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Sigma70 factor plays a crucial role in prokaryotes and regulates the transcription 

of most of the housekeeping genes. One of the major challenges is to predict 

the sigma70 promoter or sigma70 factor binding site with high precision. In this 

study, we trained and evaluate our models on a dataset consists of 741 sigma70 

promoters and 1,400 non-promoters. We have generated a wide range of features 

around 8,000, which includes Dinucleotide Auto-Correlation, Dinucleotide Cross-

Correlation, Dinucleotide Auto Cross-Correlation, Moran Auto-Correlation, 

Normalized Moreau-Broto Auto-Correlation, Parallel Correlation Pseudo Tri-

Nucleotide Composition, etc. Our SVM based model achieved maximum 

accuracy 97.38% with AUROC 0.99 on training dataset, using 200 most relevant 

features. In order to check the robustness of the model, we have tested our model 

on the independent dataset made by using RegulonDB10.8, which included 1,134 

sigma70 and 638 non-promoters, and able to achieve accuracy of 90.41% with 

AUROC of 0.95. Our model successfully predicted constitutive promoters with 

accuracy of 81.46% on an independent dataset. We have developed a method, 

Sigma70Pred, which is available as webserver and standalone packages at https://

webs.iiitd.edu.in/raghava/sigma70pred/. The services are freely accessible.
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Introduction

Promoters and enhancers regulate the fate of a cell by regulating the expression of the 
genes. Promoters are generally located at the upstream of genes’ transcription start sites (TSS) 
responsible for the switching on or off the respective gene. In prokaryotes, promoters are 
recognized by the holoenzyme, which is made up of RNA polymerase and a related sigma 
factor. There are various types of sigma factors responsible for different functions, such as 
sigma54 controls the transcription of genes responsible for the modulation of cellular nitrogen 
levels, sigma38 regulates the stationary phase genes, sigma32 regulates heat-shock genes, and 
sigma24 and sigma18 controls the extra-cytoplasmic functions (Paget, 2015). The number 
associated with each sigma factor represents the molecular weight. Sigma70 factor is a crucial 
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factor as it regulates the transcription of most of the housekeeping 
genes and responsible for the most of the DNA regulatory functions. 
Sigma70 promoter comprises two well-defined short sequences 
located at-10 and-35 base pairs upstream of TSS, known as pribnow 
box and-35 region, respectively (Paget and Helmann, 2003). It is 
essential to identify the promoter regions in a genome, as it can aid 
in illuminating the genome’s regulatory mechanism and disease-
causing variants within cis-regulatory elements. The area of the 
promoters is of great interest as researchers pay great attention to 
their importance not only in developmental gene expression but 
also in environmental response. To control the expression of every 
gene and transcription unit in the genome, promoters must 
be  precisely identified, and in terms of consensus sequences, 
promoter sequences may differ and be  comparable within and 
between the different classes of promoters. However, since each 
promoter often deviates from the consensus at one or more 
locations, it is still difficult to predict promoters with reliable 
accuracy (Mrozek et  al., 2014, 2016). Moreover, due to the 
advancement in sequencing technology, the data is growing 
exponentially, which made the accurate identification of promoter 
regions in the DNA sequences a difficult task. Of note, the accurate 
and fast classification of the promoter region is a crucial problem, 
as the standard experimental procedures are expensive in terms of 
time, and performance (Bernardo et al., 2009; Lu et al., 2015).

In the past, ample of methods have been developed for 
predicting sigma70 promoters which are based on different 
machine-and deep-learning approaches developed using various 
types of features (Lin and Li, 2011; Song, 2012; He et al., 2018; Liu 
et al., 2018; Lai et al., 2019; Lin et al., 2019; Liu and Li, 2019; Zhang 
et al., 2019). IMPD (Lin and Li, 2011), is based on the increment of 
diversity, which achieved an accuracy of 87.9%. This method was 
trained on RegulonDB (Gama-Castro et  al., 2016) dataset that 
contains 741 E. coli sigma70 promoters. Z-curve-based approach 
(Song, 2012) attains the maximum accuracy of 96.1% by using a 
smaller dataset that comprises 576 sigma70 promoters and 1,661 
non-promoters. Liu et al. (2018) proposed a two-layer prediction 
method, named as iPromoter-2L, for the identification and 
classification of multiple sigma promoters using the multi-window-
based pseudo K-tuple nucleotide composition approach and 
achieved the highest accuracy of 81.68% for sigma70 promoter 
prediction. 70Propred (He et al., 2018) has incorporated features 
like position-specific trinucleotide propensity based on single-
stranded characteristic (PSTNPss) and electron-ion potential values 
for trinucleotides (PseEIIP) using benchmark dataset of 741 
sigma70 promoters and 1,400 non-promoters from RegulonDB9.0, 
and reported 95.56% accuracy. iPro70-PseZNC (Lin et al., 2019) is 
based on a multi-window Z-curve approach and gained the 
maximum accuracy of 84.5% using the dataset from RegulonDB9.0 
(Gama-Castro et al., 2016). iPromoter-2L2.0 (Liu and Li, 2019) is 
an update of iPromoter-2L, which implemented the combination of 
smoothing cutting window algorithm and sequence-based features 
to improve the performance with accuracy 85.94%.

The aforementioned methods are developed using traditional 
machine learning approaches such as logistic regression (Rahman 

et al., 2019a), support vector machine (He et al., 2018; Lai et al., 
2019; Lin et al., 2019; Liu and Li, 2019; Zhang et al., 2019), random 
forest (Liu et al., 2018), ensemble of different classifiers (Rahman 
et al., 2019b). On the other hand, due to the advancement in the 
computational and sequencing technology, deep convolutional 
neural network (CNN) based methods have been implemented to 
develop the prediction methods with the ability to identify the 
sigma promoters and then determines the different types of sigma 
promoter sequences such as sigma24, sigma28, sigma32, sigma38, 
sigma54, and sigma70. Amin et al. proposed a method, iPromoter-
BnCNN (Amin et al., 2020), is a branched-CNN based method 
which utilized the sequence and structural based properties to 
identify and classify the sigma promoters. Shujaat et  al. (2020) 
introduced pcPromoter-CNN which convert the nucleotide 
sequence information into one-hot encoding vectors and feed them 
to convolutional neural network (CNN)-based classifier to predict 
and determine the sigma promoter classes. Recently, a new method 
based on the light CNN named as PromoterLCNN was proposed 
by Hernandez et  al. (2022) which also used one-hot encoding 
representation of nucleotide sequences to predict the sigma 
promoters using the sequencing information. The correct prediction 
of sigma70 promoters in the DNA sequences is still a difficult 
challenge due to the intraclass variation in terms of consensus 
sequence as sigma70 factor is responsible for the transcription of the 
most of the regulatory genes. Albeit, number of computational 
methods are available to predict the sigma70 promoters using the 
sequence information, but there is a still enough room for the 
improvement in term of various performance measures.

In the present study, we  have developed a computational 
method called as Sigma70Pred, to classify the sequences in 
sigma70 promoter and non-promoter. In this study, we  have 
trained and evaluated the prediction model on the benchmark 
dataset which have been used in ample of previously published 
methods such as 70Propred, iPro70-FMWin, iPro70-PseZnc, 
IPMD, iProEP, and iPromoter-FSEn. In order to investigate the 
validity of the generated model, we  have also created the 
independent dataset with no common sequences with the 
benchmark dataset. We  calculated the performance of the 
proposed method on the independent dataset and also compared 
it with the working existing methods. A user-friendly and freely 
accessible web server and Python and Perl-based standalone 
software have been developed to serve the scientific community 
for predicting the sigma70 promoters. Moreover, the same 
package has also been distributed via docker-based technology 
through GPSRdocker (Agrawal et al., 2019).

Materials and methods

Dataset generation

The choice of a standard benchmark dataset is a crucial first step 
in developing a prediction method. In this study, we have used the 
high-quality pre-constructed benchmark dataset, which has been 
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used previously published studies such as, 70Propred (He et al., 
2018), iPro70-FMWin (Rahman et al., 2019a), iPro70-PseZNC (Lin 
et al., 2019), iProEP (Lai et al., 2019), IPMD (Lin and Li, 2011), and 
iPromoter-FSEn (Rahman et al., 2019b). We have trained and tested 
our models using cross-validation, on the benchmark dataset 
downloaded from RegulonDB9.0 (Gama-Castro et al., 2016), which 
is one of the best available databases on bacterial gene regulation in 
the model organism E. coli. K-12. It contains 741 sigma70 promoters 
and 1,400 non-promoters from the E. coli. K-12 genome, and each 
sequence is of length 81 bp. Due to the lack of sufficient 
experimentally verified negative data (that is, the locations that are 
identified not to be transcription start site), randomly generated 
sequences from the same chromosome have been obtained in the 
benchmark dataset to generate the non-promoter sequences. As 
shown by Gordon et al., 81% of the transcription start sites are 
located at the intergenic non-coding regions and 19% are available 
in the coding region (Gordon et al., 2003). Therefore, number of 
methods used the middle regions of long coding sequences of E. coli. 
K-12 genome to create the negative/non-promoter dataset (Shujaat 
et al., 2020; Hernandez et al., 2022), whereas, other methods used 
both the coding and non-coding regions to extract non-promoter 
sequences (Lin and Li, 2011; He et al., 2018; Lai et al., 2019; Liu and 
Li, 2019; Rahman et  al., 2019a,b; Amin et  al., 2020). In the 
benchmark dataset used in this study, half of the negative samples or 
non-promoter sequences were extracted from the coding and rest 
half were obtained from convergent intergenic spacers (non-coding 
regions). In order to validate our model on external or independent 
dataset, we have extracted the data from RegulonDB 10.8, which 
comprises 1,134 sigma70 and 638 non-promoters. There is no 
identical sequence in training and independent dataset. The datasets 
can be downloaded from our server.

Overall workflow

The comprehensive workflow for Sigma70Pred is shown in 
Figure 1.

Feature generation

We have generated a wide range of features like Position-
Specific Tri-Nucleotide Propensity (PSTNPP), Electron-Ion 
Interaction Pseudopotentials of trinucleotide (EIIIP; He et al., 
2018), dimer count, trimer count, motif counts, GC and AT skew 
(Rahman et al., 2019a), Dinucleotide Auto-Correlation (DAC), 
Dinucleotide Cross-Correlation (DCC), Dinucleotide Auto Cross-
Correlation (DACC; Friedel et al., 2009), Moran Auto-Correlation 
(MAC), Normalized Moreau-Broto Auto-Correlation (NMBAC; 
Chen et al., 2015), and Parallel Correlation Pseudo Tri-Nucleotide 
Composition (PC_PTNC; Liu et al., 2014), which resulted in 8465 
features. The aforementioned features were calculated using 
Nfeature webserver (Mathur et al., 2021) available at https://webs.
iiitd.edu.in/raghava/nfeature/. Then, we have used the Min-Max 

scaler from the scikit-learn library (Pedregosa et al., 2011) to scale 
down the values of the features, we have constructed. Further, 
we  have implemented Recursive Feature Elimination (RFE; 
Pedregosa et  al., 2011) for the feature selection with logistic 
regression as the estimator and step-size 10. RFE is a wrapper-style 
technique, i.e., we have used logistic regression algorithm which 
is wrapped by RFE, to choose features by iteratively considering 
smaller sets of features progressively. First, the classifier is trained 
on the initial set of features and importance of each feature is 
calculated. Further, the features with least importance are 
eliminated from the current set of features. This process is 
recursively repeated on the current feature-set until we are left 
with the desired number of features. Less number of features can 
make the models developed using machine learning classifiers, 
more efficient and effective in terms of space and complexity. It 
also aid the model to achieve the better predictive performance by 
avoid learning on the irrelevant input features. Details of each 
feature and processing of the features are explained in the 
Supplementary File. The comprehensive details of the top-200 
features are reported in Supplementary Table S1, where we have 
provided the description of each feature along with their mean in 
sigma70-promoter and non-promoter sequences and value of p to 
check if the difference is significant or not. The features are sorted 
as per their importance which is calculated using the random 
forest based classifiers and top-20 features are plotted as per their 
rank in Supplementary Figure S1.

Model development

In this study, we developed models for predicting sigma70 
promoters using wide range of machine learning techniques such 

FIGURE 1

Architecture of sigma70Pred.
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as decision tree (DT), random forest (RF), k-nearest neighbor 
(KNN), extreme gradient boosting (XGB), gaussian Naïve Bayes 
(GNB), and support vector machine (SVM; Pedregosa et  al., 
2011). We got the best performance using SVM based model. Our 
best model on training dataset was evaluated on independent 
dataset (obtained from RegulonDB 10.8).

Cross-validation

In order to avoid the biasness and test the prediction models’ 
performance, we have implemented five-fold cross-validation. In 
this approach, the complete dataset is divided into five parts, the 
model is trained on four out of five parts, whereas the model is tested 
on the left part, and the performance is recorded. The same process 
is iterated five times so that each part gets the chance to be used for 
the purpose of testing. The overall performance is calculated by 
taking the mean of all five iterations (Patiyal et al., 2020).

Measures of performance

To assess the performance of generated prediction models, 
we  have used various threshold-dependent and independent 
parameters. We  have considered sensitivity that is, percent of 
sigma70 samples classified correctly; specificity that is, percent of 
non-promoter samples classified as negative; accuracy that is, 
percentage of samples which are correctly predicted by the model; 
and Matthews correlation coefficient (MCC) that explains the 
relationship between the observed and predicted value, under 
threshold-dependent parameters, whereas, in threshold-
independent measures, we have considered Area Under the Receiver 
Operating Characteristics (AUROC) which is the relation between 
true positive rate and false positive rate. The AUROC was computed 
using the pROC package (Sachs, 2017) of R. The equations depicting 
the threshold-dependent parameters are as follows:
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where, PT refers to number of true positives; PF refers to 
number of false positives; NT refers to number of true negatives; 
and NF refers to number of false negatives.

Results and discussion

Compositional analysis

In order to assess the proportion of the nucleotides in the 
sigma70 promoter and non-promoter, we  have calculated the 
mono-nucleotide composition. As shown in Figure 2, nucleic acid 
adenine and thymine are abundant in sigma70 promoter 
sequences, whereas cytosine and guanine are higher in percentage 
in the case of non-promoter sequences.

Position conservation analysis

In this analysis, we explored the preference of each nucleotide at 
each position of the sigma70 promoter sequences. For the same, 
we have created the one-sample and two-sample logo using WebLogo 
(Crooks et al., 2004) and Two Sample Logo (TSL) tool (Vacic et al., 
2006). One Sample logo reports the abundance of nucleotides at each 
position in a single dataset (i.e., positive/negative dataset), whereas 
TSL takes two files as input (i.e., positive dataset and negative dataset) 
to exhibits the preference of nucleotides in the positive dataset in 
comparison to the negative dataset. Therefore, we have provided 
sigma70 promoter sequences in the FASTA format to WebLogo tool 
to generate the one-sample logo, and provided both the files, i.e., 
sigma70 promoter and non-promoter sequences in the FASTA 
format to TSL tool. Figure 3A represents the one sample sequence 
logo and Figure  3B exhibits the two-sample logo for sigma70 
promoter sequences. In Figure  3A, consensus short sequences 
“TATAAT” and “TTGACA” at position-10 and-35, respectively, is 
blurred due to the variability in the spacing between these regions 
(Shultzaberger et al., 2007), as we have taken all the sequences to 
generate the sequence logo. However, the region around-10 and-35 
is abundant with the nucleotides involve in the consensus sequences 
at-10 and-35. As shown in Figure 3B, sigma70 promoter sequences 
are enriched in “A” and “T” nucleotides at most of the positions, 
whereas, depleted in nucleotides “G” and “C.” “T” is most abundant 
nucleotide at positions −59, −56, −50, −49, −40, −38 to-34, −28, 
−22, −19, −15, −14, −6, −5, +5, and + 11. Whereas nucleotide “A” is 
preferable at positions −60, −58, −57, −52, −45, −3, +6, +8, +14, 
+15, +17, and + 18 in the sigma70 promoter sequences. On the other 
hand, at positions −13, 0, and + 20 nucleotide “G” is also preferred, 
and positions −2, −1, and + 1 are also occupied with nucleotide “C.” 
Whereas, on the rest of the positions, both “A” and “T” are the most 
abundant nucleotides in the sigma70 promoter sequences, as shown 
in Figure  3B. In order to represent the-10 and-35 consensus 
sequence, we have generated the motif using MEME software (Bailey 
et  al., 2009) and highlighted the sigma70 promoters’ conserved 
sequences “TATAAT” and “TTGACA” in Supplementary Figure S2.

Performance of machine learning 
classifiers on benchmark dataset

Initially, we have generated more than 8,000 nucleotide-
based features, and then selected 200 most relevant features 
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after applying feature scaling method min-max scaler and 
feature selection method RFE. Using these selected 
features, we have generated various models by implementing 
various machine learning techniques. To compare the 
performance of each generated model, we  have calculated 

different performance measures as reported in Table  1. 
The model developed using SVM-based classifier 
performed best among all the other classifiers with 
97.38% accuracy, 0.996 AUROC, and 0.94 MCC on the 
benchmark dataset.

FIGURE 2

Mono-nucleotide composition of sigma70 promoters and non-promoters. ****p < 0.0001.

A

B

FIGURE 3

Positional preference analysis (A) One sample logo exhibiting nucleotide preference in sigma70 promoter sequences at different positions. (B) Two 
sample logo to exhibit the preference of nucleotides at each position in sigma70 promoter sequences with respect to non-promoter sequences.
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TABLE 2 Comparison of performances of our model with existing method on benchmark dataset evaluated using cross-validation technique.

Methods Sensitivity Specificity Accuracy AUROC MCC

Sigma70Pred 97.44 97.36 97.38 0.996 0.943

iPro70-FMWin 83.81 95.07 91.17 0.960 0.803

70ProPred* 92.40 96.90 95.30 0.990 0.897

iPro70-PseZNC* 80.30 86.80 84.50 0.909 0.663

Z-Curve* 74.60 79.50 77.80 0.848 0.527

IPMD* 82.40 90.70 87.90 – 0.731

iProEP 89.52 64.03 76.88 0.654 0.554

*Reported by the authors in the manuscript. The values in the tables are in bold to represent the best performing classifier or method.

Performance comparison with existing 
methods on benchmark dataset

There are ample of methods which are trained and evaluated 
on the same benchmark dataset such as, 70ProPred (He et al., 
2018), iPro70-FMWin (Rahman et al., 2019a), iPro70-PseZNC 
(Lin et al., 2019), Z-Curve (Song, 2012), IPMD (Lin and Li, 2011), 
iProEP (Lai et al., 2019), and iPromoter-FSEn (Rahman et al., 
2019b). Out of all the considered methods, four methods such as 
70Propred, iPro70-PseZnc, Z-curve, and IPMD were not available 
or working. Therefore, for such methods we have considered the 
performance reported by the authors in their respective articles 
for comparison. For rest of the methods, we have predicted the 
class by providing the benchmark dataset as input and calculated 
the performance measures based on the predictions made by the 
respective methods. We  have compared the performance of 
Sigma70Pred with sigma70 promoter prediction methods and 
found out that Sigma70Pred has outperformed all the considered 
methods, as shown in Table 2. In terms of AUROC, out of the all 
the methods developed on the same benchmark dataset, 
70Properd attained the second highest performance with AUROC 
of 0.990, followed by iPro70-FMWin with AUROC of 0.960.

Performance comparison on 
independent dataset

In order to evaluate the proposed method’s robustness and 
performance, we have also investigate the performance of our 
proposed model on the independent dataset of DNA sequences 
extracted from RegulonDB 10.8. We have also considered the 

existing methods for performance comparison on the independent 
dataset, which were trained and evaluated on different datasets 
such as MULTiPly (Zhang et al., 2019), iPromoter-2L (Liu et al., 
2018), and, iPromoter-2L2.0 (Liu and Li, 2019). Moreover, to 
compare the efficiency of our generated model with deep-learning 
based classifiers, we  have compared the performance with 
methods like iPromoter-BnCNN (Amin et  al., 2020), 
pcPromoter-CNN (Shujaat et  al., 2020), and PromoterLCNN 
(Hernandez et  al., 2022). We  have calculated the different 
performance measures for all the working sigma promoter 
predictors. The results on the independent dataset showed that 
our proposed model is quite robust towards the unseen data and 
performs well on it (Table 3). It also implies that our SVM model 
is significantly free from bias and overfitting on training dataset. 
As shown in Table 3, method named “MULTiPly” considered for 
the comparison which is not able to produce the results, therefore 
we have reported the performance achieved by the authors in this 
method. For comparison, we  have considered the methods 
developed using machine-learning as well as deep-learning based 
classifiers. As exhibited in Table 3, SVM-based model developed 
on top-200 features in Sigma70Pred outperformed all the existing 
approaches in terms of each performance measure. Two-layer 
predictor method iPromoter2L-2.0 achieved the second highest 
accuracy of 83.36% on the independent dataset, followed by 
light-CNN based method PromoterLCNN with 79.56% accuracy.

Implementation of model in web server

In order to serve the scientific community, we  have also 
developed the webserver Sigma70Pred by implementing our best 

TABLE 1 Performance of various machine learning classifiers on benchmark dataset.

Classifier Sensitivity Specificity Accuracy AUROC MCC

DT 74.49 87.14 82.77 0.808 0.62

RF 92.04 91.57 91.73 0.977 0.82

XGB 91.90 92.14 92.06 0.980 0.83

KNN 90.15 91.79 91.22 0.958 0.81

GNB 88.66 88.71 88.70 0.955 0.76

SVM 97.44 97.36 97.38 0.996 0.94

The values in the tables are in bold to represent the best performing classifier or method.
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model to predict the sigma70 promoters. The web server consists 
of three modules namely “Predict,” “Scan,” and “Design.” Our 
final model is based on SVC, it calculates SVC score for a 
sequence. SVC score is proportional to probability of correct 
prediction to promoter. SVC score varies from 0 to 1, higher the 
SVC score chances are higher that sequence is a sigma70 
promoter. To provide balance between sensitivity and specificity, 
we provide default threshold. User may select desire threshold 
depending on their need. The detailed description of each module 
is as follows:

Predict
This module allows users to classify the submitted sequence 

as sigma70 promoter or non-promoter. There is a restriction of 
length in this module, as the model is trained on sequences with 
length 81 bp, hence if the submitted sequence is having a length 
less than 81, “A” will be added as the dummy variable and then, 
the sequence will be classified into one of the class, and if the 
length is greater than 81, only first 81 nucleotides will 
be considered for prediction. The user can submit sequences in 
either FASTA or single line format, and can select the desired 
threshold as SVC score above which the sequence will 
be classified as sigma70 promoter, otherwise non-promoter. The 
user can either provide single or multiple sequences, and can also 
upload the text file containing sequences. The output page 
displays the results in the tabular form, which is downloadable in 
the csv format.

Scan
Scan module allow users to scan or identify the sigma70 

promoter region in given genome. This module does not have any 
length restriction as in the “predict” module. In this module, 
overlapping patterns of length 81 will be generated from submitted 
sequences and then used for prediction. The user can provide 
single or multiple sequences either in FASTA or in single line 
format. The user is also allowed to upload the sequence file. The 
output result will exhibit the overlapping patterns of length 81 
with the prediction as promoter or non-promoter. The result is 
downloadable in the csv format.

Design
Design module allow users to identify the minimum 

mutations that can convert the sigma70 promoter into 
non-promoter or vice-versa. This module also has the restriction 
of sequence length 81, as it generates all the possible mutants by 
changing nucleotides at each position and then make the 
predictions based on the selected threshold. Since, generating all 
possible mutants is a time and computational expensive process, 
hence only one sequence is allowed at a time. The output page 
displays all the possible mutants with its prediction as promoter 
or non-promoter in tabular form which is downloadable in 
csv format.

Standalone
We have also developed Python and Perl-based standalone 

package, which is downloadable from URL: https://webs.iiitd.edu.
in/raghava/sigma70pred/stand.html. The advantage of this 
module is that, it is not dependent on the availability of the 
internet, the user can download these standalone on their local 
machines and can use all the aforementioned modules. This 
module also take the input as single or multiple sequences in a file, 
in either FASTA or single line format. The output will be stored in 
the user-defined file in the comma separated value format.

Discussion

The expression of genes decides the cell’s fate, which is 
regulated by the promoter regions present upstream of the 
transcription start site (Atkinson and Halfon, 2014). The 
interaction between the promoter region and the holoenzyme, 
switch on or off the expression of the respective genes. Various 
sigma factors are associated with the holoenzyme responsible for 
different functions, such as regulating nitrogen levels, controlling 
stationary phase genes, etc. (Paget, 2015). One of the essential 
sigma factors is sigma70, as it regulates the expression of most of 
the housekeeping genes required for the cell’s survival (Paget and 
Helmann, 2003). The accurate identification of the promoter 
regions associated with the respective sigma factors may help in 

TABLE 3 The performance of existing methods on independent dataset.

Methods Sensitivity Specificity Accuracy AUROC MCC

Sigma70Pred 91.45 88.56 90.41 0.953 0.794

iPro70-FMWin 84.12 86.67 85.04 0.921 0.693

iProEP 84.50 53.83 69.30 0.541 0.404

MULTiPly* 90.43 76.93 84.91 – 0.685

iPromoter-2L 86.21 72.81 79.56 – 0.601

iPromoter-2L2.0 88.72 77.91 83.36 – 0.674

iPromoter-FSEn 68.76 68.16 68.46 0.751 0.369

iPromoter-BnCNN 80.64 72.70 76.71 – 0.543

pcPromoter-CNN 81.44 61.07 71.35 – 0.445

Promoter-LCNN 88.77 70.15 79.54 – 0.604

*Reported by the authors in the manuscript. The values in the tables are in bold to represent the best performing classifier or method.
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the understanding of the regulatory mechanism, which can 
further be exploited to treat diseases caused by the disease-causing 
variants. The recognition of the promoter regions has been an 
important aspect of gene structure recognition and it is also the 
fundamental problem in building a network of gene transcriptional 
regulation. However, the experimental methods to identify the 
promoters are laborious, expensive, and time-consuming. On the 
other hand, computational approaches are reliable and fast with 
equivalent accuracy. Although, several methods have been 
developed in the past for the prediction of sigma promoters in the 
DNA sequences based on machine-learning (Lin and Li, 2011; 
Song, 2012; He et al., 2018; Liu et al., 2018; Lai et al., 2019; Liu and 
Li, 2019; Zhang et al., 2019) and deep-learning approaches (Amin 
et al., 2020; Shujaat et al., 2020; Hernandez et al., 2022), but the 
accurate identification of the sigma promoters remained a 
strenuous task due to the inter-and intra-class similarities and 
variations in the different sigma-specific promoter sequences 
(Zhang et al., 2019). It has been seen in the past that promoter 
sequences often differ at one or more locations from the consensus 
sequences (Mrozek et al., 2014, 2016), which makes the task of 
prediction of sigma70 promoters more difficult as sigma70 factor 
specific promoters are responsible for the transcription of most of 
the genes in prokaryotic genome. Moreover, the exponential 
increase in the data of promoter sequences due to the advancement 
in the high-throughput sequencing technology, also increased the 
level of difficulty in the identification of sigma70 promoter regions 
in the DNA sequences. Therefore, an accurate and robust method 
is required that can distinguish the sigma70 promoter sequences 
from the non-promoter sequences.

To understand the preference of nucleotides in the sigma70 
promoter sequences, we have conducted the compositional and 
positional preference analysis for the sigma70 promoter sequences 
(Figures 2, 3). The compositional analysis showed that nucleotides 
“A” and “T” are in higher abundance in sigma70 promoter 
sequences in comparison with non-promoter sequences. For 
positional preference analysis, we have generated one-sample and 
two-sample logo using WebLogo and TSL logo tool. In one-sample 
logo, the preference of nucleotide at each position is shown in 
Figure 3A, however, the consensus sequences at position-10 and-35 
is not clear. As shown by Shultzaberger et al. (2007) the gap between 
the regions-10 and-35 is not fixed, it varies from promoter to 
promoter. Therefore, they have shown the consensus sequences in 
their Figure 2 of the article at-10 and-35 regions in the form of 
sequence logos by vary the spacing between 21 and 26. On the other 
hand, we have generated the sequence logo by taking all the sigma70 
promoter sequences without considering the variability in the 
spacing between the-10 and-35 regions. Whereas, in Figure 3B, 
we  have represented the two-sample logo, by considering the 
sigma70 promoter and non-promoter sequences. It corresponds 
with the compositional analysis that most of the positions in the 
sigma70 promoter sequences are abundant in nucleotides “A” and 
“T” in comparison to the non-promoter sequences.

There are different methods which are specific to the 
classification of sigma70 promoters (Lin and Li, 2011; Song, 2012; 

He et al., 2018; Lai et al., 2019; Rahman et al., 2019a,b) whereas 
others are developed for the identification and classification of 
different sigma promoters such as sigma24, sigma28, sigma32, 
sigma38, sigma54, and sigma70 (Liu et al., 2018; Liu and Li, 2019; 
Zhang et al., 2019; Amin et al., 2020; Shujaat et al., 2020; Hernandez 
et al., 2022). In this study, we have also developed a bioinformatic-
ware to classify the sigma70 promoters using only sequence 
information. The models were trained and evaluated using the 
nucleotide sequences of length 81 bp in the benchmark dataset 
retrieved from RegulonDB9.0 (Gama-Castro et al., 2016), which 
consists of 741 sigma70 promoters and 1,400 non-promoters. 
Initially, we calculated more than 8,000 features for each sequence, 
which were further processed using min-max scaling and top-200 
most relevant features were selected using RFE feature selection 
technique. Further investigation was performed on these selected 
features. Then, we  have implemented six different machine-
learning classifiers to develop the prediction models on the 
selected features. The SVM-based model outperformed all the 
other classifiers with AUROC of 0.996 on the benchmark dataset 
(See Table 1). To understand the advantages and disadvantages of 
a new method, it is important to compare the proposed method 
with the already existing methods. We have considered already 
existing methods, some of them were non-functional, hence 
we have considered the performance reported in their respective 
articles for those methods. For rest of the methods, we have used 
the benchmark dataset to evaluate and compare the performance. 
Our proposed method has outperformed the methods developed 
on the same benchmark dataset, as shown in Table 2. Further, in 
order to check the efficiency of the proposed method, the 
generated model was evaluated and compared with existing 
methods using the unseen independent dataset, where 
sigma70pred outperformed the existing working method with 
AUROC of 0.953 (see Table 3). This comparison signified that our 
feature-set of 200 features is more effective to identify the sigma70 
promoter sequences.

To understand the reason behind the wrong predictions made 
by our proposed model, we have selected all the sigma70 promoter 
sequences which were predicted as non-promoter, and provided 
them to the other existing sigma promoters predicting approaches. 
We found that most of the selected sequences were also wrongly 
predicted by other methods. Further, we checked the similarities 
of these sequences with the benchmark dataset using the “blastn” 
approach. For that, we have created a customized database using 
the sequences in the benchmark dataset by implementing the 
“makeblastdb” module of the BLAST program version 2.1.2. Then, 
we hit the wrongly predicted sequences to the customized dataset 
and considered the top-hit for further analysis. We have observed 
that most of the top-hit were non-promoter sequences, i.e., 
sigma70 promoter sequences in the independent dataset share 
similarity with the non-promoter sequences in the benchmark 
dataset. The negative data in the benchmark dataset used by 
several studies, was generated randomly from the coding and 
non-coding regions of E. coli. K-12 genome. Therefore, there is a 
need to develop the experimentally verified non-promoter 
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sequence dataset to improve the overall performance and 
efficiency of the prediction methods.

Moreover, Shimada et al. (2014) introduced the whole set of 
constitute promoters which was defined as the promoters 
recognized in vitro by the RNA polymerase RpoD holoenzyme 
without needing the additional supporting proteins. They have 
provided the list of the promoter sequences along with the genes 
which is controlled by the respective promoters. In order to 
investigate the efficiency of the our proposed method to classify 
the constitutive promoters, we have extracted the sequences from 
RegulonDB (Tierrafria et al., 2022) and colibir (Medigue et al., 
1993) and used them for the prediction. We were able to extract 
the 329 promoter sequences, which were then submitted to the 
“predict” module Sigma70Pred web server with default 
parameters. 268 (81.46%) out of 329 were predicted as sigma70 
promoters at the default threshold, which was increase to 276 
(83.89%) on dropping the threshold to 0.2. The result on each 
promoter sequence is reported in Supplementary Table S2 along 
with the SVC score. These results signify that our proposed model 
is able to classify the constitutive promoters with reliable accuracy.

Sigma70Pred offers a web server and standalone packages to 
predict the sigma70 promoters using sequence information. This 
method uses 200 different optimal features, and we assume that 
our features have more capability to classify sigma70 promoters. 
Sigma70Pred provides three major modules: predict, scan, and 
design. As the application of our method, the user can scan the 
entire prokaryote genome to identify the sigma70 promoter using 
the scan module. By using the design module, the user can also 
determine the minimum number of mutations required to exploit 
the sigma70 promoter regions, i.e., either induce or deteriorate the 
capability of the sigma70 promoter. As compared to the existing 
methods of predicting sigma70 promoters, Sigma70Pred 
produced commending outcomes. We believe that Sigma70Pred 
will play an essential role in the area of genomic analysis.
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