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Introduction

The host genetics play an important role in the induction of autoimmune response

against self-antigens however; several epidemiological and molecular evidences suggest

microbial pathogens (viruses and bacteria) are the principal environmental triggers

of autoimmunity (Fujinami, 2001; Ascherio and Munger, 2007; Libbey and Fujinami,

2010; Tarakhovsky and Prinjha, 2018; Lester et al., 2019). Reportedly, four main criteria

have been associated with molecular mimicry and the underlying human disease,

(i) epidemiological evidence associating a pathogen with a disease, (ii) presence of

antibodies and/or immune cells against the specific antigens related with the disease,

(iii) cross-reactivity of antibodies or immune cells of the host with microbial antigens

and, (iv) reproduction by the antigen of the disease process in vivo or in vitro (Ang et al.,

2004; Johnson et al., 2017).

Microbes can exhibit four types of molecular mimicry with the host proteins, (i)

sequential or structural similarities with the proteins or protein-domains, (ii) similarities

with the protein-structures without sequence homology, (iii) architectural similarities

with the binding surfaces without sequence homology (interface mimicry) and, (iv)

similarities with the short linear motifs (SLiMs) of the proteins (motif mimicry)

(Xue et al., 2014; Dolan et al., 2015). SLiMs are short stretches of amino acids (3–

10 amino acids) which are functionally diverse and mediate various signaling and

protein-protein interactions (PPIs) (Davey et al., 2012; Dinkel et al., 2014; Garg

et al., 2022). One another important functional component of a protein is molecular

recognition features (MoRFs) 5–25 amino acid long. They are present in the structurally

disordered region of protein hence disordered. But once MoRFs binds to the their

partner, they attain a well-developed structure (Vacic et al., 2007; Yan et al., 2016).

Reportedly, several viruses and bacteria propagate and sustain themselves inside the

host by mimicking SLiMs of the host proteins (Sámano-Sánchez and Gibson, 2020).

Frontiers inMicrobiology 01 frontiersin.org

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2022.1039188
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2022.1039188&domain=pdf&date_stamp=2022-11-04
mailto:manish@south.du.ac.in
mailto:neelja@south.du.ac.in
https://doi.org/10.3389/fmicb.2022.1039188
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmicb.2022.1039188/full
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Garg et al. 10.3389/fmicb.2022.1039188

PPIs and cell signaling play a pivotal role in the

functioning of cellular life. Hence, mimicry of the host proteins

involved in PPIs and cell signaling greatly helps microbes in

modulating/disrupting the host defense mechanisms. Moreover,

substitution of microbial proteins in the host PPI networks

eventually shifts the paradigm of host-pathogen interactions in

the favor of the pathogen. Several eukaryotic host-like SLiMs

have been reported in viral proteins which helps in their

entry inside the host cell and modulation of host cellular

pathways related to transcription regulation, cell cycle, immune

response etc. (Davey et al., 2011; Garamszegi et al., 2013;

Hagai et al., 2014). Similarly, several eukaryotic host-like SLiMs

have also been reported in bacterial proteins which helps

them to interfere with signaling pathways involving protein

tyrosine kinases (TKs) and mitogen-activated protein kinases

(MAPKs), tyrosine phosphorylation etc., (Higashi et al., 2002;

Frese et al., 2006; Li et al., 2007; Zhu et al., 2007; Sámano-Sánchez

and Gibson, 2020). The emergence of antibiotic resistance in

pathogens necessitates discovery of new anti-infective therapies.

Recently, protein-based immune-modulatory molecules or

drugs which can disrupt the host-pathogen PPIs have been

proposed as a novel anti-infective therapy (Sámano-Sánchez

and Gibson, 2020). Such therapeutics can interfere with the

host-pathogen SLiM-mediated interactions and create a hostile

and non-conducive host environment for the survival of the

pathogen. Though, mimicry of the eukaryotic host-like SLiMs

has been recognized as an important mechanism underlying

microbial pathogenicity, presence and characteristics of host-

like SLiMs have not been studied in the mimicry peptides

(mimitopes) of bacteria and viruses experimentally associated

with autoimmune diseases. Thus, the present study was

conducted to discern if the experimentally verified microbial

mimitopes underlying various autoimmune diseases exhibit

motif mimicry with the host and potentially modulate the

host PPIs. Additionally, the evolutionary pressure on microbial

mimitopes was also determined. This is the first report

on potential of autoimmunity-related microbial mimitopes

in modulating host protein-protein interactions and their

evolutionary characteristics.

Materials and methods

Retrieval of experimentally validated
mimicry proteins from miPepBase

In the present study, the information on bacterial, viral and

the host mimicry proteins was retrieved from a database of

experimentally verified mimicry proteins, miPepBase (updated

version assessed on January 2021). The database collates

information about only the experimentally verified mimicry

proteins/peptides and autoimmune diseases, thereof (Garg et al.,

2017).

Investigating the presence of eukaryotic
host-like SLiMs in microbial mimicry
proteins and mimitopes

The presence of eukaryotic host-like SLiMs in the microbial

mimicry proteins andmimitopes was predicted using ANCHOR

(Dosztányi et al., 2009). A eukaryotic host-like SLiM was

considered to be present in the microbial mimitope if at least

half of the amino acid of mimitopes overlapped with the

SLiM region.

Molecular evolutionary analyses of
microbial mimitopes

The putative homologous/orthologous sequence of

microbial mimicry proteins were identified using BLAST search

against NCBI non-redundant (NR) protein database. To obtain

a sequence homologous to each microbial protein, the NR

database was searched using the microbial protein as query.

Search results with query coverage of ≥80 and atleast 80%

sequence identity were selected as the criteria for homology

and used for further evolutionary analyses. The Orthologous

protein clusters of each mimicry protein were aligned using

ClustalW version 2 (Larkin et al., 2007). The corresponding

gene sequences of these proteins were also aligned on the basis

of their codons using pal2nal (Suyama et al., 2006). The ratio

between the rate of non-synonymous substitution to the rate of

synonymous substitution (ω = dN/dS) was used as a measure

of the strength of selection pressure acting on a protein-coding

gene. Assuming synonymous mutations are subjected to almost

strictly neutral selection, the ω < 1, ω = 1, and ω > 1 represent

negative selection, neutral evolution, and positive Darwinian

selection, respectively (Yang, 2002). To compute the dN/dS ratio

for each amino acid of the microbial mimitope, a site-specific

model of the likelihood method was used using the codeml

module of the PAML package (Yang, 2007).

Result and discussion

Microbial mimicry of the host peptides has been implicated

in several autoimmune diseases like multiple sclerosis (Wekerle

and Hohlfeld, 2003), type 1 diabetes mellitus (Coppieters et al.,

2012), autoimmune uveitis (Wildner and Diedrichs-Möhring,

2003), encephalomyelitis (Phelan et al., 2020), inflammatory

bowel disease (Biank et al., 2007; Yusung and Braun, 2014),

Crohn’s disease (Cunha-Neto and Kalil, 2014; Polymeros et al.,

2014), sarcoidosis, etc.

Motif mimicry of the eukaryotic host-like SLiMs has been

associated with the pathogenicity of several bacteria and viruses

because it helps them to hijack the host processes by rewiring

the host PPI networks, signaling pathways, post-translational
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modifications etc., (Davey et al., 2012; Dinkel et al., 2014). Since,

SLiMs are abundantly present in cell signaling and PPI network

proteins, drugs targeting SLiM-regulated cellular processes have

been proposed as novel therapeutics against bacterial and viral

infections (Davey et al., 2011; Via et al., 2015; Sámano-Sánchez

and Gibson, 2020). Thus, the present study was conducted

to discern if the mimicry peptides (experimentally verified as

responsible for autoimmune diseases; collated in miPepBase)

contain the functional modules of PPIs, SLiMs and can be

explored as novel drug targets.

A total of 150 bacterial mimicry proteins with their

corresponding 28 host proteins and, 34 viral mimicry proteins

with their corresponding 22 host mimicry proteins were

retrieved from the miPepBase. The bacterial and their

corresponding host mimicry proteins were named as Bacterial-

set proteins. The viral and their corresponding host mimicry

proteins were named as Viral-set proteins. The Bacterial-set

proteins were involved in 16, while the Viral-set proteins were

involved in 12 different types of autoimmune diseases. The

detailed information of the host and pathogen, UniProtKB

ID and name of the mimicry-protein(s), mimitope sequences,

associated autoimmune diseases, and source of information

(Pubmed ID) is provided in Supplementary Table 1.

During infection, the pathogens repurpose the host cells in a

manner which is conducive to their own survival, proliferation

and helpful for evading the host immunity. Thus, if the host

cells can be rewired to the uninfected state or the one that is

close to it, the disease progression can be halted or slowed down.

Thus, drugs/molecules which can inhibit either (i) interactions

between microbial host-like SLiMs and host PPI networks or,

(ii) the metabolic chokepoints of these PPI networks or, (iii)

nodes in the regulatory networks upstream or downstream of the

hijacked host-SLiMs can be explored as novel therapeutics. Also

termed as host-directed therapy, this approach has proved useful

in combating many viruses and bacteria (Sámano-Sánchez

and Gibson, 2020). The classical examples of host-directed

therapy are the chemical inhibition of the proteasomal pathway

which resulted in reduced viral loads in dengue infection and,

RNA interference (RNAi) against some human proteins which

inhibited replication of HIV and hepatitis C virus (Schwegmann

and Brombacher, 2008). Our results revealed that the eukaryotic

host-like SLiMs were abundant in the microbial mimicry

proteins because 41 bacterial and 20 viral mimicry proteins

showed the presence of SLiMs (Supplementary Table 2). On the

contrary, only a few microbial mimitopes overlapped with the

eukaryotic host-like SLiMs. Of the total 155 bacterial mimitopes,

10 bacterial mimitopes showed SLiMs and of the 43 viral

mimitopes only 4 viral mimitopes had SLiMs (Table 1). This

suggests that the most of the microbial mimitopes implicated

in autoimmune diseases could not potentially rewire the host

PPI networks for their own benefit. And, their pathology might

have only the autoimmune component due to cross reactivity

between the microbial epitopes and host peptides. However,

the microbial mimitopes of ten bacteria and three viruses

overlapped with the eukaryotic host-like SliMs (Table 1). Seven

mimitopes, one each of Agrobacterium tumefaciens, Yersinia

enterocolitica, Escherichia coli, Propionibacterium freudenreichii,

Streptococcus mutans, Lactobacillus johnsonii, Bifidobacterium

longum and two each of Mycobacterium leprae and Group A

streptococcus showed the presence of eukaryotic host-like SLiMs

in their mimitopes. Among the viruses, one mimitope of Herpes

simplex virus and Herpes virus saimiri and two mimitopes of

Epstein Barr virus had host-like SLiMs (Table 1). This suggests

that these peptide regions might not only be responsible for

inducing autoimmune diseases in the host by exhibiting epitope

mimicry with the host, motif mimicry of the host-like SLiMs

might also aid these bacteria and viruses in interrupting the host

cell signaling and PPI networks.

Evaluation of the selection pressure on the microbial

mimitopes revealed that 77.85% of the bacterial and 83.54% of

the viral amino acids were under negative selection pressure

(ω < 1), implying that microbial mimtopes were generally

conserved or had a low mutation rate. Comas et al., reported

that the T cell epitopes ofM. tuberculosis were highly conserved

which might be a distinct evolutionary strategy of a highly

successful pathogen as M. tuberculosis for immune subversion

(Comas et al., 2010). This suggests that other pathogens might

also employ a similar strategy for a sustained survival inside

the host. However, analysis of the microbial mimitopes which

overlapped with the eukaryotic host-like SLiMs revealed that

only 46.75% of the bacterial mimitopes and 25% of the viral

mimitopes were under negative selection pressure (ω < 1)

(Table 1; Supplementary Figure 1). This observation can be

explained by the fact that SLiMs are in disordered regions of

the proteins hence, the rate of mutation is high and these

regions are usually under a positive selection pressure (Uyar

et al., 2014). In past we have also shown that low complexity

regions of proteins are not always disordered (Kumari et al.,

2015).

Conventionally, autoimmune diseases like systemic lupus

erythematosus, encephalomyelitis, multiple sclerosis etc., are

treated using immunomodulators or immunosuppressants

which only try to cure the symptoms but do not eliminate the

etiological agent which continues to proliferate inside the host

and interfering with vital cellular process(es). On the contrary,

protein-based immune-modulatory molecules/drug molecules

designed to inhibit the mimitopes (or eukaryotic host-like

SLiMs) might also disrupt the host-pathogen PPIs. This implies

that inhibitors of microbial mimitopes (or eukaryotic host-like

SLiMs) identified in this study would not only help in treating

the pathogen-associated autoimmune disease but also eliminate

the etiopathological agent associated with the disease.

Finally, the repertoire of mimitopes discovered in this

study suggests new paradigms underlying autoimmune diseases

and the etiopathology associated with the infection. Such

knowledge can provide important clues for the discovery
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TABLE 1 Detailed information about the microbial mimitopes which overlapped with the eukaryotic host-like SliMs.

Sr.

No.

Name and Uniprot id

of the host mimicry

protein (in

parenthesis)

Autoimmune

disease

Associated

microbe

Name and Uniprot id

of the microbial

mimicry protein

Sequence of

the microbial

mimitope*

Position of the

mimitope

[Start-End]

Number of amino

acids in the

microbial

mimitope

Number of amino

acids in mimitope

which show

negative selection

(ω < 1)

1 Myelin basic protein of

Mouse [P04370]

Encephalomyelitis Agrobacterium

tumefaciens

Replicating protein

[P15394]

AAQNRPSGPRK 200–210 11 0

Yersinia

enterocolitica

YsaN [O30438] ANQTRPADIAA 445–455 11 0

Propionibacterium

freudenreichii

Uroporphyrinogen III

methyltransferase [Q51720]

AHHVRPPALVV 227–237 11 0

Herpes simplex

virus

Viral transcription factor

ICP4 [P08392]

AAQARPRPVAV 790–800 11 0

Herpes virus saimiri Uncharacterized protein

[Q80BM4]

AAQRRPSRPFR 125–135 11 11

2 Myelin basic protein of Cattle

[P02687]

Leprosy Mycobacterium

leprae

50S ribosomal L2

[O32984]

VSPWGKPEGRTR

KPNKSSNK

247–266 20 17

Mycobacterium

leprae

50S ribosomal L2

[O32984]

EQANINWGKA

GRMRWKGKRP

200–219 20 20

3 HEAE encephalitogen from

myelin basic protein of rat

[P02688]

Multiple Sclerosis Lactobacillus

johnsonii

FtsY [Q74IQ0] ESAEEVTTEDEQER 125–138 14 5

4 Ro protein of human

[P10155]

Systemic lupus

erythematosus

Epstein Barr virus Epstein_Barr virus nuclear

antigen_1 (EBNA_1)

[Q3KSS4]

GGSGSG

PRHRDGVRR

58–72 15 0

5 Human skeletal myosin

protein [P12883]

NA Escherichia coli Colicin protein [P02978] KAFQEAEQR 148–156 9 8

6 SmD protein of human

[P63162]

Systemic lupus

erythematosus

Epstein Barr virus Epstein_Ban nuclear

antigen_1 (EBNA_1)

[G0YSX7]

PPPGRRP 11–17 7 0

7 Human skeletal myosin

protein [Q9UKX3]

Juvenile

dermatomyositis

Group A

streptococcus

M5

[P49054]

ALEKLNKEL 287–295 9 9

8 Myelin basic protein of rabbit

[P25274]

Multiple Sclerosis Streptococcus

mutans

Permease [Q8DUP2] KTYGTLPSQD 143–152 10 10

Multiple Sclerosis Bifidobacterium

longum

Hypothetical

[Q8G3X4]

TNYGALPGSI 9–18 10 10

*SLiM regions in the microbial mimitopes are shown in bold face.

F
ro
n
tie

rs
in

M
ic
ro
b
io
lo
g
y

0
4

fro
n
tie

rsin
.o
rg

https://doi.org/10.3389/fmicb.2022.1039188
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Garg et al. 10.3389/fmicb.2022.1039188

of new drugs/protein-based immune-modulatory molecules

against the pathogens.
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