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The global coronavirus disease 2019 (COVID-19) pandemic caused by the

severe acute respiratory syndrome coronavirus-2 (SARS-CoV) has led to a huge

health and economic crises. However, the research required to develop new

drugs and vaccines is very expensive in terms of labor, money, and time. Owing

to recent advances in data science, drug-repositioning technologies have

become one of themost promising strategies available for developing e�ective

treatment options. Using the previously reported human drug virus database

(HDVD), we proposed a model to predict possible drug regimens based on

a weighted reconstruction-based linear label propagation algorithm (WLLP).

For the drug–virus association matrix, we used the weighted K-nearest known

neighbors method for preprocessing and label propagation of the network

based on the linear neighborhood similarity of drugs and viruses to obtain the

final prediction results. In the framework of 10 times 10-fold cross-validated

area under the receiver operating characteristic (ROC) curve (AUC), WLLP

exhibited excellent performance with an AUC of 0.8828 ± 0.0037 and an area

under the precision-recall curve of 0.5277 ± 0.0053, outperforming the other

four models used for comparison. We also predicted e�ective drug regimens

against SARS-CoV-2, and this case study showed that WLLP can be used to

suggest potential drugs for the treatment of COVID-19.

KEYWORDS

COVID-19, drug repositioning, linear neighborhood similarity, label propagation,

WKNKN

1. Introduction

In November 2019, a novel coronavirus disease broke out in Wuhan, China,

for unknown reasons, which was named coronavirus disease 2019 (COVID-19) by

the World Health Organization (WHO) (Zhu et al., 2020). COVID-19 is caused

by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). To date, seven

human coronaviruses (HCoV) have been identified, namely HCoV-229E, HCoV-OC43,

Frontiers inMicrobiology 01 frontiersin.org

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2022.1040252
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2022.1040252&domain=pdf&date_stamp=2022-11-17
mailto:tiger@gdut.edu.cn
https://doi.org/10.3389/fmicb.2022.1040252
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmicb.2022.1040252/full
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Chen et al. 10.3389/fmicb.2022.1040252

HCoV-NL63, HCoV-HKU1, SARS-CoV, Middle East

respiratory syndrome (MERS) coronavirus (MERS-CoV),

and SARS-CoV-2. Specifically, HCoV-229E, HCoV-OC43,

HCoV-NL63, and HCoV-HKU1 are frequently found and

have low pathogenicity, generally causing only common cold

symptoms, whereas MERS-CoV and SARS-CoV are zoonotic

viruses that are first reported in the twenty-first century (Sohrabi

et al., 2020). SARS-CoV-2 is recognized as the most pathogenic

human coronavirus ever discovered (Guan et al., 2020). As of

September 2022, 613 million confirmed SARS-CoV-2 infections

were reported around the world, with nearly 6 million deaths

(Organization, 2020). Until now, there is no cure for COVID-19.

Despite substantial increases in investment by

pharmaceutical companies in response to COVID-19, the

successful development and approval of a new drug typically

requires billions of dollars and an average of 10 years (Liu S.

et al., 2020), with the disadvantages of being time consuming

(Pushpakom et al., 2019), expensive, and risky. Therefore, drug

repositioning (drug repurposing) has been identified as a viable

solution to improve the overall process of drug development,

especially following recent advances in information technology

and data science. The primary goal of drug repositioning is

the use of existing drugs to treat new symptoms. Compared

with traditional drug development methods, drug repositioning

can significantly reduce research and development time and

costs while minimizing risks. In short, drug repositioning is

considered a promising strategy to accelerate the development

of COVID-19 therapeutics.

As Xue et al. (2018) described, current work on drug

repositioning is supported by various prediction models, among

which the association prediction models for computational drug

repositioning applicable to COVID-19 can be broadly classified

into the following three categories (Dotolo et al., 2021): (I)

network-basedmodels, (II) artificial intelligence algorithms, and

(III) matrix completion.

Network-based approaches construct heterogeneous

networks by integrating multiple data to predict drug–

virus associations. Such approaches are mostly based on

the assumption that drugs with similar functions are often

associated with viruses having similar phenotypes (Chen et al.,

2018b). Prediction approaches based on complex networks (Liu

et al., 2022b) have important and widespread applications in

drug repositioning because of their ability to integrate multiple

datasets of interest (Fan et al., 2020; Zhou et al., 2020). More

specifically, network nodes represent drugs, diseases, viruses,

or genes, while edges represent interactions or relationships

between nodes (Re and Valentini, 2013; Chen et al., 2015).

The obtained predictions may contribute to the process of

structure-directed drug and diagnostic research and help to

identify new potential biological targets (Barlow et al., 2020). In

this regard, there are two network-based approaches applicable

to drug repositioning for COVID-19: the network-based

clustering approach and the network-based propagation

approach. Macropol et al. (2009) proposed the repeated random

walks (RRW) method that uses RRW on the protein–protein

interaction (PPI) network for local clustering of the network and

then predicts some protein complexes. Although this was found

to be a precise and general approach, it requires a great deal

of time and memory overhead and cannot detect overlapping

clusters. King et al. (2012) introduced a new model named

restricted neighborhood search clustering (RNSC), which is a

global network algorithm for identifying protein clusters on

PPI networks. It considers both global and local information

from the network and can also detect overlapping clusters, but

some information may be lost if the cluster size is too small. Luo

et al. (2016) proposed the bidirectional random walk (BiRW)

algorithm for predicting relationships between diseases and

drugs. It uses the similarity of diseases and drugs with the

original correlation matrix to form a heterogeneous network

and then clusters this network by a double random walk. The

resulting prediction is accurate, but more biological information

is needed to improve the confidence of the similarity metric.

In addition to the network clustering approach, Vanunu et al.

(2010) proposed an overall propagation algorithm called

PRINCE, which combines weighted PPI and disease similarity

networks for overall disease gene ranking and protein complex

association inference. An integrated propagation method for

predicting propagation strategies in different sub-networks was

proposed by Martinez et al. (2015) and named DrugNet. Zhang

et al. (2017b) developed the linear neighborhood similarity

(LNS) method to calculate drug–drug similarities in the drug

characteristic space. Peng et al. (2021), in response to COVID-

19, combined the virus–drug association network topology and

a random walk with restart method (VDA-RWR) to predict

potential drug–virus associations using a 2× 2 similarity matrix

and known associations between drugs and viruses. Zhang et al.

(2021b) developed a network distance analysis model for the

prediction of lncRNA–miRNA association (NDALMA). It is

worth mentioning that the primary approach in recent years has

been to update the network mainly by similarity and network

inference (Zhang et al., 2021a; Liu et al., 2022a).

For drug repositioning, artificial intelligence-based models

mainly use machine learning methods. Numerous common

machine learning algorithms have been applied to predict

potential therapeutic agents, such as decision trees (Chen

et al., 2019b) and Laplacian regularization (Chen and Huang,

2017). The influence of deep learning models that belong

to machine learning has been particularly remarkable (Chen

et al., 2019a, 2021a; Keshavarzi Arshadi et al., 2020). In

terms of prediction, graph convolutional neural networks

(GCNNs) are the most popular tools for drug discovery

applications because they can process graphs and extract

features by encoding adjacency information within features to

learn representations from molecules. Based on drug-target

interactions in this model, Torng and Altman (2019) made

correlation predictions. In recent years, sequence-based models,
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such as genomics, proteomics, and transcriptomics, have also

attracted considerable attention. Vaswani et al. (2017) and

Devlin et al. (2018) advanced a transformer model for extracting

features from sequences through the attention mechanism and

self-supervision, which are widely used in the field of natural

language processing. Moreover, Shin et al. (2019) demonstrated

that drug-target interactions can be predicted by using the

transformer model. Pollastri et al. (2002) demonstrated that

recurrent neural networks (RNNs) and long short-termmemory

(LSTM) networks can predict the secondary structure of

molecular or protein sequences. Through an ensemble strategy

of three mainstream machine learning algorithms, Hu et al.

(2018) proposed a model named HLPI-Ensemble that was

specifically designed for human lncRNA–protein interactions.

Matrix completion mainly relies on the matrix decomposition

algorithms (Chen et al., 2018a,c). Specifically, these algorithms

decompose a matrix into two lower-order potential factor

matrices based on known association matrices of diseases and

drugs (Liu H. et al., 2020). Gönen (Gönen, 2012) put forward

a prediction method by using Bayesian probabilistic matrix

factorization (BPMF) based on chemical and nuclear genomes.

Yang et al. (2019) developed a model based on bounded nuclear

norm regularization for drug repositioning. Considering the

similarity information between drugs and diseases, Meng et al.

(2021) proposed a method called similarity-constrained PMF

(SCPMF) to examine the potential value of existing drugs. Liu

et al. (2022b) proposed a new computational method via deep

forest ensemble learning based on an autoencoder (DFELMDA)

to predict miRNA–disease associations.

The novel similarity measure of LNS proposed by Zhang

et al. has been successfully applied to several bioinformatics

problems (Zhang et al., 2017a, 2018a). In this method, the data

points are reconstructed by linear neighborhood information

and are used to measure the similarity between two points in the

association network. Inspired by this, we applied this similarity

measure to our model. In recent years, label propagation has

been widely used for biological association prediction owing to

its various advantages, such as simple logic algorithm and fast

optimization. Thus, we adopted the label propagation method

for network propagation of the drug–virus association matrix.

Herein, we reported on the development of amethod termed

label propagation through linear neighborhood similarity for

the prediction of undetected drug–virus associations. More

specifically, we represented drugs or viruses as feature vectors

and treated them as data points in the feature space, from

which we computed pairwise linear neighborhood similarities

between drugs and drugs or between viruses and viruses.

The computed drug and virus similarities and the known

disease–virus association networks were treated as a weighted

directed graph, which was then input to the label propagation

algorithm. Each drug–virus interaction was scored using the

label propagation method. Experiments showed that the WLLP

model offered superior prediction results when compared

with other models, with an area under the receiver operating

characteristic (ROC) curve (AUC) of 0.8828 in the framework

of 10 times 10-fold cross-validated.

2. Materials and methods

2.1. Experimental data

2.1.1. Human drug virus database

The collection of data concerning viruses, drugs, and drug–

virus associations is a crucial precursor to using bioinformatics

methods to predict novel drug–virus associations. Moreover,

systematic collection and management of relevant information

are important for further studying the mechanism of virus

action (Wang et al., 2021). Meng et al. (2021) collected a

large number of experimentally validated drug–virus interaction

entries from the literature by using text mining techniques and

then constructed the HDVD, which is a database of human

drug–virus associations. The HDVD includes 34 viruses, 219

drugs, and 455 confirmed human drug–virus interactions.

2.1.2. Construction of the drug–virus
interaction network

From the HDVD dataset, we constructed an association

network using known drug–virus interactions, where the points

represent the drugs and viruses and the edges represent drug–

virus associations. Let G = (D,V , I) represents the drug–virus

association network, where D = {d1, d2, . . ., dn} represents the

known drugs in the dataset, V = {v1, v2, . . ., vm} represents the

known viruses in the dataset, and I represents the interaction

relationship between D and V . Let An×m represents the

adjacency matrix of graph G. If di and vj are related, Aij = 1;

otherwise,Aij = 0. Also, letAT represent the inversion ofAn×m.

2.1.3. Chemical structure similarity of drug pairs

The chemical structure similarity between two drugs can

be calculated from their molecular structure information. In

the current study, we downloaded the chemical structure

information of drugs from the DrugBank database in the

SMILES format (Öztürk et al., 2016) and then calculated their

molecular access system (MACCS) fingerprints (O’Boyle et al.,

2011). Finally, we used the Tanimoto index to measure the

absolute similarity between two molecules (Bajusz et al., 2015).

Specifically, we set two drug molecules as A and B, respectively,

a is the number of bits in molecule A, and b is number of bits in

molecule B. c is the number of bits that are in both molecules.

The formula is as follows:

T = c/(a+ b− c) (1)

We used this formula to construct the drug chemical

structure similarity matrix DDn×n. This is a two-dimensional
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matrix whose values represent the chemical fingerprint

scores between drugs. In general, the size of this score is

between 0 and 1, with larger values representing greater

drug–drug similarity.

2.1.4. Genomic sequence similarity of virus
pairs

The sequence similarity between viruses can be calculated

from their genomic nucleotide sequences. We downloaded the

FIGURE 1

Flowchart of the weighted reconstruction-based linear label propagation algorithm (WLLP) framework for drug–virus association prediction.
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genomic nucleotide sequences of viruses from the National

Center for Biotechnology Information (Wheeler et al., 2002). To

calculate the sequence similarity, we used the multiple sequence

alignment program MAFFT on account of its high performance

(Katoh and Standley, 2013). Finally, the virus sequence similarity

matrix VVm×m was constructed, which is a two-dimensional

matrix whose values represent the sequence similarity between

viruses. In general, the value of this matrix is between 0 and 1,

and larger values represent greater virus–virus similarity.

2.2. Methods

2.2.1. Overview of WLLP

In this study, we developed the WLLP framework

for predicting disease–virus associations based on LNS in

conjunction with label propagation. As shown in Figure 1,

the framework consists of three main steps: (I) Label set

preprocessing: considering the sparse nature of the drug–virus

interaction matrix, we introduced the weighted K-nearest

known neighbors (WKNKN) algorithm to make a correction

for the potential interactions between the drugs and viruses. (II)

LNS information for the drugs and viruses was mined separately

based on drug–virus interaction information. (III) Label

propagation: a weighted directed graph consisting of known

association information, drug–drug LNS, and virus–virus LNS

matrices was constructed, and the drug label information was

iteratively updated by the label propagation algorithm to reveal

unknown potential drug–virus associations.

The flowchart of the WLLP algorithm is shown in

Algorithm 1. The details of the principle and process of each

WLLP module are described in the following sections.

2.2.2. WKNKN

Because it is hard to construct expression datasets, coming

up with datasets that contain a large number of samples is

generally difficult. A small number of samples complicates the

knowledge discovery task (Sirin et al., 2016). The unknown

nature of a large part of the information makes the drug–virus

association matrix very sparse. Here, we used the WKNKN

algorithm to preprocess the original association matrix (Ezzat

et al., 2016). Specifically, WKNKN replaces A0ij=0 with the

interaction likelihood in the following three steps:

Step 1. For each known drug, the chemical structure

similarities of the closest K known drugs are calculated by the

k-nearest neighbors (KNN) method and their corresponding

interaction profiles are used to estimate the interaction

likelihood profiles. The derived formula is

Ad(i, :) =
6K
k=1T

k−1DD(i,Dk)A(Dk, :)

6K
k=1DD(i,Dk)

, (2)

Input: Matrices An×m, DDn×n, and VVm×m; Number

of neighbors K and decay factor r; LNS size

parameters dN and DN; Probability retention

factors for drugs and viruses, α and β,

respectively;

Output: Predictive association matrix A∗
m×n

1: Step 1: Reconstruct the association matrix

2: for i = 1 to n do

3: construct Ad using Equation (2)

4: for i = 1 to n do

5: construct Av using Equation (3)

6: Adv =
(

Ad + AT
v

)

/2

7: A = max(A,Adv)

8: Step 2: Construct the drug LNS matrix Wd

9: for i = 1 to DN do

10: construct refactoring weight wi for each

drug using Equation (5)

11: Step 3: Similarly, construct the virus LNS

matrix Wv

12: Step 4: Update the associated network by label

propagation

13: Predict new association matrix A∗
d
using

Equation (8) and weight Wd

14: Similarly, predict the new association matrix

A∗
v

15: A∗ =
(

A∗
d
+ A∗ T

v

)

/2

16: return A∗

Algorithm 1. WLLP.

where i denotes the drug index, T is the decay factor, and

in general, T ≤ 1. Dk denotes the k-th drug index that is

most similar to drug i. It is worthwhile to mention that the

denominator part is the normalization term.

Step 2. For each known virus, the sequence similarities of the

closest K known viruses are calculated by the KNN method and

their corresponding interaction profiles are used to estimate the

interaction likelihood profiles:

Av(:, j) =
6K
k=1T

k−1VV(j,Vk)A
T(Vk, :)

6K
k=1VV(j,Vk)

, (3)

where j denotes the virus index, T is the decay factor, and

in general, T ≤ 1. Vk denotes the k-th virus index that is

most similar to virus j. Similarly, the denominator part is the

normalization term.

Step 3. If Aij = 0, then we average the interaction likelihood

values calculated by Equations (2) and (3) and replace the

original values. Using WKNKN, we finally calculate a weighted

nearest neighbor interaction spectrum, which we will substitute

into the prediction model later.
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2.2.3. LNS

Previous studies have demonstrated that each data point

can be perfectly reconstructed with linear neighborhood

information (Wang and Zhang, 2006; Chen et al., 2021b). Based

on these studies, we used the known drug–virus interactions to

update the degree of drug–virus similarity. Inspired by Zhang

et al. (2018b), we established linear neighborhood similarity. In

the following, we analyzed the drugs as an example. We take

the association matrix of drugs as X = {x1, x2, . . . , xn}, and

each vector xi is reconstructed from a linear combination of its

neighboring data points. The objective function is to minimize

the reconstruction loss with the following expression:

min
wi

Li =

∣

∣

∣

∣

∣

∣

∣

|xi −
∑

ij : xij∈N(xi)

wi,ijxij |

∣

∣

∣

∣

∣

∣

∣

2

= ωT
i G

iωi

s.t.
∑

ij;xij∈N(xi)

ωi,ijxij = 1,ωi ≥ 0, j = 1, . . . , DN,

(4)

where N(xi) denotes the set of DN nearest neighbors and

DN(0 < DN < n) is a conditioning parameter that indicates

the number of neighbors. xij denotes the j-th neighbor of the

vector xi. wi = {wi,i1 ,wi,i2 , . . .,wi,iDN }is a vector whose size is

DN×1 representing the weight size of the k nearest neighbors

of xi and also indicates the similarity between xij and xi. Gi

denotes the gram matrix whose size is DN×DN, where Gi
ip,iq

=

(xi−xip )(xi−xiq )
T . To prevent overfitting, we incorporated the

Tikhonov regularization term, which makes the minimization

reconstruction loss normalized. The formula is as follows:

min
wi

Li = ωT
i G

iωi + µ||ωi||
2
1 = ωT

i

(

Gi + µI
)

ωi,

s.t.
∑

ij : xij∈N(xi)

ωi,ijxij = 1,ωi ≥ 0, j = 1, . . . , DN,

(5)

whereµ is the regularization factor. For simplicity, we setµ to 1.

Finally, we used the standard quadratic programmingmethod to

solve the objective function, and the result can be regarded as the

reconstruction weight of each data point xi. We thus obtained

two weight matrices,Wd ∈ Rn×n andWv ∈ Rm×m, which were

the LNS matrices for the drugs and viruses, respectively.

2.2.4. Label propagation

From the previous calculation steps, we finally obtained

three matrices: the drug–virus association matrix An×m after

WKNKN processing, the drug–drug LNS matrix Wd, and the

virus–virus LNS matrixWv. In the following, as a representative

example, we considered the drug–drug LNS matrix as a directed

weighted graph, with drugs as the nodes and the degree of

similarity as the weights of the lines. It is worth noting that the

similarity matrix is not diagonally symmetric, i.e., wij 6= wji.

Based on this, we used a label propagation approach to circularly

and iteratively propagate the label information of the drugs

to reveal potential drug–virus associations. On the association

network, the neighboring edge information of each drug was

computed and updated at each label propagation. Meanwhile,

we set a probability parameter α to retain its updated state and

retain its initial state with a probability of 1 − α. The specific

updated equation is as follows:

At+1
j = αWdA

t
j + (1− α)A0

j (6)

where, for the exact virus vj, A
0
j denotes all known original drug

interaction relationships and At
j denotes the predicted label at

iteration t. For all viruses, we expressed the prediction matrix as

At = {At
1,A

t
2, . . .,A

t
m} and represented the equation further by

the following matrix form:

At+1 = αWdA
t + (1− α).A0 (7)

As t tends to infinity, the expression converges to the

following form:

A∗ = (1− α)
(

I − αWd

)−1
A0 (8)

where I ∈ Rn×nis the identity matrix and A∗ is

the association score matrix. For more details on the

convergence analysis of label propagation, please refer to

the analysis (Wang and Zhang, 2006).

3. Results

3.1. Experimental setting

In this study, we used 10 times 10-fold cross-validation

to evaluate the performance of our proposed WLLP method.

Specifically, 90% of the interaction data was used as the training

set, and the remainder was used as the test set. For the evaluation

results of the 10 prediction matrices, we averaged them. The true

positive rate (TPR or recall), false positive rate (FPR), precision,

AUC, and area under the precision-recall curve (AUPR) were

used as evaluation metrics. The TPR and FPR indicate the ability

of the model to correctly predict positive and negative labels.

Precision is the ratio of correctly predicted positive labels to all

predicted positive labels, and greater precision indicates better

prediction performance. The formulas for the TPR, FPR, and

precision are as follows:

TPR =
TP

TP + FN
, (9)

FPR =
FP

TN + FP
, and (10)

Precision =
TP

TP + FP
, (11)
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where TP denotes the number of labels correctly predicted as

positive, TN denotes the number of labels correctly predicted as

negative, FP denotes the number of labels incorrectly predicted

as positive, and FN denotes the number of labels incorrectly

predicted as negative.

Area under the receiver operating characteristic curve and

AUPR are widely used to evaluate the performance of binary

classifiers. We constructed the ROC curve and the precision-

recall (PR) curve by calculating the TPR, FPR, and precision.

The ROC curve is a probability curve with FPR on the x-

axis and TPR on the y-axis at various thresholds (Kumar

and Indrayan, 2011; Pegoraro et al., 2021; Sun et al., 2022).

The AUC is then the area under the ROC curve, which is

primarily used to describe the global prediction performance,

where larger values indicate better performance (Tang et al.,

2022). An AUC of 1 indicates excellent performance and an

AUC of 0.5 indicates stochastic performance (Peng et al., 2020).

In addition, the PR curve is more effective than the ROC

curve for representing highly unbalanced data, thus we also

used the AUPR to fully evaluate the performance of the WLLP

model. Similar to the AUC, a larger AUPR corresponds to better

prediction performance.

3.2. Model comparison

In this study, we compared the WLLP model with

four other models, namely SCPMF (Meng et al., 2021),

NTSIM (Zhang et al., 2018c), TP-NRWRH (Liu et al.,

2016), and VDA-RWR (Peng et al., 2021), for the same

HDVD dataset. SCPMF is a drug–virus interaction

prediction algorithm based on a novel SCPMF. NTSIM

is a drug–disease association prediction method that

considers only LNS and label propagation. TP-NRWRH

uses the bipartite network projection to enhance similarity

and propagates it over a heterogeneous network of

drugs and diseases with the help of RWR. VDA-

RWR applies RWR to the prediction of the newest

drug-coronavirus association.

Table 1 shows a comparison of the results obtained from

the five prediction models for the HDVD dataset with 10 times

10-fold cross-validation. Figure 2 shows the corresponding

ROC and PR curves for the five models. The experimental

results demonstrated that the ROC and PR curves of our

WLLP model were higher than those of the other four

models. It was also apparent that our proposed model offered

the best performance in terms of the average AUC and

AUPR values. More concretely, the AUC value of WLLP

was 0.8828, which was higher than that of the other four

approaches (SCPMF: 0.8596; NTSIM: 0.8552; TP-NRWRH:

0.8090; and VDA-RWR: 0.7999). Meanwhile, the AUPR value

of WLLP was 0.5277, which was also higher than the other

four methods (SCPMF: 0.4958; NTSIM: 0.4778; TP-NRWRH:

0.4929; and VDA-RWR:0.4781). It was not difficult to find

TABLE 1 Performances of the five prediction methods on the human

drug virus database (HDVD) dataset.

Method 10 times

10-fold CV

AUC

10 times 10-fold CV AUPR

WLLP 0.8828 ± 0.0037 0.5277 ± 0.0053

SCPMF 0.8596± 0.0011 0.4958± 0.0010

NTSIM 0.8552± 0.0051 0.4778± 0.0110

TP-NRWRH 0.8090± 0.0079 0.4929± 0.0175

VDA-RWR 0.7999± 0.0071 0.4781± 0.0143

that the NTSIM model produced much better results on AUC

than the TP-NRWRH and VDA-RWR models, which implied

that using LNS was superior to using the original similarity

alone, and indicated that using more complex and effective

similarity performance provided more important information

for association prediction. Due to the effect of the WKNKN

pre-training method on the sparsity of the original interaction

matrix, the WLLP model produced better prediction results

than the NTSIM model, and it also supported the usefulness

of the preprocessing procedure (WKNKN) by comparing with

the SCPMF model. In summary, the WLLP model exhibited

excellent performance.

4. Discussion

4.1. Ablation experiments

To investigate the plausibility of the WLLP structure, we

also tested the model with ablation experiments. We again

applied 10 times 10-fold cross-validation to calculate the

AUC and AUPR values of the compared models, and the

average results were used as the final evaluation indices. The

WLLP model comprises three components: WKNKN, LNS,

and label propagation (LP). As shown in Table 2, model 1

uses only LNS to set the weights between the nodes on the

original label graph and uses label propagation for network

diffusion, while model 2 directly applies label propagation to the

association network.

The results presented in Table 2 demonstrated that the

WLLP model resulted in better AUC and AUPR values for

the HDVD dataset than the other two models. Specifically,

for model 1, owing to the sparsity of the original drug–

virus association matrix, the lack of diffusion channels

without preprocessing using the WKNKN algorithm made

the nodes with blank labels received little or no resources

during network diffusion, and the propagated information was

concentrated on the nodes with high association probability in

the global prediction. The introduction of WKNKN alleviated

the sparsity of the matrix, and the association prediction of

blank labels by WLLP became very simple. Therefore, the
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FIGURE 2

Area under the receiver operating characteristic curve (AUC) and area under the precision-recall curve (AUPR) values of the five prediction

methods on the human drug virus database (HDVD) dataset. (A) AUC values of the five prediction methods. (B) AUPR values of the five

prediction methods.

WKNKN algorithm can be considered an indispensable part

of WLLP. Furthermore, a comparison of model 2 and model

1 clearly revealed that the label propagation algorithm in

conjunction with LNS took more information into account

than using the chemical structure and sequence similarity

alone. The lack of a linear relationship between nodes can

make the connections less compact, which in turn leads to

poor association prediction for highly unbalanced samples,

which is the main reason why the AUPR of model 2 was

only 0.1028.

Frontiers inMicrobiology 08 frontiersin.org

https://doi.org/10.3389/fmicb.2022.1040252
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Chen et al. 10.3389/fmicb.2022.1040252

TABLE 2 Results of ablation experiments for the weighted reconstruction-based linear label propagation algorithm (WLLP) model.

Model WKNKN LNS LP 10 times 10-fold CV AUC 10 times 10-fold CV AUPR

WLLP X X X 0.8828± 0.0037 0.5277± 0.0053

Model X X 0.8552± 0.0051 0.4778± 0.0110

Model X 0.7886± 0.0045 0.1028± 0.0005

4.2. Parameter settings

We conducted experiments to analyze the effect of

parameters on model WLLP. To determine the optimal

combination of parameters, we used the grid search method.

TheWLLP model used seven parameters, namely K, T,DN, dN,

α, β , and w, where K and T are the parameters appearing in

theWKNKN algorithm. K denotes the maximum neighborhood

value in the KNN function, while T denotes the decay factor.

The adjustment range of parameter K is from 1 to 10, while the

adjustment range of parameter T is from 1 to 0.1. We end up

with K set to 8 and T set to 1 (Figure 3). DN and dN correspond

to the number of elements in the set of nearest neighbors for the

drugs and viruses in the LNS calculation process. The number

of drug neighbors DN should be less than the number of all

drugs, and the same is true for the number of virus neighbors

dN based on previous experience (Chen et al., 2021b). We

varied the values from 10 to 100, increasing by 10 each time.

In Figure 4, for the label propagation algorithm, we used α and

β to represent the retention probability of the update status

for drugs and viruses. Thus, we set the different values of α

and β from 0.1 to 1 with step 0.1 (Figure 5). Meanwhile, w

is the label fusion parameter for the final matrix from 0.9 to

0.1 with step 0.1. The effect of the parameter selection of w is

shown in Figure 6, where we observed that good performance

is achieved at w = 0.4. The optimal parameter values for the

best model performance were found to be as follows: K =

8, T = 1, DN = 100, dN = 6, α = 0.2, β = 0.5,

and w = 0.4.

4.3. Case study

The overall aim of this work was to identify possible clues for

the treatment of COVID-19 after confirming the performance of

the WLLP model. Table 3 lists the top 15 drugs predicted from

the HDVD dataset, showing the ranking, drug name, DrugBank

ID, and literature evidence for each drug. It can be observed

that a majority (80%) of the predicted drugs were supported

by a variety of literature evidence. Ribavirin was initially

recommended for clinical use in China 2019-nCoV Pneumonia

Treatment Plan Version 5-Revised (Khalili et al., 2020). It is

the eight predicted drug candidate for the potential treatment

of COVID-19. Remdesivir is a nucleotide analog precursor

drug with a broad viral spectrum that includes filoviruses,

pneumoviruses, parvoviruses, and coronaviruses (Al-Tawfiq

et al., 2020; Grein et al., 2020). Remdesivir inhibits viral RNA

polymerase and displays in vitro activity against COVID-19 (Al-

Tawfiq et al., 2020; De Wit et al., 2020; Grein et al., 2020). The

combination of remdesivir with emetine may provide better

clinical efficacy (Touret and de Lamballerie, 2020). Chloroquine

is an inexpensive, safe, and widely administered antimalarial

drug that has been used for more than 70 years and is

very effective in controlling COVID-19 infection in vitro and

therefore may be used for the clinical treatment of COVID-

19 (Choy et al., 2020). The combination of chloroquine and

remdesivir was reported to be very effective in controlling

COVID-19 infection in vitro (Wang et al., 2020). Based on their

combined pathophysiological and pharmacological potential,

camostat and nitazoxanide may be recommended for early

evaluation and clinical trials against COVID-19 (Khatri and

Mago, 2020). Another study provided preliminary evidence for

the use of favipiravir in the treatment of SARS-CoV-2 infection

(Cai et al., 2020). Umifenovir is a broad-spectrum antiviral

drug. In recent years, clinical trials of umifenovir have been

initiated in China (O’Boyle et al., 2011). Sodium lauryl sulfate,

an anionic surfactant with protein denaturing ability, effectively

inhibits the infectivity of several enveloped viruses through

denaturation of the viral envelope. Mouthwash containing

sodium lauryl sulfate may be effective in preventing SARS-CoV-

2 infection through the oral cavity (Sawa et al., 2021). The 18-

kDa cytoplasmic protein procyclin A is an important cellular

biomolecule required for RNA virus replication, and recent

studies have shown that non-immunosuppressive analogs, such

as alisporivir, inhibit the activity of procyclins (Almasi and

Mohammadipanah, 2020). Saracatinib, sirolimus, and suramin

have also been indicated as therapeutic agents for COVID-19 in

recent studies (Romanelli andMascolo, 2020; Salgado-Benvindo

et al., 2020; Tatar et al., 2021).

For hexachlorophene, rifamycin, and tacrolimus, there are

no studies proving their activity against COVID-19. However,

hexachlorophene is a common detergent additive used for

hand washing and disinfection, while rifamycin is an anti-

tuberculosis agent that exhibits antiviral properties against

various infectious viruses. Tacrolimus, an immunosuppressant,

is commonly used in immunotherapy. Although no studies

Frontiers inMicrobiology 09 frontiersin.org

https://doi.org/10.3389/fmicb.2022.1040252
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Chen et al. 10.3389/fmicb.2022.1040252

FIGURE 3

Analytical plots of AUC and AUPR for K and T in the weighted K-nearest known neighbors (WKNKN) algorithm. (A) Analytical plots of AUC for K

and T. (B) Analytical plots of AUPR for K and T.
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FIGURE 4

Analytical plots of AUC and AUPR for DN and dN in the linear neighborhood similarity (LNS) algorithm. (A) Analytical plots of AUC for DN and dN.

(B) Analytical plots of AUPR for DN and dN.
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FIGURE 5

Analytical plots of AUC and AUPR for α and β in the LP algorithm. (A) Analytical plots of AUC for α and β. (B) Analytical plots of AUPR for α and β.
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FIGURE 6

Analytical plots of AUC and AUPR for w in the label propagation (LP) algorithm. (A) Analytical plots of AUC for w. (B) Analytical plots of AUPR

for w.

have been conducted to demonstrate the efficacy of these three

drugs against COVID-19, they still have considerable potential,

which remains to be further validated by subsequent work of

drug developers.

5. Summary

To prevent the spread of SARS-CoV-2, it is critical to

deepening our understanding of the association between the
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TABLE 3 Top 15 drugs predicted from the HDVD dataset.

Rank Drug name (DrugBank ID) Evidence

1 Chloroquine (DB00608) Choy et al., 2020

2 Hexachlorophene (DB00756) Unknown

3 Nitazoxanide (DB00507) Khatri and Mago, 2020

4 Rifamycin (DB11753) Unknown

5 Remdesivir (DB14761) Al-Tawfiq et al., 2020;

Grein et al., 2020; Meng

et al., 2021

6 Odium lauryl sulfate (DB00815) Sawa et al., 2021

7 Camostat (DB13729) Zhou et al., 2015;

Hoffmann et al., 2020

8 Ribavirin (DB00811) Khalili et al., 2020

9 Saracatinib (DB11805) Tatar et al., 2021

10 Alisporivir (DB12139) Almasi and

Mohammadipanah, 2020

11 Tacrolimus (DB00864) Unknown

12 Favipiravir (DB12466) Cai et al., 2020

13 Sirolimus (DB00877) Romanelli and Mascolo,

2020

14 Suramin (DB04786) Salgado-Benvindo et al.,

2020

15 Umifenovir (DB13609) McKee et al., 2020

virus, target proteins, and potential drugs. In the short term,

it may be unrealistic to rely on conventional laboratory

techniques to develop new drugs against COVID-19, and drug

repositioning may represent a more powerful approach. Drug

repositioning provides an effective method for prioritizing

chemical agents associated with SARS-CoV-2. In this study, a

WLLP approach was used to predict the relevance of unknown

associations based on drug-virus heterogeneous association

networks by combining LNS with LP. The algorithm performs

LP on the drug–virus association network, the drug–drug

LNS network, and the virus–virus LNS network to diffuse the

existing information.With 10 times 10-fold cross-validation, our

model achieved an AUC of 0.8828 and an AUPR of 0.5277,

both of which were higher than the other methods used for

comparison. Furthermore, the information and feasibility of

the first 15 drugs were determined by a case study of SARS-

CoV-2. Even so, our model still has room for improvement.

The predictive performance of the proposed method is limited

owing to the current scarcity of data. In the future, we will

attempt to tap into drug library and pharmacological resources,

and with the addition and integration of more data from

recent studies, the prediction results of our model should

be improved.
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