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Although high-throughput DNA sequencing-based methods have been of great 

value for determining the composition of microbial communities in various 

environments, there is the potential for inaccuracies arising from the sequencing 

of DNA from dead microorganisms. In this pilot study, we compared different 

sequencing-based methods to assess their relative accuracy with respect 

to distinguishing between viable and non-viable cells, using a live and heat-

inactivated model community spiked into bovine milk. The methods used were 

shotgun metagenomics with and without propidium monoazide (PMA) treatment, 

RNA-based 16S rRNA sequencing and metatranscriptomics. The results showed 

that methods were generally accurate, though significant differences were found 

depending on the library types and sequencing technologies. Different molecular 

targets were the basis for variations in the results generated using different library 

types, while differences in the derived composition data from Oxford Nanopore 

Technologies-and Illumina-based sequencing likely reflect a combination of 

different sequencing depths, error rates and bioinformatics pipelines. Although 

PMA was successfully applied in this study, further optimisation is required before 

it can be applied in a more universal context for complex microbiomes. Overall, 

these methods show promise and represent another important step towards the 

ultimate establishment of approaches that can be applied to accurately identify 

live microorganisms in milk and other food niches.
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Importance

High-throughput DNA sequencing has been useful in characterising microbial 
communities in various food-related environments. However, there is potential for 
misleading compositional data to be generated, because of the sequencing of DNA from 
dead microorganisms. The differentiation of live/dead cell states is also particularly 
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important when making decisions on food safety or spoilage, 
when DNA from cells recently inactivated through food 
processing/preservation steps can be problematic. Overcoming 
this would enhance the power of DNA sequencing for food 
microbiology testing. In this study, 4 different sequencing-based 
methods were evaluated for their ability to differentiate between 
viable and non-viable cells spiked into a milk matrix. We identified 
differences between data derived by these methods due to differing 
molecular targets and sequencing technologies used. This study 
provides insight that will support the enhancement of sequencing-
based approaches to better characterise live microbes in food-
related environments.

Introduction

Microorganisms are ubiquitous and their presence and 
activity influence the niches that they inhabit. The use of high-
throughput sequencing methods has expanded the understanding 
of microbiomes in clinical, food and environmental settings. 
However, the majority of the commonly used sequencing 
methods, such as amplicon or shotgun metagenomic sequencing, 
target (meta)genomic DNA (gDNA) in a manner that does not 
distinguish between DNA from microorganisms that are viable 
from those that non-viable microbes (Emerson et al., 2017). This 
is important as some studies have found that DNA from 
non-viable cells and other extracellular DNA can persist in various 
environments, such as water, soil, food and the built environment, 
for days to weeks (Nocker and Camper, 2006; Li et al., 2017). Not 
being able to distinguish between viable and non-viable 
microorganisms can lead to an overestimation of the relative 
abundance of particular taxa and/or the active metabolic processes 
that they encode (Carini et al., 2016; Mancabelli et al., 2021). This, 
in turn, has potentially problematic implications when detecting 
spoilage or pathogenic microbes, determining bioburdens and the 
effectiveness of antimicrobial/cleaning treatments or processes 
(Carini et al., 2016; Emerson et al., 2017). In a food setting, the 
accurate identification of live pathogenic or spoilage microbes is 
of considerable importance with respect to decision making 
processes relating to food safety, quality and product release. 
Therefore, the future widespread application of high-throughput 
sequencing as a tool by the food industry will be reliant on the 
ability to distinguish between live and dead cells in a food or food-
related community.

Rapid culture-independent bacterial viability analysis is 
complex, and viability assays often query several different aspects 
such as cell membrane integrity, cellular metabolic activity or the 
presence of functional nucleic acids that allow for transcription/
translation and DNA replication (Hammes et al., 2011; Emerson 
et  al., 2017). Traditional culture-based techniques continue to 
be most extensively used in food microbiology testing and are the 
industry standard for detecting viable foodborne microorganisms 
(Foddai and Grant, 2020). However, these methods can only 
detect a proportion of the viable microorganisms present in a 

sample as they rely on isolation and growth of a subset of 
microorganisms on culture media, which is not usually reflective 
of the entire community and which can result in an 
underestimation of the levels of specific microorganisms (Gupta 
et al., 2019; Foddai and Grant, 2020). To address issues associated 
with culture-based approaches, nucleic acid-based culture-
independent methods have been studied and employed to detect 
viable microorganisms. Cell viability dyes, such as ethidium 
monoazide (EMA) or propidium monoazide (PMA), bind to 
accessible DNA that are not protected by a cell membrane after 
photoactivation and prevents further amplification of any 
non-intact DNA in downstream steps (Nocker and Camper, 2006; 
Marotz et al., 2021; Wang et al., 2021). Methods involving the use 
of such dyes have been used with nucleic acid-based methods such 
as polymerase chain reaction (PCR), quantitative PCR (qPCR) 
and amplicon and metagenomic sequencing to detect viable 
microbes in clinical, environmental and food microbiomes 
(Carini et  al., 2016; Kable et  al., 2019; Marotz et  al., 2021). 
Ribonucleic acid (RNA)-based techniques focused on the 
transcriptome have also been investigated with a view to 
distinguishing between live and dead cells in samples. As RNA has 
a shorter half-life than DNA, the use of RNA as a molecular target 
can more accurately represent the living/viable microbial 
population (Emerson et  al., 2017; Gomez-Silvan et  al., 2018). 
Indeed, the detection of messenger (mRNA) or ribosomal 
ribonucleic acid (rRNA) has been used to identify metabolically 
active cells in various samples (Mira Miralles et al., 2019; Yang 
et al., 2020; Zhou et al., 2020). Metatranscriptomics targets mRNA 
and provides information relating to the identity of the 
microorganisms that are metabolically active and the genes that 
these microbes are expressing (Chen et  al., 2017). The more 
targeted use of 16S rRNA has also been shown to have potential 
in identifying active bacteria in foods (Mira Miralles et al., 2019).

Here we  investigate the relative success with which four 
sequencing-based methods distinguish between viable and 
non-viable bacteria in milk samples. A five-strain model 
community consisting of different numbers and proportions of 
live and dead cells was spiked into bovine milk samples before 
undergoing two DNA-based approaches, shotgun sequencing with 
and without prior PMA treatment, and two RNA-based 
approaches, metatranscriptomics and RNA-based 16S rRNA 
sequencing, on both representative Illumina (shorter read length; 
higher read numbers) and Oxford Nanopore Technologies (ONT; 
longer read length; lower read numbers).

Materials and methods

Model community and samples

Strains employed to subsequently create a model community 
were obtained from the Teagasc Dairy Production Centre (DPC) 
culture collection. These strains were Bacillus velezensis DPC 3313, 
Escherichia coli DPC 6912, Lactococcus lactis DPC 4268, 
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Pseudomonas proteolytica DPC 6056 and Staphylococcus 
haemolyticus DPC 5987 and represent bacteria found in the 
bovine milk microbiome (Quigley et al., 2013). Strains were grown 
on tryptic soy agar (TSA; Thermo Fisher, Ireland) overnight at 
30°C (B. velezensis and P. proteolytica) or 37°C (E. coli, L. lactis and 
S. haemolyticus) to generate fresh cultures. Cells were diluted in 
10 ml phosphate-buffered saline (PBS; Thermo Fisher) to obtain a 
bacterial suspension of a density equivalent to approximately 107 
cells/mL for each strain. Equal volumes of strains were combined 
to generate a 5-strain model community for spiking into milk 
samples. This mixture was used as a live model community and a 
dead model community was generated through heat inactivation 
at 95°C for 15 min (resulting in an absence of subsequent growth 
on TSA).

Store-bought UHT skim milk was used for milk spiking 
studies in order to ensure a low load of background 
microorganisms. Two different viability conditions were used for 
spiking; live (consisting of 1 ml of the live-cell model community) 
and dead (consisting of 1 ml of the dead-cell model community). 
Cells were spiked into 10 ml of milk in triplicate and left to 
incubate at room temperature overnight. Unspiked milk samples 
and both the live and dead bacterial model communities, which 
did not undergo any treatment and were used for spiking, were 
used as controls. Milk samples were then centrifuged at 4,500 × g 
for 15 min at 4°C, the supernatant was discarded, and the cells 
pellets were subjected to two washing steps whereby the pellets 
were resuspended in sterile PBS and centrifuged at 13,000 × g for 
1 min, after which the supernatant was discarded. Samples used 
for Shotgun and PMA-Shotgun metagenomic analysis were 
resuspended in 1 ml sterile PBS while, for samples used for 
metatranscriptomic- and 16S rRNA-based analysis, pellets were 
resuspended in 500 μl RNALater and stored at -80°C 
before extraction.

PMA treatment and DNA extraction

Each 1 ml sample was divided into 2 × 500 μl samples, one of 
which was subjected to a PMA (PMAxx dye, Biotium, CA, 
United States) treatment and the other without PMA treatment. 
Preliminary investigations were performed to optimise the final 
PMA concentration, incubation and light exposure time with the 
quantification of total bacteria performed using the Femto 
Bacterial DNA Quantification kit (Zymo Research, CA, USA). The 
final parameters for PMA treatment involved the use of a final 
PMA concentration of 20 μM and incubation in the dark at room 
temperature and light exposure with the PMA-Lite™ LED 
photolysis device (Biotium, USA) for 30 min. Following PMA 
treatment, both PMA-treated and PMA-free samples were 
subjected to DNA extraction using the MolYsis complete5 kit 
(Molzym GmBH & Co. KG, Bremen, Germany), with 50 μl of 
DNA eluted for downstream sequencing. The MolYsis kit was 
used as it had been found to significantly improve microbial 
sequencing depth for milk samples (Yap et al., 2020). gDNA was 

quantified using the Qubit dsDNA HS assay kit (Invitrogen) and 
stored at at -20°C before library preparation. Total bacteria levels 
were again quantified using the Femto Bacterial DNA 
Quantification kit (Zymo Research).

Illumina DNA library preparation and 
shotgun metagenomic sequencing

A total of 18 samples (6 PMA-treated, 6 non-PMA-treated, 6 
controls) were prepared for shotgun metagenomic sequencing 
according to Illumina Nextera XT library preparation kit 
guidelines, with the use of unique dual indexes for multiplexing 
with the Nextera XT index kit (Illumina). Following indexing and 
clean up, samples were pooled to equimolar concentration of 
1 nM. Samples were sequenced on an Illumina NextSeq  500 
sequencing platform with a V2 kit, at the Teagasc DNA Sequencing 
Facility, using standard Illumina sequencing protocols.

MDA amplification and Oxford Nanopore 
DNA metagenomic library preparation 
and sequencing

Whole metagenome amplification was performed on samples 
using multiple displacement amplification (MDA) with the 
REPLI-g UltraFast Mini kit (Qiagen, West Sussex, 
United Kingdom), according to the manufacturer’s instructions. 
After amplification, DNA was quantified using the Qubit dsDNA 
BR assay kit (Invitrogen) and normalised to 400 ng in 7.5 μl. Two 
libraries were prepared, with each library containing 9 samples 
(6 samples (PMA-treated or non-PMA-treated) and 3 controls) 
per flowcell. The Rapid Barcoding kit (SQK-RBK004, Oxford 
Nanopore Technologies, United Kingdom) was used to prepare 
the libraries. For this, DNA was tagmented and barcodes were 
attached to fragments before pooling, followed by clean-up using 
Ampure XP beads (Beckman Coulter) to concentrate the pooled 
library directly prior to sequencing. DNA was sequenced using a 
GridION (release 19.12.6) with single flow cells for each library (R 
9.4.1) that were primed prior to loading libraries with MinKNOW 
(core 3.6.5) and integrated basecalling by Guppy (3.2.10).

RNA extraction

Samples to be used for 16S rRNA and metatranscriptomic-
based analysis were subjected to RNA extraction using a TRIzol 
chloroform protocol with on-column DNase purification with the 
PureLink RNA Mini kit (ThermoFisher Scientific). Briefly, samples 
suspended in RNALater were first centrifuged at maximum speed 
(17,000 × g) for 1 min at 4°C, after which the supernatant was 
discarded. 1 ml of TRIzol reagent was added to each sample and 
mixed through pipetting up and down to disperse the pellet, 
followed by incubation for 10 min at 60°C. To each sample, 200 μl 
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of chloroform was added and the tubes were shaken vigorously by 
hand for 15 s before incubation at room temperature for 3 min. The 
samples were then centrifuged at 12,000 × g for 15 min at 4°C, 
during which the mixture separates into a lower, red phenol-
chloroform phase, an interphase, and a colourless upper aqueous 
phase which contains the RNA. Approximately 400 μl of upper 
aqueous phase of RNA was transferred to a RNase-free tube where 
an equal volume of ice-cold 100% ethanol was added for 
precipitation and vortexed for even mixing. The samples were then 
purified through on-column DNase treatment following the 
manufacturer’s protocol with final elution at 30 μl in RNase-free 
water. RNA concentration was quantified using the Qubit RNA HS 
assay kit (Invitrogen) and quality checked using an Agilent 
Bioanalyzer with the RNA 6000 pico assay kit (Agilent). RNA was 
stored at -80°C for use in downstream library preparation steps.

cDNA synthesis

For 16S methods, 20 μl of RNA for each of the 9 samples (6 
samples and 3 controls) were used for cDNA synthesis with the 
Superscript IV First Strand Synthesis System (Invitrogen) 
according to the manufacturer’s instructions, using 2 μM of the 
reverse primer of the V3-V4 region of the 16S rRNA gene that are 
commonly used in Illumina 16S sequencing. The cDNA generated 
was stored at -20°C overnight before use in library preparation.

Illumina 16S-rRNA library preparation 
and sequencing

Five microliters of the cDNA generated was used in library 
preparation according to Illumina 16S Metagenomic Sequencing 
Library Preparation guidelines, with the use of dual indexes for 
multiplexing with the Nextera XT index kit (Illumina). Following 
indexing and clean up, samples were pooled to equimolar 
concentration of 20 nM. Samples were sequenced on an Illumina 
MiSeq sequencing platform with a V3 kit, at the Teagasc DNA 
Sequencing Facility, using Illumina sequencing protocols.

Oxford Nanopore 16S-rRNA library 
preparation and sequencing

The cDNA generated was normalised to 10 ng in 10 μl for use 
in library preparation with the 16S Barcoding kit (SQK-RAB204, 
Oxford Nanopore Technologies) according to the manufacturer’s 
instructions. Briefly, amplification of the 16S gene was done using 
barcodes, followed by library clean up using Ampure XP beads 
(Beckman Coulter) and pooling to 10 ng/μL. Sequencing adapters 
were attached before the loading of libraries on a single primed 
flow cell (R 9.4.1) and sequenced on the GridION (release 19.12.6) 
with MinKNOW (core 3.6.5) and integrated basecalling by Guppy 
(3.2.10).

rRNA depletion

For metatranscriptomics, rRNA depletion was carried out 
using the QIAseq FastSelect–5S/16S/23S kit (Qiagen) according 
to the manufacturer’s instructions with 20 μl of each of the 9 
samples (6 samples and 3 controls). The first step of RNA 
fragmentation was performed at 89°C for 7 min. After bead clean 
up, rRNA-depleted RNA was stored at -80°C before use in 
library preparation.

Illumina metatranscriptomics library 
preparation and sequencing

First strand cDNA synthesis was performed using the 
NEBNext Ultra II Directional RNA Library Prep Kit (Brennan & 
Co., Dublin, Ireland) with 10 μl of rRNA-depleted RNA. Library 
preparation was performed according to the manufacturer’s 
instructions. Seven cycles were used for PCR amplification during 
indexing of adapter ligated DNA. The quality and quantity were 
measured using a high sensitivity DNA chip on the bionanalyzer 
(Agilent) and Qubit HS dsDNA kit (Invitrogen), respectively. An 
additional clean up step was done due to the presence of primer 
and adapter dimers before the quality and quantity was measured. 
Samples were pooled to equimolar concentration of 4 nM before 
sequencing on the Illumina NextSeq 500 using a mid-output 
(2 × 75 bp kit) at the Teagasc DNA Sequencing Facility, using 
Illumina sequencing protocols.

Oxford Nanopore metatranscriptomics 
library preparation and sequencing

rRNA-depleted RNA was normalised to 100 ng in 7.5 μl for 
use in library preparation with the Direct cDNA Native 
Barcoding kit (SQK-DCS109, Oxford Nanopore Technologies) 
with the native barcoding expansion kit (EXP-NBD104, Oxford 
Nanopore Technologies) according to the manufacturer’s 
instructions. Briefly, reverse transcription and strand switching 
was done to prepare full-length cDNAs followed by barcode 
ligation. Barcoded samples were pooled prior to adapter 
ligation before a final clean up with Ampure XP beads 
(Beckman Coulter) before loading the library onto a single 
primed flow cell (R 9.4.1) and sequenced on a GridION (release 
19.12.6) with MinKNOW (core 3.6.5) and integrated 
basecalling by Guppy (3.2.10).

Bioinformatic analysis

Quality checks and adapter trimming for Illumina methods 
(shotgun, PMA-shotgun and metatranscriptomics) were done with 
FastQC (v. 0.11.8; Andrews, 2010) and cutadapt (v. 2.6; Martin, 
2011) and host reads were aligned to the bovine genome (Bos 
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taurus) and removed with Bowtie2 (v. 2.4.4; (Langmead and 
Salzberg, 2012). Quality checks for ONT methods (shotgun, 
PMA-shotgun and metatranscriptomics) were done with 
MinIONQC (Lanfear et  al., 2019) and Nanoplot (v. 1.28.2; De 
Coster et al., 2018), with adapter trimming done with porechop (v. 
0.2.4). Host reads were aligned with Minimap2 (v. 2.17-r974) to the 
bovine genome (Bos taurus) (Li, 2018). Sortmerna (v. 2.1b) was 
used for rRNA removal prior to the analysis of metatranscriptomic 
data (Kopylova et  al., 2012). Taxonomic classification for all 
metatranscriptomics, shotgun and PMA-shotgun methods was 
performed with Kraken2 (2.0.7) using the Genome Taxonomy 
Database (release 89) which contains Bacteria and Archaea (Parks 
et al., 2018, 2020, 2022; Wood et al., 2019). For the Illumina 16S 
rRNA method, quality control, adapter trimming and denoising 
was done with Qiime2 (2021.2) with cutadapt and DADA2 
(Martin, 2011; Callahan et al., 2016; Bolyen et al., 2019). For the 
ONT 16S rRNA method, analysis was performed using the q2ONT 
pipeline,1 which uses porechop (v. 0.2.4) to demultiplex reads and 
trimmomatic (0.38) to discard reads shorter than 1,400 bp and crop 
reads to that length. Qiime2 (2021.2) was used for the remaining 
steps, where sequences were dereplicated and chimeric sequences 
were filtered out with vsearch at 85% identity before reads were 
aligned with mafft and highly variable positions were masked and 
filtered out. For both 16S rRNA methods, taxonomy was assigned 
with the Qiime2 trained classifier using the Silva 138 database 
(Quast et al., 2012).

Statistical analysis and data visualization

Performance metrics were calculated in R (4.1.2; R Core 
Team, 2015), with the relative abundances of a model community 
strain correctly (TP) and incorrectly (FP) quantified by the 
method, along with the relative abundances of other taxa present 
in the sample correctly (TN) and incorrectly (FN) quantified. The 
following metrics were used:

 1. Accuracy is the correct quantification of model community 
and other taxa across all observations, A = TP + TN/
TP + TN + FP + FN

 2. Precision is the fraction of correctly quantified model 
community strains within abundances of taxa identified as 
the model community, P = TP/TP + FP

 3. Sensitivity is the fraction of correctly quantified model 
community strains within abundances of the actual model 
community strains, S = TP/TP + FN

 4. F-score is the harmonic mean of precision and sensitivity, 
F = (2 × P × S)/(P + S)

Diversity analysis was done with the vegan package 
(Oksanen et al., 2015), with beta diversity calculated as 

1 https://github.com/DeniRibicic/q2ONT

Bray-Curtis metrics, visualised in a principal coordinate 
analysis plot. The “adonis” function from the vegan package 
was used to calculate the permutational analysis of variance 
(PERMANOVA) to determine differences in composition of 
the community between groups of samples (number of 
permutations = 999). Hierarchical clustering was done with 
dendextend (Galili, 2015) using Bray-Curtis distances. Data 
was cleaned, analysed and visualised in R with ggplot2, 
tidyverse and ggpubr packages (Wickham, 2011; Wickham 
et al., 2019; Kassambara, 2020).

Results

To determine the relative success with which sequencing-
based methods could distinguish live and dead cells in milk, 
ultra-heat treatment (UHT) bovine milk was spiked with a 
5-strain model community of representative bacteria found in 
milk (B. velezensis DPC 3313, E. coli DPC 6912, L. lactis DPC 
428, P. proteolytica DPC 6056 and S. haemolyticus DPC 5987) 
at two different viability conditions, before undergoing 
different extraction and library preparation approaches and 
sequencing. Four methods, shotgun metagenomics with 
(PMA-shotgun) and without PMA treatment (Shotgun), 
metatranscriptomics (MetaT) and RNA-based 16S rRNA 
sequencing (16S rRNA), sequenced on both Illumina and 
Oxford Nanopore Technologies (ONT) platforms, were 
evaluated and compared to determine their relative efficacy in 
differentiating viable and non-viable cells (Figure  1). 
Sequencing depth differed depending on the platform and the 
application (Supplementary Table S1). We did not endeavour 
to sequence at matching depths as the focus was applying the 
technologies at the depth corresponding to those at which the 
respective platforms are typically used.

Taxonomic classification of model 
community strains was accurate to 
genus level across all methods

In general, the model community taxonomy was 
determined with one classifier to ensure consistency across 
methods. This classifier, Kraken2, was previously found to 
efficiently characterise the milk microbiome when compared 
to other classifiers (Yap et  al., 2020). In addition, a trained 
classifier in Qiime2 was used for the analysis of 16S rRNA data 
(Illumina-sequenced 16S rRNA: i-16 s and ONT-sequenced 
16S rRNA: o-16 s). Comparing across methods, the taxonomic 
identity of the model community was consistent to genus level 
in all cases (Table 1). This was also the case at species level, 
where assignment at species level was possible, with the 
exception that reads generated from Illumina sequencing were 
assigned as Staphylococcus hominis, while the same model 
community strain was classified as a Staphylococcus 
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haemolyticus when ONT data was analysed. However, this is 
not unexpected as S. hominis is classified under the 
S. haemolyticus group of bacteria (Becker et  al., 2014). 
ONT-generated metatranscriptomic data and the short read 
length 16S rRNA data (regardless of sequencing platform) 
could not be  resolved beyond genus level. Indeed, 
Staphylococcus was not detected from within the ONT-derived 
metatranscriptomic data, most likely due to insufficient 
sequencing depth combined with low levels of gene expression 
by the strain (Supplementary Table S1). For downstream 
analysis, genus level data was used.

Total bacteria qPCR was performed to quantify the 
bacteria in each sample and the log number of cells/mL of 
each microorganism per sample was estimated using a 
combination of qPCR results and relative abundance values. 
The abundances of cells recovered from Live samples 
were greater than those in the heat-treated samples 
(Supplementary Figure S1). Some reads were classified into 
genera other than those corresponding to the 5 spiked 
strains (Supplementary Table S2), and some of these 
were also detected in the unspiked milk samples 
(Supplementary Table S3). The reads classified as others were 
not prioritised in the further analysis due to the particular 
focus on differentiating between the members of the model 
community in the Live and Dead samples.

Methods were accurate though the 
precision and sensitivity varied

To evaluate the performance of each method, several 
performance metrics such as accuracy, precision, sensitivity and 

F-score were calculated. The comparisons were made between the 
abundances of the live and dead model community controls that 
had been sequenced and analysed with the various methods. 
Overall, most approaches showed a high level of accuracy, which 
is the fraction of correctly identified taxa (model community or 
other) relative to all observations, with a median of 0.939 ± 0.046 
(Figure  2). However, the F-score, which gives a sense of how 
precise and sensitive the method is, revealed that only half of the 
methods scored at least 0.5, indicating issues in precision or 
sensitivity in these instances. The two PMA-shotgun sequencing 
and analysis methods yielded outputs that were most precise, 
while the 16S rRNA methods were the most sensitive, including 
when separated into both live and dead spiked samples (Figure 2, 
Supplementary Figure S2). ONT-sequenced 16S rRNA (o-16 s) 
was the most accurate and had the best overall F-score, while 
metatranscriptomics (i-metaT) and PMA-shotgun (i-pma) had 
the highest accuracy and F-score out of all the Illumina-based 
methods, respectively.

Significant differences were observed 
between data depending on library types 
(DNA and RNA) and sequencing methods 
(Illumina and ONT)

Beta diversity analysis was employed to determine the 
differences between the outputs generated from the different 
approaches taken, and several sample clusters were apparent 
(Figure 3A). Samples first clustered by library type, whereby 
the outputs from DNA-based analysis (Shotgun and 
PMA-shotgun) were significantly distinct from those generated 
using the RNA-based approaches (metatranscriptomics and 

FIGURE 1

Experimental design of the study (created with BioRender.com).
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16S rRNA; PERMANOVA, R2 = 0.457, p < 0.01), and also 
by sequencing methods, with Illumina-sequenced and 
ONT-sequenced outputs clustering apart (PERMANOVA, 
R2 = 0.195, p < 0.01). Differences in nucleic acid input and 
sequencing methods used were also apparent in the hierarchical 
clustering of the Bray-Curtis distances (Figure  3B). The 
composition of taxa varied across library types, with Escherichia 
and Lactococcus being found at greater abundance when 
DNA-based methods were used, while Pseudomonas was the 
most active on the basis of RNA-based methods (Figure 3C). 
In particular, the Illumina-sequenced 16S rRNA data points 
clustered away from those generated using other methods. This 
was also obvious in the taxonomic composition where 
abundances of other taxa besides the model community was 
lowest in i-16S compared to other methods (Figure 3C).

Among the DNA-generated dataset, the effect of PMA was 
clear, with lower DNA and overall calculated cell counts observed 
for samples that underwent PMA treatment (Figure 4). Notably, 

although the Shotgun methods do not exclusively select for viable 
cells, the accuracy of those methods were comparable to the 
PMA-shotgun methods (Figure  2). Precision was higher in 
PMA-shotgun methods compared to the Shotgun methods, while 
sensitivity was higher for i-pma and lower for o-pma when 
compared to i-shotgun and o-shotgun, respectively. In terms of 
the composition, most of the abundances of model community 
taxa in PMA-shotgun samples were lower in total cells/mL than 
those in Shotgun samples, apart from Escherichia cells/mL, which 
was higher in PMA-shotgun methods than Shotgun for both live 
and dead spiked samples (Figure 3C). The cell counts of Bacillus 
and Pseudomonas were generally lower, with the exception of 
i-shotgun where both taxa were found in abundances greater 
than the other DNA-based methods. Lactococcus was the 
most abundant of the model community taxa quantified, 
which was consistent across the two methods, with exception of 
o-shotgun, which detected higher abundances of Staphylococcus. 
Staphylococcus was clearly detected in the Shotgun samples 
spiked with the dead cells whereas levels were negligible in the 
PMA-shotgun samples. Between sequencing methods, distinct 
separation was found between Illumina and ONT methods 
(Figures  3A,B) and, in terms of composition, ONT methods 
detected higher abundances of other non-model community 
taxa, compared to the Illumina methods (Figure 3C).

Although there were no obvious differences in the accuracy of 
the methods across the different RNA-based approaches, the 16S 
rRNA method outperformed the metatranscriptomics approaches 
with respect to precision and sensitivity (Figure 2). In general, 
methods were more sensitive than precise, except for o-metaT 
which had poor sensitivity. Staphylococcus reads were detected in 
low abundances across all RNA-based methods, while read 
numbers corresponding to Pseudomonas were consistently found 
at high abundance (Figure  3C). Similar to the DNA-based 
methods, clear separation between library types was seen between 
Illumina- and ONT-based methods (Figure  3). As mentioned 
above, Illumina-sequenced 16S rRNA was the most distinct, 

TABLE 1 The highest resolution of taxonomic identity identified of the model community strains across all methods.

Model 
community 
strain

Shotgun PMA-shotgun Metatranscriptomics 16S rRNA

Illumina Nanopore Illumina Nanopore Illumina Nanopore Illumina Nanopore

Bacillus velezensis 

DPC 3313

Bacillus velezensis Bacillus velezensis Bacillus 

velezensis

Bacillus velezensis Bacillus 

velezensis

Bacillus Bacillus Bacillus

Escherichia coli DPC 

6912

Escherichia coli Escherichia coli Escherichia coli Escherichia coli Escherichia coli Escherichia Escherichia-

Shigella

Escherichia-

Shigella

Lactococcus lactis 

DPC 4268

Lactococcus lactis Lactococcus lactis Lactococcus 

lactis

Lactococcus lactis Lactococcus lactis Lactococcus Lactococcus Lactococcus

Pseudomonas 

proteolytica DPC 

6056

Pseudomonas_E 

proteolytica

Pseudomonas_E 

proteolytica

Pseudomonas_E 

proteolytica

Pseudomonas_E 

proteolytica

Pseudomonas_E 

proteolytica

Pseudomonas_E Pseudomonas Pseudomonas

Staphylococcus 

haemolyticus DPC 

6283

Staphylococcus 

hominis

Staphylococcus 

haemolyticus

Staphylococcus 

hominis

Staphylococcus 

haemolyticus

Staphylococcus 

hominis

− Staphylococcus Staphylococcus

FIGURE 2

Overall performance of methods based on the accuracy, F-score, 
precision, and sensitivity.
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clustering separately from other methods and with the lowest 
proportion of other taxa identified compared to the other 
RNA-based methods (Figures 3A,B). It was the only method that 
had detectable levels of Bacillus in live samples and its samples 
spiked with the dead-cell model community had a taxonomic 
profile that differed from the other samples spiked with dead cell 
concentrations (Figure 3C).

Discussion

While DNA sequencing-based approaches have enabled the 
characterisation of complex microbial communities more 
efficiently, they generally provide information that reflects all 
microbial DNA present in the community and do not specifically 
select for viable microorganisms (Carini et al., 2016; Wang et al., 
2021). In various settings, the ability to distinguish between viable 

or metabolically active and non-viable or dead microorganisms 
can be important and, indeed, necessary in terms of food safety 
and public health, and for food processing involving live 
microorganisms. While culture-based approaches are commonly 
used by industry and public health authorities to determine 
viability of individual microbes (Emerson et  al., 2017), high-
throughput sequencing-based methods have great potential as a 
means of characterising microbial communities in foods or food 
environments. In this study, we  explored 4 sequencing-based 
approaches to assess the relative success with which they 
distinguish between live and dead cells of a 5-strain model 
community in a milk matrix.

All methods performed accurately, despite the slight 
compositional differences between the two library types. The 
cause of the difference could possibly relate to the approach of 
each library type, with the use of PMA or other intercalating dyes 
taking advantage of cell integrity to remove cells with a 
compromised membrane (Emerson et al., 2017; Wang et al., 2021), 
while RNA-based methods examine the activity of cells, as RNA 
has a shorter average half-life than DNA (Emerson et al., 2017; Li 
et al., 2017; Gomez-Silvan et al., 2018; Yang et al., 2020). This 
implies that Pseudomonas were most active, while Escherichia and 
Lactococcus had the greatest abundance of intact cells. The 
different targets and the different library preparation methods 
(amplicon, shotgun and metatranscriptomics) make it difficult to 
directly compare the methods with each other. Microbial 
community studies with both types of libraries (DNA and RNA) 
often perform a single molecular method on the samples, such as 
16S rRNA sequencing or qPCR, to allow for comparison of results 
from DNA and RNA libraries. In these studies, consistent 
outcomes have been reported in that distinctions have been found 
between library types in water, sediment, and food samples when 
both DNA and RNA were extracted and sequenced from the same 
samples (Ferrocino et al., 2016; Li et al., 2017; Mira Miralles et al., 
2019; Pearman et al., 2021).

Our data also reveal clear differences between the outputs 
of Illumina- and ONT-based sequencing technologies, with 
samples clustering distinctly based on sequencing technologies 
used. Differences between sequencing technologies have also 
been reported in intestinal and nasal microbiota samples with 
species level classification and the clustering of the microbiome 
showing significant effects based on the sequencing technology 
utilised (Heikema et al., 2020; Alili et al., 2021). Besides the 
known higher error rate of ONT sequencing compared to 
Illumina (Alili et  al., 2021), a few other possibilities could 
account for this. First, in order to maintain consistency during 
analysis, bioinformatic tools that are more commonly applied 
to short read data were used for all the sequencing data 
generated and, thus, specific tools developed for long read 
sequencing data analysis were not used. It is possible that 
improved classification could be achieved should the relevant 
tools for error correction for long reads be applied to the ONT 
sequencing data. Another contributory factor is the difference 

A

B

C

FIGURE 3

Beta diversity and taxonomic profiles of samples. (A) Bray-Curtis 
principal-coordinate analysis (PCoA) plot, with ellipses 
representing clustering by DNA- and RNA-based methods (solid) 
and sequencing method (dashed) and (B) hierarchical clustering 
of methods based on Bray-Curtis distances. (C) Composition of 
taxa in samples based on live or dead spiked model community, 
by the evaluated methods and sequencing method.
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in sequencing depth. ONT sequencing had been previously 
found to produce a high proportion of unclassified reads when 
a shallow sequencing depth was employed, and greater 
sequencing depth (30–50X) has been known to enable self-
correction of the error rate that is associated with Nanopore 
sequencing data (Alili et al., 2021; Delahaye and Nicolas, 2021). 
These factors could account for the numerical difference in 
species level classification of the Staphylococcus strain, where 
Illumina sequencing afforded greater taxonomic resolution 
than ONT sequencing, as S. hominis is specifically classified 
within the S. haemolyticus group (Becker et  al., 2014). 
Additionally, for shotgun sequencing with ONT, MDA 
amplification was needed to generate sufficient quantities of 
DNA required for sequencing, which has been previously 
found to introduce some biases (McHugh et al., 2021). Despite 
all these points, as improvements are made to the sequencing 
technology and analytical tools, coupled with its advantages in 
portability, time effectiveness and the possibility of real-time 
analysis, there is great potential for the use of ONT sequencing 
in characterising microbial communities in food and food-
related environments.

PMA is a photoreactive DNA-binding dye that binds to 
non-viable cells that have compromised membranes and inhibits 
further amplification by PCR (Nocker and Camper, 2006). Our 
results show evidence of the effect of PMA, with more precise 
results and lower abundances of live and dead cells achieved when 
compared to regular shotgun sequencing. The use of PMA did not 
bias the community structure, which adds to their promising 
application. However, studies have found that the effectiveness of 
PMA varies significantly (Mancabelli et al., 2021; Wang et al., 
2021). Biological matrix, sample biomass, microbial community 
diversity and experimental conditions have been known to 
contribute to this variation (Li et al., 2017; Mancabelli et al., 2021; 
Shen et  al., 2021; Wang et  al., 2021). The optimisation of dye 
concentration, incubation and light exposure times are required 

depending on the samples, which prevents the application of a 
universal PMA treatment for all types of samples. Moreover, 
methods based on membrane integrity may result in an 
overestimation of viable cells as the lethal stress may not lead to 
the immediate disruption of the cell membrane and dyes used may 
be ineffective against cells with a hardy cell wall, such as spores 
(Emerson et  al., 2017). Although the close clustering of 
PMA-shotgun to Shotgun samples could suggest the insufficient 
or unsuccessful PMA treatment, the low diversity samples created 
by spiking the simple model community into milk samples could 
be the reason for such results. Regardless, this further emphasises 
the need to optimise PMA treatment, which could differ between 
samples. Therefore, though promising, more work is needed to 
calibrate PMA concentration and incubation and light exposure 
times for specific sample matrices before it can be  effectively 
applied to DNA sequencing experiments with confidence.

Within the data generated by RNA-based methods, results 
differed between metatranscriptomics and 16S rRNA sequencing, 
which is not surprising as they use different types of RNA as targets. 
Metatranscriptomics targets mRNA, which has a very short half-life, 
while 16S rRNA sequencing uses rRNA, which is generally more 
stable than mRNA and is more abundant in cells (Emerson et al., 
2017). In spite of these differences, both mRNA and rRNA have been 
found to be good markers of bacterial viability, with several studies 
suggesting that rRNA might provide more accurate taxonomic 
profiling and may be  more successful for low-biomass samples 
compared to mRNA approaches (Emerson et al., 2017; Yang et al., 
2020). Additionally, the cells in both model communities may not 
have the same physiological state after overnight incubation, which 
could affect their metabolic activity and the resulting differences 
between the two RNA-targetting methods. Additionally, cDNA 
conversion and the different library preparation steps could have 
introduced biases that could contribute to the differences (Li et al., 
2017; Sessegolo et  al., 2019). The targeted nature of 16S rRNA 
sequencing is possibly the reason that the Illumina-sequenced 16S 

A B

FIGURE 4

Differences in concentrations of (A) DNA quantified using Qubit and (B) cells quantified through qPCR between Shotgun and PMA-shotgun 
methods for live and dead spiked samples.
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method is the most sensitive and distinct from all the methods 
(Figure 3). As amplicon sequencing is more widely established and 
applied, analysis tools for such data are well refined compared to 
other community-based methods like metatranscriptomics. In spite 
of this, several studies have employed both RNA- and DNA-based 
16S rRNA sequencing concurrently to give a more comprehensive 
view of both the overall and metabolically active community, which 
is useful in understanding microbial community dynamics (Gomez-
Silvan et  al., 2018; Mira Miralles et  al., 2019). However, from a 
practical perspective, RNA-based methods are generally more 
laborious than DNA-based methods, as RNA is more complicated 
to handle, which can result in RNA losses during processing 
(Emerson et al., 2017; Li et al., 2017; Marcelino et al., 2019). In 
addition to the need for a greater sequencing depth, the 
metatranscriptomics methods require more processing that could 
introduce additional biases or losses, which possibly impacted the 
accuracy of results in our study. Therefore, metatranscriptomics, for 
now, might not be  the most suitable method if the aim is to 
determine viability alone. It, however, is able to provide useful 
information on the active microbes and expressed genes that would 
expand the understanding of microbial community dynamics of 
foods, food processes or environments (Chen et al., 2017).

Though this study provided insight into sequencing-based 
methods that could be employed to distinguish between viable 
and non-viable microbial communities, there were some 
limitations. First, overnight incubation caused the growth of the 
model community to levels beyond the expected equal 
concentrations, causing greater difficulties in determining the 
success of methods and hindering the analysis of the potential of 
each method in quantifying live and dead cells. While the kits 
used were based on prior in-house experience, simultaneous DNA 
and RNA extractions could have been performed, which could 
have standardised the laboratory workflow. The use of MDA for 
ONT DNA-based samples was necessary to obtain sufficient DNA 
yields for sequencing but may be a confounding factor in the 
analysis. Lastly, DNA-based 16S rRNA sequencing could have 
been done to allow for better comparison with the RNA-based 
method and to help draw further conclusions of the differences 
between library types.

Despite these challenges, this study gives insight into the 
use of sequencing-based methods in distinguishing viable and 
non-viable cells in food samples. While it was difficult to make 
direct comparisons between the methods due to the differences 
in their molecular targets, this study shows that differences 
exist between library types and sequencing technologies, which 
serves as a stepping-stone to refining these methods. Besides 
the need to optimise PMA treatments, more complex matrices 
and more complex microbial communities can be used to test 
the performance of these methods since the milk samples used 
had a low microbial density and diversity. Thus, further 
research is warranted before using these methods to 
characterise viable microbial communities in food and food-
related environments.
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