technology, a large-screen of boletes information visualization 
was  developed to display the origin, sampling site, species 
and  other information of boletes from various aspects. The 
layout  and proportion of large-screen panels are shown in 

Supplementary Figure S5. The front-end editor uses Visual Studio 
Code. ECharts is a pure JavaScript diagram library, the bottom 
layer depends on the lightweight Canvas class library ZRender, 
based on BSD open source protocol, is a very excellent visual 
front-end framework. HTML is a markup language used to design 
web pages. The files written by the browser are interpreted and 
executed. On the HTML page, you can write program segments 
nested in scripting languages. CSS is a computer language used to 
represent the style of HTML files. It can not only statically decorate 
web pages, but also dynamically format the elements of web pages 
with various scripting languages. JavaScript is a scripting language 
embedded in HTML and used in the browser to add interactive 
behavior to the HTML page. It is directly embedded in the HTML 
page and interpreted by the browser to execute the code 
without precompilation.

3. Results and discussion

3.1. MIR spectral analysis

Figure 2 shows the original spectra of MIR of eight boletes 
species. The band 3,600–3,200 cm−1 is caused by O-H stretching, 
and the peak 3,342 cm−1 represents strong water interference 
(Hirri et al., 2016; Wang, 2020). The 3,000–2,850 cm−1 band is 
caused by the stretching of lipid methylene group and the 
pyranose ring, among which 2,928 cm−1 and 2,855 cm−1 are the 
absorption peaks of fatty acid components (Zhao et al., 2015; He, 
2019). The 1700–1,000 cm−1 band contains the organic material, 
C-C stretching, C-O-H, C-H and CH2 bending (Mohacek-Grosev 
et al., 2001; Nie et al., 2007; Dong et al., 2021b). 1700–1,650 cm−1is 
mostly protein，1,650–1,500 cm−1 mainly caused by amide І and 
amide П. The main components of 1,450–1,200 cm−1 are proteins, 
fatty acids, and polysaccharides (Chen et al., 2021; Dong et al., 
2021b). In addition, the 1,000–1,200 cm−1 band is caused by 
carbohydrates, and the two peaks 1,032 cm−1 and 1,080 cm−1 
mainly contain chitin (Yang T. W. et al., 2014; Zhang et al., 2018). 
Finally, the interval of 900–400 cm−1 can be effectively used for 
chemometric analysis, among which the band of 900–800 cm−1 
mainly contains glucan and mannan (Qi et al., 2018; Chen et al., 
2021). Supplementary Table S3 summarizes the Peak assignments 
on the FT-MIR spectra of boletes in different characteristic bands.

3.2. Spectral image analysis of three 
dimensions

In this paper, Matlab2017 was used to generate 1D MIR 
spectral images in batches, and 2DCOS and 3DCOS images were 
generated according to relevant theories. The spectral images of 
three dimensions about eight boletes species are shown in 
Figure  3. It can be  seen that the 1D spectra have obvious 
absorption peaks near wave numbers 3,300, 2,900, 1,640, 1,420, 
1,070, 1,040, and 650 cm−1. However, the absorption peak is 
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difficult to show due to spectral overlap, and the spectra are too 
similar to distinguish the eight boletes species. 2DCOS can show 
more information because the peak is expanded by the correlation 
operation. The synchronous 2DCOS has strong auto-peaks at 
1650, 1080, 550 cm−1 and obvious cross-peaks at 1650, 1500, 1,080, 
and 550 cm−1. Asynchronous 2DCOS has no auto-peak, but it has 
strong cross-peaks at 1650, 1080 and 550 cm−1. The integrated 
2DCOS only has two cross-peaks at 1650 and 1,080 cm−1, which 
contains relatively little information. 3DCOS is a 3D display of 
2DCOS, and the size and number of peaks can be  seen more 
intuitively from the 3DCOS. Among them, the synchronous 
3DCOS has two large auto-peak at 1080 and 550 cm−1, a relatively 
small auto-peak at 1650 cm−1, and two large cross-peaks at 1080 
and 1,500 cm−1. In addition, there are several smaller cross-peaks. 
Both asynchronous 3DCOS and integrated 3DCOS have two large 
cross peaks, one of which is positive and the other is negative. 
Therefore, from the distribution of peak values, synchronous 
3DCOS can better identify boletes species. However, there are 
exceptions, such as Retiboletus griseus, which has many relatively 
large auto-peaks and cross-peaks.

3.3. Discrimination results of SVM model

In order to establish the SVM model, we  selected 1,367 
samples (80%) as the training set, and the remaining 340 
samples (20%) as the test set. The Kennard–Stone algorithm was 
used to partition the dataset. Supplementary Figure S6A 
displays the optimal SVM parameters obtained by grid search 
method, among which the best c = 1.049×106, the best g = 0.125, 
and the accuracy of the training set is 92.1%. The classification 

results of 340 test set samples by SVM algorithm are shown in 
Supplementary Figure S6B, 331 samples are accurately 
classified, only 9 samples are incorrectly classified, and the 
classification accuracy of the test set is 97.4%. It can be clearly 
seen that one sample of the third species was misclassified to 
the sixth species, five samples of the sixth species were 
misclassified to the first species, two samples of the sixth species 
were misclassified to the seventh species, and one sample of the 
seventh species was misclassified to the fifth species. 
Consequently, the algorithm has a low recognition rate for the 
sixth species (Boletus bicolor). Therefore, we need to find better 
identification methods.

3.4. Discrimination results of Alexnet 
model

Figure 4 is the discrimination results of Alexnet model, where 
X is 1D MIR spectrum, Y is 2DCOS spectrum, Z is 3DCOS 
spectrum, A is the accuracy curves, B is the cross-entropy cost 
function, C is the confusion matrix. The number of samples in the 
training set was 1,195 (70%), and the number of samples in the 
test set was 512 (30%). In the Alexnet model, the initial learning 
rate is 0.01, the decay rate is 0.99, and the decay step is 3. To 
improve the convergence speed of the model, the Nesterov 
gradient descent method was used, and the learning rate was 
0.001. Underfitting may occur if the number of epochs is too 
small. Conversely, if there are too many epochs, overfitting is likely 
to occur. Therefore, we use early stopping to select the number of 
epochs and stop training when the model’s performance on the 
test set does not increase. The parameter for early stopping is set 

FIGURE 2

The original spectra of MIR of eight boletes species.
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as follows: monitor is the accuracy rate of the test set, min_delta 
is 0.001, patience is 5.

It can be  seen that early stopping occurs on the 1D MIR 
spectrum dataset when the epoch is 10. The highest accuracy rate 
of the training set is 49.8%, while that of the test set is only 24.4%. 
The cross-entropy cost function decreases at first and then 
increases sharply, and the minimum loss value is 1.441, which is 
comparatively large. The confusion matrix showed that 68 samples 
of the eighth species (Leccinum rugosiceps) were correctly 
identified, and 444 samples of the other seven species were 
incorrectly identified. As a result, the model’s performance is poor 
in both accuracy and loss value. Early stopping occurs at the 38th 
epoch on the synchronous 2DCOS dataset. The accuracy rate is 

98.9% on the training set and 100% on the test set. The minimum 
loss value is 0.038. All 512 samples in the confusion matrix were 
accurately classified, so the model performed well on this data set. 
For the asynchronous 2DCOS dataset, early stopping occurs at the 
38th epoch. The accuracy rate is 37.6% on the training set and 
43.2% on the test set. In addition, the minimum loss value is 1.618. 
The confusion matrix shows that 212 samples were correctly 
identified, and 300 samples were incorrectly identified. Therefore, 
the model of this data set is poor. The model stopped early at the 
85th epoch on the Integrative 2DCOS dataset. The accuracy rate 
in the training set and test set is 69.6% and 79.3%, respectively. 
The minimum loss value is 0.817. In the confusion matrix,  
100 samples were incorrectly identified and the rest were  

FIGURE 3

The spectral images of three dimensions about eight boletes species.
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FIGURE 4

The discrimination results of Alexnet model, X: 1D MIR spectrum; Y1: synchronous 2DCOS; Y2: asynchronous 2DCOS; Y3: integrative 2DCOS; Z1: 
synchronous 3DCOS; Z2: asynchronous 3DCOS; Z3: integrative 3DCOS; A: accuracy curves; B: the cross-entropy cost function; C: the confusion 
matrix.
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correctly identified. The performance of the model on this dataset 
is better than that of asynchronous 2DCOS, but markedly worse 
than that of synchronous 2DCOS. Consequently, synchronous 
2DCOS has the best effect in the three 2DCOS datasets and can 
be used for the identification of boletes species.

On the synchronous 3DCOS dataset, the early stop occurs at 
the 61st epoch, and the accuracy of the training and test sets is 
98.9% and 99.8%, respectively. The distribution of 512 samples in 
the test set on the confusion matrix is exactly correct. With the 
increase of epochs, the loss value gradually decreases, and the 
minimum value reaches 0.039, which is close to zero, indicating 
that the error of the model is small. It shows that the model 
performs well on this dataset and can be used for the identification 
of boletes species. For the asynchronous 3DCOS dataset, the 
model stops early at the 13th epoch. At this time, the accuracy is 
34.7% on the training set and 28.1% on the test set, and the 
minimum loss value is 1.702, implying that the error of the model 
is large. The confusion matrix showed that only 143 samples of the 
sixth (Boletus bicolor), seventh (Boletus speciosus) and eighth 
(Leccinum rugosiceps) species were correctly identified. The 
accuracy of the training set and test set on integrative 3DCOS are 
35.4% and 28.1%. Early stopping occurred at the 10th epoch, the 
minimum loss value was 1.652, and only 143 samples were 
correctly identified in the confusion matrix. These results show 
that the performance of the model on integrative 3DCOS and 
asynchronous 3DCOS datasets is similar, with low accuracy, high 
loss value and poor discrimination effect. Therefore, among the 
three 3DCOS datasets, Alexnet had the best performance in the 
synchronous 3DCOS dataset, which was suitable for the 
identification of boletes species.

3.5. Discrimination results of Resnet 
model

Figure 5 is the discrimination results of Resnet model, where 
L is 1D MIR spectrum, M is 2DCOS spectrum, N is 3DCOS 
spectrum, D is the accuracy curves, E is the cross-entropy cost 
function, F is the confusion matrix. Same as the Alexnet model, 
the number of samples in the training set was 1,195 (70%), and the 
number of samples in the test set was 512 (30%). In the Resnet 
model, stochastic gradient descent (SGD) was used to modify the 
parameters of the optimization model to minimize the cross-
entropy loss, L2 regularization was used to avoid overfitting, the 
weight decay factor was set to 0.0001, and the learning rate 
was 0.01.

When the epoch is 15, the accuracy of Resnet model on the 
training set is 100%, and the accuracy on the test set is 29%, and 
the minimum loss value is 0.014. Although the loss value is close 
to zero, the low accuracy of the test set leads to the poor effect of 
the model, which is not suitable for the identification of boletes 
species. This may be caused by overfitting due to the comparatively 
complex structure of the model due to the small amount of data. 
The confusion matrix demonstrated that only 18 samples of the 

second species (Sutorius magnificus) and 68 samples of the eighth 
species (Leccinum rugosiceps) were correctly identified, while the 
rest were incorrectly identified. Figure 5 shows that the Resnet 
model performs better on the synchronous 2DCOS dataset. When 
the epoch is 15, the accuracy of the training set and test set is 
100%, and 512 samples are correctly identified in the confusion 
matrix. At this time, the loss value is 0.052, which is close to zero. 
This indicates that the error of the model is small. Therefore, the 
synchronous 2DCOS model has high accuracy, small loss value, 
and strong generalization ability. The model can be used for the 
identification of boletes species. When the epoch is 39, the 
accuracy of the Resnet model on the training set and test set is 
100% and 77%, respectively, on the asynchronous 2DCOS dataset, 
and the loss value is 0.041. The confusion matrix indicated that 
313 samples were correctly identified and the remaining 189 
samples were incorrectly identified. Although the loss value is 
small, the accuracy of the test set is low and the generalization 
ability is poor, which leads to the unavailability of the model. 
Similarly, when the epoch is 39, the accuracy of the Resnet model 
on the integrative 2DCOS dataset is 100% and 77% for the training 
and testing sets, and the loss value is 0.064. The confusion matrix 
revealed that 339 samples were correctly identified and the 
remaining 173 samples were incorrectly identified. Therefore, the 
generalization ability of this model is poor and it is not available. 
Therefore, in the three datasets of 2DCOS, Resnet performs 
perfectly on the synchronous 2DCOS dataset, while the test set 
accuracy on the other two datasets is relatively low.

Compared with synchronous 2DCOS, the accuracy of the 
Resnet model in the training and testing sets on the synchronous 
3DCOS dataset is also 100%. Although the loss value is 0.1, which 
is higher than that of the synchronous 2DCOS dataset, its epoch 
is only 15, which saves the computational complexity and time 
cost. All test samples are correctly identified in the confusion 
matrix. As a result, the Resnet model shows different advantages 
on synchronous 2DCOS and synchronous 3DCOS datasets, which 
are both perfect models. When the epoch is 39, the loss value of 
the Resnet model on the asynchronous 3DCOS dataset is 0.07. 
The accuracy was 100% on the training set and 58% on the test set. 
In the confusion matrix, 297 samples were accurately identified 
and 215 samples were incorrectly identified. In the case of the 
same epoch value, the loss value of the Resnet model on the 
integrative 3DCOS dataset is 0.09. The accuracy on the training 
set was 100%, while the accuracy on the test set was 65%. In the 
confusion matrix, 308 samples were correctly identified and 204 
samples were incorrectly identified. Therefore, the effect of Resnet 
model on integrative 3DCOS and asynchronous 3DCOS datasets 
is similar with relatively low accuracy, while the effect of Resnet 
model on synchronous 3DCOS datasets is the best, which can 
be applied to actual species discrimination.

In addition, by analyzing the confusion matrix, we found that 
the Alexnet and Resnet models performed best in identifying the 
eighth species (Leccinum rugosiceps) in all data sets, with almost 
no misjudgment. This may be  related to the chemical 
characteristics, molecular structure, phenological characteristics 
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FIGURE 5

The discrimination results of Resnet model, L: 1D MIR spectrum; M1: synchronous 2DCOS; M2: asynchronous 2DCOS; M3: integrative 2DCOS; N1: 
synchronous 3DCOS; N2: asynchronous 3DCOS; N3: integrative 3DCOS; D: accuracy curves; E: the cross-entropy cost function; F: the confusion 
matrix.
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and growing environment of this species, which lead to the 
obvious characteristics of its spectral image compared with other 
species and make it easier to identify.

3.6. The comparison of model results

Table 1 shows the results of species identification of boletes 
species using various models. It can be  seen that the Resnet 
model has the best effect on the synchronous 2DCOS dataset. 
The accuracy of the training and test sets is 100% which shows 
that the model has high accuracy. The loss value is close to zero, 
which indicates that the error of the model is small. The epoch 
value is only 15 and the time cost is 41.5 min, which proves that 
the model works quickly. The external verification is all correct, 
which indicates that the model has high reliability and strong 
generalization ability. In addition, the deep learning model 
processes spectral images directly without complex data parsing, 
which is simple and convenient. The Resnet model also performs 
well on the synchronous 3DCOS dataset. The accuracy of the 
training and testing sets is 100%, and the epoch value is 15. 
Nevertheless, the loss value is 0.1 and the time cost is 66.6 min. 
It takes more time to achieve the same effect as the synchronous 
2DCOS dataset, and the loss value also increases. The accuracy 
of the Alexnet model on the synchronous 2DCOS dataset is 
98.9% for the training set and 100% for the test set, and the 
epoch value is 38. However, the loss value is 0.038, and the time 
cost is 66.3 min. The training effect of the model on the 

synchronous 3DCOS dataset is similar to that on the 
synchronous 2DCOS dataset. The accuracy of the training set is 
98.9%, the accuracy of the test set is 99.8%, and the loss value is 
0.039, but the epoch expands to 61. The time cost increases to 
152.1 min, more than twice as much as on the Synchronous 
2DCOS dataset. The above four models can be  used for the 
identification of boletes species. Among them, the Resnet  
model has the highest accuracy, the best effect, the smallest  
error and the least time cost on the synchronous 2DCOS dataset. 
In this case, the sensitivity of the model is 100%, which  
indicates that the model is relatively stable. As shown in 
Supplementary Figure S1, four boletes species (Sutorius 
magnificus, Boletus speciosus, Boletus bainiugan, Boletus bicolor) 
have similar appearance, which are difficult to distinguish in 
morphology. However, the Resnet model on the synchronous 
2DCOS dataset can be used to identify them accurately, and the 
external verification accuracy is 100%, which can be inferred that 
the sensitivity of the model is very high.

The SVM model does not process the spectral images, but 
trains the original spectral data directly. Although the accuracy of 
the training set is 92.1% and the test set is 97.35%, it is much 
higher than the accuracy of Resnet and Alexnet models on 
asynchronous 2DCOS, Integrative 2DCOS, asynchronous 3DCOS 
and Integrative 3DCOS datasets. However, under the same 
hardware conditions, the training time is as high as 1,092 min, so 
the time cost of this model is too high, and it is not recommended 
to be used. In general, Resnet model is better than Alexnet and 
SVM model.

TABLE 1 The comparison of model results.

Methods Dimensions of 
images

Image types Epoch Loss 
value

Train set 
accuracy

Test set 
accuracy

Time costs 
(minutes)

SVM / / / / 92.10% 97.35% 1,092

Alexnet 1D The MIR 

spectrum

10 2.032 49.80% 24.40% 21.2

2D synchronous 38 0.038 98.90% 100.00% 66.3

asynchronous 38 1.618 37.60% 43.20% 68.2

integrative 85 0.817 69.60% 79.30% 183.1

3D synchronous 61 0.039 98.90% 99.80% 152.1

asynchronous 13 1.702 34.70% 28.10% 23.2

integrative 10 1.652 35.40% 28.10% 20.3

Resnet 1D The MIR 

spectrum

15 0.014 100% 29% 43.1

2D synchronous 15 0.052 100% 100% 41.5

asynchronous 39 0.041 100% 77% 178.6

integrative 39 0.064 100% 77% 125.2

3D synchronous 15 0.1 100% 100% 66.6

asynchronous 39 0.07 100% 58% 157.3

integrative 39 0.09 100% 65% 152.8
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Figure  6 compares the parameters of Resnet and Alexnet 
models on different data sets through radar charts. We can see that 
these two models perform best on synchronous spectral images 
(including 2DCOS and 3DCOS), where Resnet has smaller epochs 
and lower time complexity compared to Alexnet. The two models 
performed the worst on the original MIR spectrum, and their test 
set had the lowest accuracy. Although the model has a high 
accuracy in the training set on the other four data sets, the 
accuracy in the test set is not high, and Alexnet has a high loss 
value, and the time cost of Resnet is relatively high. In summary, 
synchronous 2DCOS and synchronous 3DCOS datasets perform 
better than other datasets. This may be because the synchronous 
spectral image contains more auto-peaks and cross-peaks, which 
leads to its obvious features and makes it easier to adopt the deep 
learning method for image recognition. However, the original 
MIR Spectrum image is a simple curve, which contains less feature 
information and its feature peaks overlap, so its recognition effect 
is the worst.

3.7. Visualization analysis

Figure 7 displays the detailed information of the samples in 
this research. The right side of the large-screen shows that the 
sample size of this study is 1707, including 44 sampling sites, 
eight boltetes species and 4 sample collection years. The map 
module in the middle shows the sampling sites and their 
latitude and longitude. It can be seen that the sampling sites 
practically cover the whole Yunnan Province, with the most 
dense distribution in Central Yunnan, followed by the 
Northwest Yunnan, and fewer sampling sites in Northeast 
Yunnan. In addition, it can be seen that there are two sampling 
sites in southern Sichuan Province. The main reason is that 
boletes is abundant in Central Yunnan and Northwest Yunnan 
due to the influence of climate and environmental conditions. 
This is also proved by the Origin (Top 10) and distribution of 
sample origin modules. From the distribution of sample origin 
module, it can be  seen that Yuxi has the largest number of 

FIGURE 6

Parameter comparison between Alexnet and Resnet models in all data sets, 1D: The original MIR spectrum; Syn: synchronous; Asyn: 
asynchronous; i2DCOS: integrative 2DCOS; i3DCOS:integrative 3DCOS.
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samples, more than 500, while Liangshan, Panzhihua and 
Diqing have the smallest number of samples, among which 
Panzhihua has only 20 samples. In the Species (Top Three) 
module on the left, it can be seen that Boletus Bainiugan has the 
largest number, with 417 samples, accounting for 24% of the 
total sample size, followed by Boletus Tomentipes and Leccinum 
Rugosiceps. They accounted for 16 and 13% of the total sample 
size, which implied that Yunnan was rich in these types of 
boletus. From the perspective of acquisition time, the largest 
sample size was collected in 2012, which may be due to the 
abundant rainfall in Yunnan from July to September 2012, 
which promoted the high yield of boletes.

4. Conclusion

In this paper, based on deep learning, a method using 
2DCOS and 3DCOS spectral image processing and recognition 
technology is proposed to identify the species of boletes. Among 
them, 3DCOS was proposed for the first time. Experimental 
results show that the method is rapid, accurate and effective. In 
our study, 15 models were established through three algorithms 
and eight datasets. Although the accuracy rate of SVM 
algorithm was higher than 90%, the time cost of is too high, and 
it needed to run for more than 18 h on our hardware. The 
remaining 14 models were based on deep learning method, and 
the results show that the Resnet algorithm is the best model in 
the synchronous2DCOS dataset with 100% accuracy, small loss 
value and low time complexity. In addition, the detailed 
information of all samples is displayed visually on a large visual 

screen, and the correlation analysis is carried out to obtain the 
relevant conclusion of the sample distribution. This research 
overcomes previous problems such as single algorithm, lack of 
data sets and less choice caused by fewer models. In summary, 
the method recommended in this paper is effective and reliable, 
and this method can be applied to other discrimination fields in 
future research.
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