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Holins and spanins are bacteriophage-encoded membrane proteins that 

control bacterial cell lysis in the final stage of the bacteriophage reproductive 

cycle. Due to their efficient mechanisms for lethal membrane disruption, 

these proteins are gaining interest in many fields, including the medical, 

food, biotechnological, and pharmaceutical fields. However, investigating 

these lethal proteins is challenging due to their toxicity in bacterial expression 

systems and the resultant low protein yields have hindered their analysis 

compared to other cell lytic proteins. Therefore, the structural and dynamic 

properties of holins and spanins in their native environment are not well-

understood. In this article we describe recent advances in the classification, 

purification, and analysis of holin and spanin proteins, which are beginning 

to overcome the technical barriers to understanding these lethal membrane 

disrupting proteins, and through this, unlock many potential biotechnological 

applications.
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Introduction

Bacteriophage are a diverse group of viruses that obligately infect bacteria and are 
ubiquitously found in nature (Suttle, 2005). They are microorganisms of growing scientific 
interest with, as of July 2022, 4,163 complete bacteriophage genome entries in the National 
Center for Biotechnology Information (NCBI; Brister et al., 2015). As parasitic organisms 
co-evolved alongside bacteria, bacteriophages are equipped with specialised bacterial 
infection mechanisms and novel biomolecules with potential for application as therapeutics 
or in industrial processes (Roucourt and Lavigne, 2009; Hampton et al., 2020).

Bacteriophage encoded cell lysis proteins are one such group of novel biomolecules that 
comprise endolysins, holins and spanins. The discovery of endolysin activity dates back to 
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1957, when Jacob et al. reported that endolysins effectively kill 
bacteria (Jacob et al., 1957; Jacob and Fuerst, 1958). The endolysin 
was found to be encoded by the R gene of bacteriophage lambda 
(Bieŉkowska-Szewczyk et al., 1981). Subsequently, a nonsense 
mutation in the lysis cassettes of bacteriophages T4 and lambda 
led to the identification of another lysis protein, holin, encoded by 
the lambda S gene (Josslin, 1970; Josslin, 1971; Reader and 
Siminovitch, 1971). This discovery transformed our understanding 
of endolysin-mediated cell lysis in bacteriophages by revealing its 
multifactorial nature. Later, the discovery of spanins, encoded by 
the Rz-Rz1 genes in lambda, provided another key protein of 
bacteriophage-mediated cell lysis (Young et al., 1979). Holins and 
spanins were later identified as transmembrane proteins that 
accumulate in the membrane to disrupt the inner membrane and 
outer membrane of the bacteria (Reader and Siminovitch, 1971; 
Young et al., 1979; Wilson, 1982), whereas endolysins degrade the 
peptidoglycan layer of the cell wall (Bieŉkowska-Szewczyk et al., 
1981). Together, these proteins help to cleave highly conserved 
bonds of essential components of the peptidoglycan, inner 
membrane, and outer membrane (Nelson et  al., 2012). Thus, 
endolysins, holins, and spanins have gained increasing research 
interest over the past few decades. However, unlike endolysins, 
attempts to produce recombinant holins and spanins using 
Escherichia coli expression systems have proven difficult due to 
their toxicity in the bacterial cell expression system (Pang et al., 
2009; Lu et al., 2020). As such, holins and spanins remain poorly 
studied in comparison to endolysins (Pang et al., 2009).

In this review, we  present the latest developments in the 
understanding of holin and spanin membrane disrupting proteins, 
including the mechanisms of action, potential applications, and 
the challenges to be  overcome for their future application in 
bacterial therapy and other industrial uses.

Holin classification and 
mechanism

Holins have two characteristic features: (1) they can 
be triggered to form a pore by the uncoupler dinitrophenol to 
initiate premature membrane disruption, and (2) their structure 
contains at least one transmembrane α-helical segment (Garrett 
et  al., 1981; Garrett and Young, 1982; Gründling et  al., 2001; 
Reddy and Saier, 2013). In addition, holins and endolysins isolated 
from heterologous bacteriophages often have interchangeable 
activity (Rennell and Poteete, 1985; Young, 1992). Interestingly, 
holin-like proteins are also found in virus-free mammalian cells 
and bacteria, playing key functional roles such as programmed cell 
death (e.g., the Bak, Bax, CidA, LrgA proteins; Patton et al., 2005; 
Pang et al., 2011), biofilm formation (e.g., the CidA, LrgA proteins; 
Sharma-Kuinkel et al., 2009; Moormeier et al., 2013), and gene 
transfer (e.g., GTA holin; Lang et al., 2012).

Bacteriophage holins are classified according to the topology 
of the transmembrane α-helical segments and three classes have 
been widely studied. Class I holins have three transmembrane 

α-helical segments arranged N-out and C-in configuration (Smith 
et al., 1998), whereas Class II holins consist of two transmembrane 
α-helical segments arranged N-in and C-in (Figure 1A; Smith 
et al., 1998). Examples include the class I holin S105 of lambda and 
the class II holin S2168 of lambdoid bacteriophage ϕ21 (Smith 
et al., 1998). These two classes of holins are the most abundant 
holins described in bacteriophages so far. Class III holins have one 
transmembrane α-helical segment and a large periplasmic domain 
arranged N-in and C-out (Figure 1A) and this class of holin is 
found in T4-like and T5-like phages (Shi et al., 2012). An in silico 
study of 52 holin families using the transporter classification 
database showed that the maximum number of transmembrane 
α-helical segments harboured by a holin protein is four (Reddy 
and Saier, 2013); thus, there could potentially be eight different 
topologies of holins in nature.

The primary function of bacteriophage holins is to initiate the 
formation of inner membrane pores during the lytic cycle through 
a process called ‘triggering’ (Chang et  al., 1995). Triggering 
provides the cytoplasmic endolysins access to the peptidoglycan 
layer and subsequent degradation. Holins control the timing of 
cell lysis (the ‘lysis clock’). The lysis clock is regulated by factors 
including the allele type (Chang et al., 1995), rate of transcription 
or translation of the holin gene (Singh and Dennehy, 2014), 
antiholins (discussed later in the review), and environmental 
conditions (e.g., the lysis clock of T4 holin; Wang et al., 1996; 
Gründling et al., 2000; Tran et al., 2005). Studies of the lambda 
S105 and S2168 holins in the last few decades have focused on 
elucidating the triggering pathway based on microscopic, 
biomolecular, functional, and structural studies (Chang et  al., 
1995; Dewey et al., 2010; White et al., 2011; Pang et al., 2013).

Two pathways have been proposed for triggering holin pore 
formation; the canonical and pinholin pathways. Each has 
distinctive morphologies of membrane pore formation and 
cell lysis.

Canonical holins

The canonical pathway is illustrated in Figure 1B and is based 
on studies of the lambda S105 holin as a model for canonical 
holins. Using green fluorescent protein fusions (White et  al., 
2011), cryo-electron microscopy (Dewey et al., 2010; White et al., 
2011), and cysteine-scanning accessibility studies (Savva et al., 
2008; To and Young, 2014), a raft formation model has been 
proposed to describe the canonical holin pathway (Wang et al., 
2003). Once late gene expression of the bacteriophage lytic cycle 
is initiated, homodimers of canonical holins accumulate in the 
inner membrane and endolysins amass in the cytoplasm. 
Accumulated canonical holins are labile and coalesce to form a 
two-dimensional structure in the inner membrane called a “death 
raft” (Wang et al., 2003). After ~1,000–3,000 holins accumulate in 
the raft, tight packing of the holins causes localised lipid depletion. 
The death rafts are permeable to ions and protons and compromise 
the integrity of the inner membrane. Leaching ions and protons 
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FIGURE 1

(A) Transmembrane α-helical segment topology of the most studied holin classes (I-III). (B) Schematic representation of canonical pathway: 
Following the late gene expression initiated in the bacteriophage lytic cycle, canonical holins and endolysins accumulate in the inner membrane 
and cytoplasm, respectively. At an allele-specific time, holins make micron-scale holes in the inner membrane and endolysins escape to the 
periplasm, degrading the peptidoglycan. (C) Schematic representation of pinholin pathway: When late gene expression is initiated, pinholins and 
inactive SAR endolysins accumulated in the inner membrane. At an allele-specific time, pinholins make heptameric channels with a lumen of 
~2 nm which destabilised the proton motive pump. SAR endolysins transform into their active form as they are sensitive to the proton motive 
pump and finally degrade the peptidoglycan. (D) Topology of lambda and lambdoid bacteriophage ϕ21 holins (S105, S2168) and its antiholins (S107, 
S2171). (E) T4 holin complex can make a complex with its RI, RIII antiholins, and DNA to respond to superinfections. (F) Two-component spanins 
(G) Unimolecular spanins (H) Fusion inner and outer membrane.
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across the death raft induces a local reduction in the proton 
motive force (Zagotta and Wilson, 1990; Chang et al., 1995; Savva 
et  al., 2014). Further raft coalescence and decreasing proton 
motive force then lead to the sudden formation of a micron-scale 
hole (Figure  1B; Savva et  al., 2014). This is a non-specific 
formation, as replacement cross-complement activity of holin 
proteins from other bacteriophages is observed (Young, 1992). 
Surprisingly, it has been shown that the infected bacterial cells 
remain viable until the hole is formed (Gründling et al., 2001). 
When the canonical holins form the micron-scale hole, preformed 
endolysins from the cytoplasm can escape to the periplasm and 
degrade the peptidoglycan layer (Reader and Siminovitch, 1971; 
Wilson, 1982).

Pinholins

The S2168 holin gene from lambdoid bacteriophage ϕ21 was 
found to be incapable of complementing the S allele (S105) in 
lambda (Gründling et al., 2001) and this observation led to the 
discovery of the non-canonical pinholin pathway (Park et  al., 
2007; Figure 1C). S2168-GFP fusions and cysteine-accessibility 
experiments indicated that pinholins make heptameric channels 
(Pang et al., 2009) with a lumen of ~2 nm (Figure 1C) instead of 
the micron-scale holes induced by canonical holins (Savva et al., 
2014). In the pinholin pathway, it appears that around 103 
heptameric channels evenly accumulate in the inner membrane to 
collapse the proton motive force (Pang et al., 2009, 2013).

Pinholins are typically found in bacteriophages that also 
encode signal-anchor-release type endolysins, with the signal 
sequence of the signal-anchor-release endolysin exploiting the 
host sec machinery. Unlike canonical endolysins, which 
accumulate in the cytoplasm in active form, signal-anchor-release 
endolysins accumulate in the inner membrane in an inactive 
membrane-tethered form. The tethered signal-anchor-release 
endolysins are proton motive force sensitive. When pinholins 
trigger channel formation, the proton motive force collapses and 
signal-anchor-release endolysins are released from the membrane 
to the periplasm where they refold into an active form and 
hydrolyse the peptidoglycan (Xu et al., 2005; Park et al., 2007). 
signal-anchor-release endolysins hydrolyse the peptidoglycan 
MurNac-GlcNac glycosidic bond. Therefore signal-anchor-release 
endolysins are members of the lysozyme-like superfamily and 
share a common “classic lysozyme” fold (Kuty, 2011; Oliveira 
et al., 2013).

Antiholins

The S105 and S2168 holins have a dual-start motif in the 
upstream region of each coding gene that can also translate the 
S107 and S2171 proteins, respectively (Bläsi et  al., 1990; 
Barenboim et al., 1999). These alternatively transcribed proteins 
are antiholins and are a key determinant in regulating lysis 

triggering time. The S107 and S2171 antiholins possess an 
additional positively charged residue in the N-terminus, which 
changes the structural topology compared to the functional holin 
form (Park et al., 2006; Figure 1D). During holin accumulation 
in the inner membrane, lipid depletion causes a proton motive 
force reduction leading to the conversion of antiholins to their 
functional form, thus removing the topological barrier and 
causing a sudden amplification of the functional holins. This, in 
turn, leads to a sudden reduction of proton motive force 
reduction and lytic cascade (49, 50). Although S107 and S2171 
antiholins have been widely studied (White et  al., 2010), the 
architecture of antiholins can be complex. For example, T4 phage 
harbour both cytoplasmic and periplasmic antiholins, which 
create a complex that can respond to periplasmic DNA resulting 
from superinfections that triggers a delay hole formation 
(Figure 1E; Krieger et al., 2020).

Spanins

Bacteriophage spanins are unique to phage that infect Gram-
negative bacteria, given that Gram-positive organisms do not 
possess an outer membrane. Spanins have a diverse genetic 
architecture, with two main types identified: two-component 
spanins (Figure  1F) and unimolecular spanins (u-spanins; 
Figure 1G). Recent in silico studies identified 528 two-component 
spanins and 58 unimolecular spanins from the NCBI reference 
sequence database (Berry et al., 2013; Cahill et al., 2017a; Kongari 
et al., 2018). Two-component spanins comprise two membrane 
proteins, an outer membrane lipoprotein (o-spanin) and an 
integral inner membrane protein (i-spanin). There are three 
different ways of encoding o-spanin and i-spanin in the phage 
genome. (i) two genes encoding these proteins may be nested (e.g., 
in lambda and T7 the o-spanin gene is nested within the i-spanin 
gene; Kongari et al., 2018), (ii) two genes may be overlapped (e.g., 
in P2 the o-spanin gene extends beyond i-spanin gene; Kongari 
et  al., 2018), or (iii) two genes may be  separated (e.g., in T4; 
Kongari et al., 2018). However, u-spanins (e.g., in T1) are encoded 
as a single gene in the bacteriophage lysis cassette (Summer 
et al., 2007).

The mechanism of spanin activity has been studied by 
examining mutations in the two-component spanin genes of 
lambda, which caused spherical deformed bacterial cells, 
indicating incomplete cell rupture (Summer et  al., 2007). 
Furthermore, phase-contrast microscopy revealed the inner 
membrane and outer membrane were intact, but the peptidoglycan 
was not visible. Thus, the key role of spanins is theorised to be the 
fusion of the inner and outer membranes after peptidoglycan 
hydrolysis by endolysins, which leads to cell rupture (Berry et al., 
2012). This membrane fusion model is supported by experiments 
that indicate spanins accumulate in the envelope as dimers 
bridging inner membrane and outer membrane (Berry et al., 2012, 
2013). These bridges span the whole periplasm and are threaded 
through the peptidoglycan. Peptidoglycan layer avoids the 
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formation of the spanin’s innate hairpin-like conformation. When 
endolysins begin to degrade the peptidoglycan, spanins 
oligomerize by coiled-coil periplasmic domains and fuse the inner 
membrane and outer membrane to release cytoplasm content to 
the environment (Figure 1H; Berry et al., 2010; Rajaure et al., 
2015; Cahill et al., 2017a, 2017b).

Fluorescence microscopy and genetic studies suggest that 
u-spanins use similar accumulation and fusion mechanisms as 
two-component spanins, but rely on β-sheet oligomerization and 
single-molecule expansion through peptidoglycan (Kongari 
et al., 2018).

Strategies for elucidating holin 
and spanin structure and function

Expression of holins and spanins under laboratory conditions 
is challenging due to their cellular toxicity. Many studies have 
observed that the viability of bacterial cells decreased rapidly after 
the induction of plasmids containing holin and spanin genes 
(Chang et al., 1995; Summer et al., 2007; Lu et al., 2020). Despite 
the low viability of the resultant bacterial cells, most of the studies 
have investigated holins and spanins utilising His+SUMO / His 
tagging and solubilization in non-ionic detergent (n-Dodecyl-B-
D-maltoside; Park et al., 2006; Savva et al., 2008; Pang et al., 2009). 
This has enabled progress in characterising some of the topology 
and function of holins and spanins using site-directed DNA 
mutagenesis, chemical cross-linking, and cysteine modification 
analysis (Savva et al., 2008; Pang et al., 2009; Berry et al., 2013). 
The use of a planar lipid bilayer system in place of detergents has 
also been suggested (Young, 2013). However, the low yield of 
holins and spanins produced by these techniques has hindered 
high-resolution structural studies such as crystallography or NMR 
(Pang et al., 2009).

Recently the first biophysical study was conducted on the 
S2168 pinholin, whereby S2168 and its inactive version (S21IRS) 
were made using fluorenylmethyloxycarbonyl-based solid-phase 
peptide synthesis (Fmoc SPPS) in place of traditional bacterial 
expression systems (Drew et al., 2019). This method produced a 
high yield of proteins with intrinsic α-helical secondary structure 
and enabled the study of their biophysical properties in 
1,2-dimyristoyl-sn-glycero-3-phosphocholine proteoliposomes to 
simulate a native-like environment. In addition, Fmoc SPPS was 
able to integrate spin-labels in the sequence to enable analysis by 
electron paramagnetic resonance and nuclear magnetic resonance 
(Ahammad et  al., 2019). Using continuous-wave electron 
paramagnetic resonance, the authors were able to determine the 
mobility of each domain to reveal the structural topology of 
proteins with respect to the lipid bilayer. 31P and 2H solid-state 
nuclear magnetic resonance spectroscopy revealed the 
hydrophobic core and phosphorus head group interactions for the 
lipid bilayer (Drew et al., 2020).

Artificial intelligence and machine learning have emerged as 
potential tools to predict protein structures where existing 

methods are challenging, such as holins. Notably, AlphaFold 
(Jumper et  al., 2021), which uses neural networks and deep 
learning techniques can predict protein structures with high 
accuracy. AlphaFold was trained on structures in the Protein Data 
Bank (Berman et al., 2000) to predict the distributions of distances 
between the β-carbon atoms of pairs of residues of a given protein 
and construct the 3D structure of the protein without using 
templates (Senior et al., 2020).

To demonstrate the potential of artificial intelligence and 
machine learning to determine a holin structure, we constructed 
the bacteriophage T4 holin T and antiholin RI structures using 
AlphaFold Colab under default settings (Figures 2A,D). AlphaFold 
Colab is a simplified version of AlphaFold that does not use 
homologous structures to construct structures (Jumper et  al., 
2021). We  chose T4 holin T and antiholin RI as the crystal 
structures of the soluble periplasmic domains were available in the 
PDB (Krieger et  al., 2020) and could be  used to validate the 
predicted structures. The two main entries for the periplasmic 
domain T4 holin structures are holin T-antiholin RI complex 
(6PSK, 6PXE, and 6PX4) and free antiholin RI (6PSH; Krieger 
et al., 2020). Our analysis showed that the AlphaFold predicted 
structures of the soluble part of holin T and antiholin RI both 
aligned closely to the PDB structure of holin T-antiholin RI 
complex (6PSK; Figures 2B,C,E,F). On the contrary, the AlphaFold 
predicted antiholin RI structure did not match the PDB structure 
of the free antiholin RI (6PSH; Figures 2G,H). However, the PDB 
antiholin RI structure in the holin T-antiholin RI complex (6PSK) 
is more accurate than the PDB free antiholin RI (6PSH), as the 
latter crystallizes as a domain-swapped homo-tetramer (Krieger 
et al., 2020). Thus, AlphaFold predicted T4 holin T and antiholin 
RI structures could be  useful predictors for their complete 
structures, including transmembrane domains.

Initially, it was thought that soluble periplasmic antiholin RI 
harboured a signal-arrest-release domain (Krieger et al., 2020). A 
model of the holin T-antiholin RI complex was made by Krieger 
et  al. (2020) using this data (Figure  2I; Krieger et  al., 2020). 
However, more recently, it was reported that RI has a cleavable 
signal peptide, not a SAR domain, and a new model of the RI–T 
complex was developed using the Chiron server (Figure  2J; 
Ramachandran et  al., 2011; Mehner-Breitfeld et  al., 2021). 
Surprisingly, the structure of holin T in the new model is a good 
match to the AlphaFold structure we  predicted for holin 
T. Therefore, AlphaFold may be a good tool to determine holin 
and spanin structure and validate experimental structural data.

Potential applications for 
membrane disrupting proteins

Bacteriophage encoded lysis proteins are being developed for 
a variety of applications across the medical, food, biotechnological, 
and pharmaceutical sectors. However, it is noteworthy that 
applications of spanins are not as widely reported as that of 
endolysins or holins. This may be as the cell wall degradation 
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caused by the holin-endolysin system is sufficient alone to cause 
lysis in the industrial environment. For example, osmotic shock, 
shearing forces, or high temperatures could be sufficient to execute 

the function of the spanin (Young et al., 1979; Casjens et al., 1989; 
Berry et al., 2013). However, Rajaure et al. (2015) have shown the 
potential for using spanins to deliver drugs and biochemicals into 
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FIGURE 2

(A) AlphaFold Colab prediction of complete holin T structure. The colour of the predicted holin T structure represents the score of the predicted 
local distance difference test (pLDDT). (B) Structure comparisons of AlphaFold Colab predicted holin T (blue) and 6PSK(soluble domain of the 
resolved holin T and RI antiholin complex; RMSD = 0.688 angstroms). (C) An enlarged version of structure comparisons of AlphaFold Colab 
predicted holin T (blue) and 6PSK (red; soluble domain of holin T and green; soluble domain of RI antiholin). (D) AlphaFold Colab prediction of RI 
antiholin. The colour of the predicted RI antiholin structure represents the score of the predicted local distance difference test (pLDDT). 
(E) Structure comparisons of AlphaFold Colab predicted RI antiholin (blue) and 6PSK (soluble domain of the resolved holin T and RI antiholin 
complex; RMSD = 1.537 angstroms). (F) An enlarged version of structure comparisons of AlphaFold Colab predicted RI antiholin (blue) and 6PSK 
(red; soluble domain of holin T and green; soluble domain of RI antiholin). (G) Structure comparisons of AlphaFold Colab predicted RI antiholin 
(blue) and 6PSH (soluble domain of the resolved RI antiholin monomer; RMSD = 21.077 angstroms). (H) An enlarged version of structure 
comparisons of AlphaFold Colab predicted RI antiholin (blue) and 6PSH (purple). (I) RI–T complex model with RI SAR domain by Krieger et al. 
(2020). (J) RI–T complex model with cleavable signal peptide (new model) by Mehner-Breitfeld et al. (2021).
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cells by membrane fusion (Rajaure et al., 2015). Although the 
suitability of spanin for drug delivery fusion studies has not been 
validated previously, a similar fusion mechanism has shown 
potential to engineer exosome–liposome and live cells-liposomes 
hybrids (Sato et al., 2016; Sun et al., 2018).

In the medical sector, there is high demand for alternative 
treatments, such as holin and endolysin therapies, where their 
use is less likely to develop resistance compared to conventional 
antibiotics (Hermoso et  al., 2007). Holins have also shown 
promise as enhancers for endolysin therapy. A synergistic effect 
was reported between holin and endolysin isolated from 
bacteriophage SMP in treating 12 bacterial strains, including 
strains of Staphylococcus aureus, Bacillus subtilis, and Salmonella 
enterica whereas holin alone lysed only two strains of S. aureus 
and B. subtilis (Shi et al., 2012). A recent study showed that 
fused holin-endolysin protein (holin fused at the N terminus of 
endolysin) enhances catalytic activity against a broad range of 
multi-drug-resistant gram-negative and gram-positive bacterial 
pathogens (Basit et al., 2021). Holins could also be exploited to 
deliver targeted therapies to human cells. The manipulation of 
lysis time via holins in a suicidal strain of Listeria monocytogenes 
was shown to have the potential to deliver proteins or nucleic 
acids to human intestinal epithelial cells (Kuo et  al., 2009). 
Another study demonstrated the ability of lambda holin to kill 
eukaryotic tumour cells including human mammary and cervix 
carcinoma cell lines in vitro and human embryonic kidney cell 
line HEK293 in vivo. It was thought that holins oligomerise in 
the membranes of cell organelles to kill tumour cells. This is due 
to the similarities of the eukaryotic organelle endomembrane 
to their prokaryotic endosymbiont progenitors (Agu 
et al., 2006).

Further studies need to be undertaken prior to starting clinical 
trials with holins and spanins. Protein properties such as 
conformations, activity and stability can be  affected by pH, 
proteases or peptidases, and macrophage activity in-vivo (Uchenna 
Agu et al., 2001; Bruno et al., 2013; Saravanan et al., 2013). At 
physiological salt conditions, the electrostatic interactions 
between holins and the bacterial cell membrane may be  less 
effective. Additionally, non-specific interactions between holins 
and other molecules (e.g., albumin, apolipoprotein A-I) are likely 
to be formed in the presence of human serum and plasma (Wang 
et al., 1998; Sivertsen et al., 2014; Mohamed et al., 2016; Starr et al., 
2016). These interactions may reduce the treatment efficacy. 
Furthermore, hemolytic or cytotoxic effects need to be investigated 
to ensure the proteins do not localize in eukaryotic cell membranes 
and to understand the risk of releasing endotoxins when bacteria 
are lysed (Ozsoy et al., 2009; Laverty and Gilmore, 2014; Murray 
et al., 2021). Finally, the production cost and scalability of these 
proteins should be  established as they may exceed that of 
traditional antibiotics (Boto et  al., 2018). However, protein 
engineering, delivery systems such as liposome encapsulation, 
hydrophobicity or electrostatic modification through peptide 
sequence modification may be  useful tools to overcome 
these challenges.

In the food sector, these membrane disrupting proteins 
could be  used as effective food preservatives by preventing 
microbial growth. E. coli cell lysates containing an overexpressed 
holin-like protein Tmp1 inhibited the growth of gram-positive 
foodborne pathogens such as B. subtilis (Rajesh et al., 2011). 
Another study conducted on L. monocytogenes, an opportunistic 
foodborne pathogen responsible for listeriosis and a critical 
threat to public health, showed the potential of using HolGH15 
holin as an antimicrobial agent (Song et al., 2021). Interestingly, 
HolGH15 decreased 106 CFU mL−1 of L. monocytogenes to an 
undetectable level at 4°C, which is important as L. monocytogenes 
is one of the few pathogens able to grow at food refrigeration 
temperatures. Several studies suggest bacteriophage lysis 
proteins can be used as effective preservatives for a wide range 
of food items including fish, milk, cheese, eggs, and poultry (de 
Ruyter et al., 1997; Mayer et al., 2010; Han et al., 2014; Song 
et al., 2021).

There are also industrial applications for bacteriophage lysis 
proteins. For example, programmed autolysis of genetically 
engineered cyanobacteria by holin and endolysin induction with 
Ni2+ ions led to the effective release of hydrocarbons from the cells 
in biofuel production (Liu and Curtiss, 2009). Furthermore, it has 
been demonstrated that T4 holins and endolysins cloned in 
cyanobacterial cells can be engineered to be induced by green light 
to harvest biofuels (Miyake et al., 2014). In addition to biofuels, 
the holin-endolysin system has also been proposed to aid the 
release of several other valuable cytoplasmic biomaterials from 
microbes such as drugs, fatty acids, and nucleic acids efficiently 
and inexpensively (Gao et al., 2013).

Perspectives and conclusions

Holins and spanins are a diverse group of bacteriophage-
encoded bacterial membrane proteins and the diversity of these 
membrane disrupting proteins provides a fertile ground for 
developing novel antibacterial applications across many sectors.

Currently, most of the biomolecular, functional, and structural 
studies of holins and spanins are examined using E. coli expression 
systems, but this is challenging due to toxicity. Recent advances in 
protein synthesis and artificial intelligence (AI) and machine 
learning (ML) approaches are helping to overcome this challenge. 
However, our understanding of holins and spanins largely 
originates from studies in ionic buffers and detergents and so 
structural and dynamic information for these proteins in their 
native environment are not well understood. The use of cell-free 
systems such as nanodiscs, micelles, or giant unilamellar vesicles 
(GUVs; Gessesse et al., 2018; Novikova et al., 2018) could be a 
useful future approach to express and analyse these toxic 
membrane proteins.

Using native mass spectrometry for analysing membrane 
proteins has advantages compared to X-ray crystallography or 
NMR such as speed, capability to deal with heterogeneous 
samples, and lower limits of detection. Advancements in ion 
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sources used for mass spectrometry, for instance, nano-
electrospray ionization (nESI) and laser-induced liquid bead 
ion desorption (LILBID), shows promising results for analysing 
membrane proteins in their native form (Peetz et al., 2018). 
Similarly, hydrogen deuterium exchange (HDX), fast 
photochemical oxidation of proteins (FPOP), and cross-linking 
mass spectrometry (XLMS) could be  valuable new tools to 
determine membrane protein characteristics such as protein–
protein or protein-lipid interactions, aggregations, determining 
binding affinity, hidden conformations, and structure 
elucidation (Li et al., 2016; Lu et al., 2016; Frieden et al., 2017; 
Wang et al., 2017; Van et al., 2020). As such these techniques 
could be used to uncover the topology, dynamic functions and 
oligomerisation of holins and spanins more rapidly and 
cost-effectively.

Revealing the functional and dynamic mechanisms of holins 
and spanins would help develop medical and commercial 
applications. For example, optimization of the lysis clock 
mechanism of holin endolysin engineered bacterial cells would 
be  economically beneficial for some applications such as 
bio-fermentation, biofuel and bio-based chemicals. Exogenous 
applications could be challenging as aggregates of 3 × 103 canonical 
holins (Zagotta and Wilson, 1990; Chang et al., 1995) or 7 × 103 
pinholins (Pang et  al., 2009, 2013) per cell are needed for 
membrane disruption. Moreover, triggering is regulated by allele 
type, antiholin ratio and more importantly biochemical 
environment of the cytoplasm and periplasm. Surprisingly, several 
studies have shown that the synergistic effect between endolysins 
and holins results in beneficial outcomes for treating multidrug-
resistant bacteria and carcinogenic cells (Agu et al., 2006; Shi et al., 
2012). These findings suggest the potential for wider applications 
of engineering the holin-like protein family, such as Bax and Bak, 
to selectively permeabilize eukaryotic cell membranes. There is a 
large knowledge gap in the exogenic application potential of these 
proteins which needs to be addressed for their full potential to 
be realised.

There are, however, many questions still to be  addressed. 
For example:

 • On the lysis clock: Can the triggering time be predicted 
or optimized precisely? How can the role of antiholin 
function in triggering be described in antiholin free phage 
life cycle? Do antiholin free bacteriophages have non-dual-
start antiholins?

 • Regarding oligomerization: What are the key 
biophysical properties of holins that drive the formation of 
death-raft or pinholin oligomerisation?

 • On exogenic membrane permeabilization: Do exogenic 
treatment effects primarily arise from inhibition, toxicity, or 
outer membrane permeabilization?

 • Biophysical characterization: Which techniques are 
suitable to handle low quantity, heterogenic samples to 
characterize these proteins? How to create an environment to 
mimic the proton motive force in planar lipid bilayer systems?

 • Toxicity and stability studies: Can holins or spanins 
oligomerize in mammalian organelle cell membranes? What 
would be  the autoimmune reaction in mammalian cells? 
What is the resistance to proteases?

 • Scaling up: What would be the best strategy to maximize 
the holin and spanin yield? What is the best way to manage 
leaky expressions?

To summarize, holins and spanins have co-evolved to 
disrupt the bacterial cell membrane. The elegant membrane 
disruption mechanisms of these proteins have only recently 
begun to be  fully understood and advances in analytical 
techniques have promise to further advance our understanding. 
Studying the biophysical and mechanistic properties of 
these membrane disruptors will answer some fundamental 
questions in cell biology and open new avenues for their 
biotechnological use.
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