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Knowledge of in situ diet of widespread rotifers is crucial for accurately 

understanding the trophic position, ecological function, and adaptability to 

environmental changes in aquatic ecosystems. However, it is challenging 

to achieve the in situ diet information due to the lack of efficient and 

comprehensive methods. Here, we  investigated the diet composition of 

Polyarthra in a subtropical lake using high-throughput sequencing (HTS) 

of a rRNA metabarcode for Polyarthra and ambient water samples. After 

eliminating Polyarthra sequences, a total of 159 operational taxonomic units 

(OTUs) from taxa in 15 phyla were detected from Polyarthra gut content 

samples. Most of the OTUs belong to Chlorophyta, followed by unclassified 

Fungi, Chrysophyta, Dinoflagellata, Ciliophora, Bacillariophyta, Cryptophyta, 

Arthropoda, Cercozoa, Mollusca, Apicomplexa, Haptophyta, Amoebozoa, 

Chordata and other eukaryotes. Our results showed that Polyarthra mainly 

grazed on Chlorophyta, which may result from the high relative abundance of 

Chlorophyta in ambient waters. In contrast, Chrysophyceae and Synurophyceae 

were enriched in Polyarthra’s gut, indicating that this rotifer prefers these 

taxa as food. Moreover, correlation analysis showed that total nitrogen, 

transparency, depth, Chlorophyll-a and total phosphorus were key factors 

for the variation of the eukaryotic community in the Polyarthra gut contents. 

When the concentration of nutrients in the water environment decreased, 

Polyarthra shifted from herbivorous feeding to more carnivorous feeding. 

Thus, Polyarthra is generally omnivorous but preference for Chrysophytes and 

Synurophytes, and it responds to the environmental changes by adopting a 

flexible feeding strategy. This could partly explain why the widespread rotifers 

have apparently wide tolerance toward spatial and environmental changes.
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Introduction

Rotifers, a group of essential zooplankton in aquatic 
ecosystems, are sensitive to changes of the environment, acting as 
reliable indicators of the trophic status (Sládeček, 1983; Liang 
et al., 2020). Rotifers connect primary producers and secondary 
consumers, playing an important role not only in the food chain 
but also the micro-food web (Arndt, 1993; Galir Balkić, 2019). 
Polyarthra dolichoptera and Polyarthra vulgaris, cosmopolitan 
rotifer species, are more tolerant to seasonal changes than other 
rotifers and widely dominant not only in freshwaters but also 
brackish waters (Liang et al., 2022). However, it is still unclear why 
these rotifers have a strong adaptability to environmental changes. 
On the one hand, their higher genetic diversity may be the reason 
for them to adapt to specific habitats (Obertegger et al., 2014). On 
the other hand, the adaptation for survival of widespread species 
could be attributed to their tolerances to harsh environment (e.g., 
thermal and toxins stress), as well as their wide food spectrum 
(Boersma et al., 2016; Liang et al., 2017; Lin et al., 2018).

Studying the diets of widespread species is an important 
approach to clarify their trophic position and ecological function 
in aquatic ecosystems, understanding exchanges of material and 
energy transfer through food webs affected by environmental 
changes (Boersma et  al., 2016; Hu et  al., 2018). The diets of 
primary consumers may reflect both environmental quality and 
their survival status. Therefore, the variations of diet composition 
may help us to understand their survival strategies. Many studies 
demonstrated that Polyarthra not only grazed on phytoplankton 
but also consumed ciliates (Arndt, 1993; Joaquim-Justo et  al., 
2004). However, its feeding preference among different prey 
species still needs further investigation.

Previous dietary studies on zooplankton have mainly been 
based on traditional methods, such as morphological identification 
on gut contents, feeding behavioral observation under microscope 
and laboratory experiments (Arndt, 1993; Drzewicki et al., 2015; 
Sarma et al., 2019). These approaches do not provide complete 
information on food spectrum of rotifers in natural waters. 
Although natural dietary information can be  obtained from 
feeding behavioral observation of wild-caught zooplankton, the 
currently available microtechnique is challenging because some 
zooplanktons with strong escaping ability are hard to follow and 
their fragmental prey can be extremely difficult to identify (Hu 
et al., 2014). While information from incubation experiments has 
constituted the backbone of aquatic planktonic trophic ecology, it 
falls short in documenting the full range of the trophic linkages 
among the complex components in the natural environment (Hu 
et al., 2015). In addition, pigment analysis has been used to study 
the prey diversity, but it is limited to phytoplankton and are of low 
taxonomic resolution (Turner, 2004). The approach using 
fluorescent microparticles successfully estimated the predation of 
rotifers on ciliates but only under semi-in situ conditions 
(Joaquim-Justo et al., 2004). Also, stable isotope analysis of fatty 
acids is reliable in tracing sources of nitrogen or carbon and 
provide information of trophic level, but still could not depict the 

whole picture of diet composition (Gonçalves et al., 2012; Boersma 
et al., 2016).

In recent years, DNA-based methods have been widely 
applied to study the feeding ecology of microzooplankton due to 
its sensitivity, specificity and rapidness over traditional methods. 
The 18S ribosomal RNA gene (18S rDNA) is widely used in PCR 
as a reliable taxonomic marker because it consists of multiple 
copies in the genomes of eukaryotic organisms and the 
hypervariable region can be  used to distinguish genetic 
differences among species (Hu et al., 2014). Universal 18S rDNA 
primers (targeting the hypervariable V4 region) have been 
proven as an effective and efficient method in studying the 
eukaryotic diversity (Cheung et al., 2010). Although clone-based 
sequencing has successfully explored the in situ diet of copepod, 
the data generated by this approach only provide general 
information on the structure of eukaryote communities but are 
not sufficient for meaningful comparisons among libraries 
(Cheung et  al., 2010). On the contrary, high-throughput 
sequencing (HTS) can provide semi-quantitative information on 
the contribution of different prey to the diet of a consumer and 
detect rare prey species in gut contents (Ho et al., 2017). A weak 
but positive relationship between relative read abundance 
(eDNA) and biomass (traditional approach) has been found in 
recent studies of zooplankton (Ershova et  al., 2021), benthic 
invertebrate (Klunder et al., 2022) and fish (Stoeckle et al., 2021). 
HTS has been successfully used to detect the food composition 
of invertebrates, mollusca, fish and marine mammal (Ho et al., 
2017; Lin et al., 2018). Thus, it is a promising method for dietary 
studies of microorganisms such as rotifers.

The aims of this study were: (1) to provide more detailed 
information on the diet spectrum of rotifer Polyarthra, exploring 
the food resources of this widespread rotifer; (2) to characterize 
the in situ diet composition of Polyarthra and the feeding 
responses to environmental changes; (3) to understand the feeding 
strategy that enables widespread rotifers to survive and thrive 
under different trophic conditions.

Materials and methods

Sample collection

A total of 24 samples, including 12 rotifer samples and 12 
ambient water samples were collected from Lake Liuye, Changde, 
China (Supplementary Figure S1; Supplementary Table S1). The 
average interval between sampling sites was set to about four 
kilometers. Samples were taken on a boat at every site quarterly 
from December 2017 to September 2018. The ambient water 
samples (1 L) were collected with polyethylene bottles from the 
surface and subsurface layer. The  water samples were filtered 
immediately on a 0.2 μm polycarbonate membrane (EMD 
Millipore GTPP04700, USA) and stored at −80°C. Rotifer samples 
were collected by towing a plankton net (mesh size 30 μm) 
horizontally at surface and subsurface depths for 5 min. To prevent 
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changes in rotifer gut contents in the sampling process, rotifers 
samples were fixed on site immediately in neutral Lugol’s solution 
at 2% final concentration and transported in a cooler before 
storing at −20°C.

Water temperature (Temp), dissolved oxygen (DO), pH, and 
salinity, were measured using a calibrated multiprobe (YSI-Plus, 
USA). Water depth (Dep) was measured using a fathometer 
(SM-5, USA). Water transparency (SD) was measured with a 
Secchi disc. Chlorophyll-a (Chl-a), chemical oxygen demand 
(CODMn), total phosphorus (TP), ammonium nitrogen (NH4-N) 
and total nitrogen (TN) were determined in the laboratory 
following standard analytical methods (MEE, 2002).

In the laboratory, Polyathra dolichoptera and P. vulgaris were 
identified and 50–100 individuals of similar size were isolated with 
sterilized micropipettes and Sedgewick-Rafter chambers under 
the stereo microscope (Supplementary Figure S2). The isolated 
individuals were serially rinsed four times thoroughly with double 
distilled water under the stereo microscope, examined to ensure 
no attachment of other visible organisms on the body surface and 
appendages. All washed individuals were transferred into a 1.5 ml 
Eppendorf tube for DNA extraction.

DNA extraction, amplification, and 
sequencing

The Polyarthra rotifers in the 1.5 ml EP tube were homogenized 
using a sterilized disposable grinding rod. Total DNA in each 
rotifer sample was then extracted following the HotSHOT protocol 
(Montero-Pau et  al., 2008). Total DNA in each ambient water 
sample was extracted from the polycarbonate membrane using 
DNA Lysis buffer + protein K + CTAB + Clean & Concentrator kit 
(Zymo Research, USA) methods following the improved protocol 
(Yuan et al., 2015). The concentrations and purities of DNA were 
measured on a NanoDrop 2000 Spectrophotometer.

The V4 region of the 18S rRNA gene was amplified to detect 
the eukaryotic communities in both Polyarthra gut contents and 
ambient waters using universal primers 528F (5′-GCGGTAAT 
TCCAGCTCCAA-3′) and 706R (5′-AATCCRAGAATTTCACC 
TCT-3; Cheung et  al., 2010). Thermal cycling conditions of 
amplification were: 3 min of denaturation at 94°C, followed by 
27 cycles of 30 s at 94°C, 30 s at 55°C, 30 s at 72°C and a final 
extension at 72°C for 5 min. PCR reactions were performed in 
triplicate 20 μl mixture containing 4 μl of 5 × FastPfu Buffer, 2 μl 
of 2.5 mM dNTPs, 0.8 μl of each primer (5 mM), 0.4 μl of FastPfu 
Polymerase and 10 ng of template DNA. The PCR products were 
extracted from a 2% agarose gel and further purified using the 
AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, Union 
City, CA, USA) and quantified using QuantiFluorTM-ST 
(Promega, USA) according to the manufacturer’s protocol. 
Purified amplicons were pooled in equimolar and paired-end 
sequenced on an Illumina Miseq platform (Illumina, San Diego, 
USA) using NEXTFLEX Rapid DNA-Seq Kit. Sequencing was 
conducted in the Shanghai Meiji Sequencing Centre.

Sequencing data processing and 
statistical analyses

Raw FASTQ files were demultiplexed, quality-filtered by fastp 
and merged by FLASH to minimize the effects of random 
sequencing errors (Magoč and Salzberg, 2011). Briefly, sequences 
were removed if: (1) they contained ambiguous base calls, (2) their 
lengths were shorter than 240 bps or the average quality score were 
<20. After sequence screening, operational taxonomic units 
(OTUs) were clustered with a 97% similarity cutoff using UPARSE 
(version 7.11) and chimeric sequences were identified and 
removed using UCHIME (Edgar, 2013). The taxonomy of each 
OTU representative sequence was analyzed using RDP Classifier 
algorithm2 against the NCBI nucleotide sequence database NT 
(NT_v20200327/18S_eukaryota) using confidence threshold of 
0.7. Finally, the corresponding species information of each OUT 
was obtained.

Since this study was aimed at analyzing the composition of 
eukaryotes in the Polyarthra gut contents, it was necessary to 
remove the sequences of Polyarthra themselves from the samples 
before analysis. Polyarthra reads from its gut contents samples 
were subtracted before relative abundance (based on reads 
abundance) calculation. Rarefaction curves were plotted on 
OUT level by using Mothur for each sample (Schloss et  al., 
2009). Venn diagrams were generated with online tools to show 
the common and unique species in ambient water and Polyarthra 
samples.3

To calculate the differences of the eukaryotic communities 
between the ambient water and Polyarthra samples, the 
dissimilarity tests between groups were performed by the analysis 
of similarities (ANOSIM). In general, R  > 0.75 means large 
difference; 0.75 > R > 0.5 means medium difference, 0.5 > R > 0.25 
means small difference. Food selection of Polyarthra was estimated 
using the selectivity index E (Ivlev, 1961; Cotonnec et al., 2001), 
given by E = (ri – pi)/(ri + pi). ri is the relative abundance of one 
eukaryotic genus in the diet of Polyarthra sample. While pi is the 
relative abundance of the same eukaryotic genus in the ambient 
water sample. In general, E > + 0.25 indicates a preference; E < − 
0.25 indicates discrimination against particular prey items; − 
0.25 < E < + 0.25 indicates non-selective feeding.

A heatmap was also generated using the R ‘vegan’ package. 
Canonical correspondence analysis (CCA) or Redundancy 
analysis (RDA) was used to identify the effects of environmental 
factors on the in situ diet composition of Polyarthra. Whether 
CCA or RDA model was used was determined based on the 
community composition by Detrended Correspondence Analysis 
(DCA). If the longest gradient was >4, the unimodal method 
(CCA) was applied. If that value was <3, the linear method (RDA) 
was a better choice. All the above analyses were conducted with R 

1 http://drive5.com/uparse/

2 http://rdp.cme.msu.edu/

3 http://bioinformatics.psb.ugent.be/webtools/Venn/
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(version 4.1.14) using ‘vegan’, ‘graphics’, ‘maptools’ and ‘ggplot2’ 
packages. The relative abundance difference and the significance 
level of species between ambient water and Polyarthra samples 
were compared by Wilcoxon ranksum test using ‘stats’ packages. 
The calculated value of p was gone through FDR Correction, 
taking FDR ≤ 0.05 as a threshold.

A phylogenetic tree was constructed based on sequences of 
dominant OTUs in Polyarthra samples using a Maximum Likelihood 
method with a bootstrap value of 1,000 displayed by MEGA X and 
the plot was generated on iTOL (Letunic and Bork, 2011).

Results

Compositions of eukaryotes in the 
Polyarthra gut contents and the ambient 
waters

Rarefaction curves for all the samples were nearly saturated 
(Supplementary Figure S3), suggesting sufficient sequencing 
depth for this study. High-throughput sequencing of 18S rRNA 
V4 region yielded 715,818 clean metabarcode sequences from all 
12 ambient water samples. After blasting against NCBI using 
BLASTN, a total of 1,348 OTUs in ambient water samples were 
divided into five groups. The highest numbers of OTUs was 
observed as unclassified eukaryotes (704 OTUs), followed by 
phytoplankton (including dinoflagellates; 389 OTUs), fungi (156 
OTUs), protists (excluding dinoflagellates; 63 OTUs), and 
zooplankton (36 OTUs; Figure 1A).

After eliminating Polyarthra sequences, 6,789 sequences were 
obtained for all 12 Polyarthra gut contents samples. A total of 159 
OTUs were observed in Polyarthra gut contents. Most of the 
observed OTUs belonged to phytoplankton (100 OTUs), followed 
by fungi (28 OTUs), protozoa (17 OTUs), zooplankton (8 OTUs) 
and unclassified eukaryotes (6 OTUs; Figure 1B). Moreover, 129 

4 http://www.r-project.org/

OTUs were shared between the ambient waters and the Polyarthra 
gut contents samples (Supplementary Figure S4).

Phylogenetic tree of OTUs from Polyarthra gut contents 
samples based on Maximum Likelihood showed that the 159 
OTUs sequences could be classified into 15 Phyla and 39 Classes 
(Figure 1B). A large number of phytoplankton taxa (100 OTUs) 
was detected in Polyarthra gut contents samples. Most of the 
observed OTUs belonged to Chlorophyta (54 OTUs), followed by 
unclassified Fungi (28 OTUs), Chrysophyta (17 OTUs), 
Dinoflagellata (10 OTUs), Ciliophora (10 OTUs). Bacillariophyta 
(9 OTUs), Cryptophyta (9 OTUs), Arthropoda (8 OTUs), 
Cercozoa (5 OTUs), Mollusca (3 OTUs), Apicomplexa (1 OTUs), 
Haptophyta (1 OTUs), Amoebozoa (1 OTUs), Chordata (1 OTUs) 
and other eukaryotes (2 OTUs).

A small number of sequences of animal and macroalgal were 
also detected, including fishes of Cyprinus, molluscs of Tubificidae, 
Arionoidea, large zooplankton of Sinocalanus, Pseudodiaptomus, 
Eucyclops, Thermocyclops, and algae from the genus Ulva 
(Figure 2).

For ambient water samples, the most abundant class was 
Chlorophyceae, with the average relative abundance of 28.1%. The 
next Class was Cryptophyceae, with an average relative abundance 
of 19.8%, followed by Trebouxiophyceae (10.8%), Maxillopoda 
(9.1%), Dinophyceae (5.4%) and Bacillariophyceae (4.1%). For 
Polyarthra gut contents samples, the most abundant class was also 
Chlorophyceae, with the average relative abundance of 16%. The 
next Class was Oligohymenophorea, with an average relative 
abundance of 14.6%. In addition, Dinophyceae (11.8%), Spirotrichea 
(11.4%), Cryptophyceae (10.2%) were also abundant (Figure 3).

The seasonal variations of eukaryotic composition of water 
environment at the three sites were consistent (Figure  3). 
Cryptophyceae dominated in the ambient water in December 
2017, with the relative abundances reaching 39%–51%. The 
relative abundances of Trebouxiophyceae (27%–37%) increased 
in March 2018. While in June, Chlorophyceae dominated in the 
ambient water, with the relative abundances reaching 41%–57%. 
In September, the relative abundances of Chlorophyceae decreased 
to 17%–38%, and those of Bacillariophyceae increased to 8%–22%. 

A B

FIGURE 1

Operational taxonomic unit (OTU) richness of main groups in the ambient waters (A), and Polyarthra gut contents samples (B).
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The composition of eukaryotic phytoplankton community 
determined by metabarcoding was consistent with the results 
based on the morphological approach (Supplementary Figure S5).

The average relative abundance of Chlorophyta was the highest 
in the Polyarthra gut content samples, reaching 21.8%. However, 
the variations of eukaryotic composition of the Polyarthra gut 
contents were different among the three sites. In general, the 
relative abundance of Cryptophyceae and Oomycetes in the 
Polyarthra gut contents in December and March were greater than 
those in June and September. While Chlorophyceae dominated the 
Polyarthra gut contents in all seasons, and the relative abundance 
of Dinophyceae, Trebouxiophyceae and Chrysophyceae in the 
Polyarthra gut contents increased in September (Figure 3).

Comparison of eukaryotic communities 
between the ambient waters and the 
Polyarthra gut contents samples

The results of the community similarity analysis (ANOSIM) 
on the class level showed that there was small difference of 

eukaryotic communities between the ambient waters and the 
Polyarthra gut contents (R = 0.35, p < 0.01). The samples collected 
from hot season (Jun and Sep) mostly stayed together, while the 
ambient water samples and the Polyarthra gut contents samples 
were mostly together (Figure 4). Moreover, phytoplankton such as 
Chlorophyceae, Trebouxiophyceae, Crytophyta, and Dinophyceae 
dominated not only in the ambient waters but also in the 
Polyarthra gut contents. These results indicated that the eukaryotic 
community in the Polyarthra gut contents varied with the 
plankton community in the ambient waters.

The Wilcoxon rank-sum test was used to analyze the 
significant difference of species composition between the 
Polyarthra gut contents and the ambient water samples 
(Figure 5). Chlorophyceae, Cryptophyceae, Trebouxiophyceae, 
Maxillopoda, Dinophyceae dominated in both the ambient 
waters and the Polyarthra gut contents. The higher relative 
abundances of Dinophyceae, Oomycetes, Spirotrichea, 
Oligohymenophorea, Chrysophyceae and Synurophyceae were 
found in the Polyarthra gut contents than in the ambient water 
samples. In addition, the relative abundances of Chrysophyceae 
and Synurophyceae in the samples of the Polyarthra gut contents 

FIGURE 2

Phylogenetic tree of OTUs from the samples of Polyarthra gut contents based on Maximum Likelihood. The color coding of OTUs represents 
different phyla.
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were significantly greater than those in ambient waters (p < 0.05; 
Figure 5).

The E values (Table  1) and the significant differences of 
eukaryotic compositions between the Polyarthra gut contents 
and the ambient water samples (Figure 5) indicated a selective 
feeding on Chrysophyceae and Synurophyceae. Whereas the 
Chrysophyceae and Synurophyceae were in relatively low 
concentrations in ambient waters, they were enriched in 
Polyarthra diets. By contrast with Chrysophyceae and 
Synurophyceae, the selectivity index showed a non-selective 
feeding on Chlorophyceae, Cryptophyceae and Trebouxiophyceae 
for Polyarthra, as they were dominant phytoplankton in both the 
Polyarthra gut contents and the ambient waters (Figure  5; 
Table 1).

Relationships between the eukaryotic 
communities and environmental 
variables

As the longest gradient of DCA for the ambient water 
samples was 1.6, a RDA model was used to estimate the 
relationship between eukaryotic communities of the ambient 
waters and the environmental factors. Since the longest 
gradient of DCA for Polyarthra samples was 4.4, CCA was a 

better choice. For RDA, the first two ordinate axes explained 
67% of the eukaryotes-environment variability in the 
ordination of environmental variables (Figure  6A; 
Supplementary Table 2). After forward selection with Monte 
Carlo permutation tests, only temperature, NH4-N, 
transparency, Chlorophyll-a, depth and total phosphorus were 
significant contributors to the variation of the eukaryotic 
community in the ambient waters.

For CCA, the first two ordinate axes explained 33% of the 
eukaryotes-environment variability in the ordination of 
environmental variables (Figure 6B; Supplementary Table S3). 
After forward selection with Monte Carlo permutation tests, 
only total nitrogen, transparency, depth, Chlorophyll-a and 
total phosphorus were significant contributors to the 
variation of the eukaryotic community in the Polyarthra 
gut contents.

Discussion

Prey diversity

A total of 159 OTUs of eukaryotes belonging to phytoplankton, 
metazoans, protozoans, fungi and other unclassified eukaryotes 
were observed in Polyarthra gut contents by HTS. The in situ diets 

FIGURE 3

Relative abundance (based on reads abundance) of the ambient water samples and the Polyarthra samples on class level (top 20). Polyarthra reads 
from the 12 gut contents samples were removed before calculation. A: the ambient water samples; P: the Polyarthra gut contents samples; 12: 
December; 3: March; 6: June; 9: September.
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confirmed the omnivorous feeding of Polyarthra, in accordance 
with previous laboratory experiments (Arndt, 1993; Joaquim-
Justo et al., 2004; Espinosa-Rodríguez et al., 2021). Arndt (1993) 
summarized rotifers diets using traditional observation and found 
that phytoplankton (e.g., Chlorophyta, Cryptophyta), protozoa 
(e.g., Ciliates, Flagellates, Amoebas, Rhizopos), fungi (e.g., yeasts), 
bacteria (e.g., Aerobacter) and organic detritus were food 
resources for rotifers. Laboratory investigations showed that 
Polyarthra mainly feed on edible algae, especially Chlamydomonas 
(Gilbert and Bogdan, 1981; Wen et  al., 2011). Also, it took 
advantage of autotrophic and heterotrophic flagellates such as 

Chilomonas, Euglena, Bodo, and Cyathomonas (Buikema et al., 
1977; Pourriot, 1977). In the present study, 11 OTUs of different 
Chlamydomonas and 17 OTUs of protozoa (e.g., Vermamoeba, 
Tintinnina, Raphidophyte) were detected by HTS in the gut 
content of Polyarthra. This molecular evidence supported the 
notion that protozoa are important food sources for rotifers. This 
implies that rotifers are not only micrograzers but also predators 
of micro-food web and that, as proposed in the 20th-century 
(Arndt, 1993).

In the view of functional groups, Polyarthra is considered as 
raptorial and macrofilter-feeder, since it shows active grasping and 

FIGURE 4

Heatmap analysis of eukaryotic communities between ambient water (A) and Polyarthra (P) based on Bray - Curtis distance (Top 50 abundant 
OTUs on Class level). Samples and taxa were automatically organized by hierarchical clustering. A: the ambient water samples; P: the Polyarthra 
gut contents samples; 12: December; 3: March; 6: June; 9: September.
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piercing actions to catch single food items (Obertegger et  al., 
2011). However, there are few reports about rotifers feeding on 
crustaceans, mollusks, macrophytes and so on. Many unexpected 
prey taxa that were overlooked by microscopic observation 
could be detected from gut contents through HTS (Lin et  al., 
2018). A small number of sequences of fishes as Cyprinus, 
molluscs as Tubificidae, Arionoidea, arthropods as Sinocalanus, 
Pseudodiaptomus, Eucyclops, Thermocyclops, macroalgaes as Ulva 
were detected in the Polyarthra gut contents in the present study. 
It was also reported that copepods, the macrozooplankton, feed 
on metazoans that larger than itself such as Hydrozoans, 
Ctenophores, Arrow worms, Echinoderms, and Tunicates in the 
form of detritus and eggs (Ho et al., 2017; Yi et al., 2017; Xu et al., 
2020). Since Polyarthra is a micro-zooplankton with the body 
length ranges from 90 to 245 μm, it is more likely to feed on the 
eggs and gametes than adults of arthropods, fishes and macroalgae. 
Besides the form of eggs or gametes, metazoans could also 
be  ingested in the form of organic particles/detritus (Yi et al., 
2017). The energy supplied by a metazoan diet with high levels of 
lipids and proteins, may be more accessible and easily utilized by 
zooplankton than plant food items (Hu et al., 2018). Additionally, 
Polyarthra usually shows significantly positive correlation with 
CODMn and thrives in habitats with higher nutrient content and 
lower transparency, supporting that it inclines to consume detritus 
particles (Ji et al., 2013; Liang et al., 2020).

Macroalgae is one of the potential food sources for Polyarthra. 
Microscopic observation and molecular analysis have shown that 
heterotrophic ciliates can acquire Ulva sequence by ingesting their 
gametes, chloroplasts and detritus (McManus et al., 2004). Also, 
copepods could use plant detritus as supplementary food sources 
when phytoplankton production is limited (Hu et al., 2015). It is 
possible that Polyarthra could take advantage of the gametes or 
detritus of macroalgae by adopting an “opportunistic feeding.”

Twenty eight OTUs of fungi, belonging to Chytridiomycota, 
Ascomycota, Basidiomycota and Mucoromycota were detected in 
the Polyarthra samples. Fungi were also found in the diet of 
European eel larvae and in the diet of calanoid copepods through 
molecular approach (Riemann et al., 2010; Xu et al., 2020). As an 
important component of microorganisms in aquatic ecosystems, 
most fungi are either parasitic or symbiotic to microorganisms 
including zooplankton, or attach to nutrient-rich sediments. Only 
a minority are free-living (Richards et  al., 2012). So far, the 
relationship between fungi and zooplankton is still unclear (Xu 
et al., 2020). Thus, the fungi detected in the Polyarthra samples 
may be  either parasites or constituted the diet of Polyarthra. 
Further studies combining scanning electron microscopy and 
fluorescence tracing are needed to confirm the trophic relationship 
between fungi and Polyarthra. In any case, this study documented 
the dietary information of natural rotifer Polyarthra and expanded 
the knowledge of their in situ food resources in detail.

FIGURE 5

Comparison of the differences in the average relative abundance of eukaryotes on class level (top 15) between the Polyarthra gut contents and the 
ambient water samples (*p < 0.05; Wilcoxon rank-sum test).
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Prey preference

Our results showed that Polyarthra had a high ingestion on 
Chlorophyta in this river–lake ecosystem. It seems that 
Chlorophyceae is the staple diet for rotifers. Chlorella, Scenedesmus 
and Chlamydomonas have been considered the most suitable food 

for the laboratory cultured rotifers (Gilbert and Bogdan, 1981; 
Geng and Xie, 2008; Sun et al., 2020). However, the E values and 
the differences of average relative abundances in the present study 
suggests that Polyarthra mainly grazed on Chlorophyta, which 
may result from its “opportunistic feeding” strategy. As 
Chlorophyceae, Cryptophyceae, Trebouxiophyceae, Dinophyceae 

TABLE 1 The food selectivity index (E) of Polyarthra on eukaryotes on class level (top 20).

Taxa on class level The dominance  
index (Y)

The food selectivity index (E)

December March June September

Chlorophyceae 0.268 0.00 0.03 0.06 −0.47

Cryptophyceae 0.156 −0.48 −0.09 −1.00 −0.69

Trebouxiophyceae 0.098 −0.04 −0.68 −0.89 0.19

Maxillopoda 0.064 −0.87 0.32 −0.25 −0.99

Dinophyceae 0.041 −0.09 −0.70 0.17 0.27

unclassified Bacillariophyta 0.023 −0.85 −1.00 −1.00 −0.74

Spirotrichea 0.023 0.26 −0.40 −1.00 0.10

unclassified Chlorophyta 0.022 −0.41 −0.41 −1.00 −1.00

Coscinodiscophyceae 0.017 −0.82 −0.12 −1.00 −0.35

unclassified Chytridiomycota 0.011 0.43 0.61 −1.00 −1.00

unclassified Metazoa 0.010 −0.91 0 0.94 −1.00

Raphidophyceae 0.010 −0.72 −1.00 −1.00 −1.00

Chrysophyceae 0.007 0.72 0.08 0.90 0.96

unclassified Fungi 0.006 −0.17 −0.47 −0.44 −0.13

unclassified Eukaryota 0.005 0.39 −0.81 0.64 0.68

Synurophyceae 0.005 0.53 0.71 0.98 0.92

Chytridiomycetes 0.003 −1.00 −0.55 −1.00 0

Oomycetes 0.003 −1.00 0.99 −1.00 −1.00

Oligohymenophorea 0.002 0.97 −0.03 −1.00 −1.00

Labyrinthulomycetes 0.001 0 0 −1.00 −1.00

Bold, indicates a preference.

A B

FIGURE 6

Restrictive ordination analysis of relationship between eukaryotic communities and environmental factors. (A) RDA of ambient water samples: 
Relative abundance of top 10 eukaryotes (blue arrows), environmental variables (red arrows). (B) CCA of Polyarthra samples: Relative abundance of 
top 10 eukaryotes. 12 and 3: December and March (cyan circle); 6 and 9: June and September (red circle).
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dominated in the ambient waters, they became more readily 
accessible to Polyarthra than other food items. On the contrary, 
Polyarthra exhibited a high preference for Chrysophyceae 
and Synurophyceae.

The prey preference for macro-zooplankton could be related 
to the nutritional state of the food items (Yi et  al., 2017). 
Dinoflagellates were more abundant in the copepod diet compared 
to diatoms, because diatoms were of lower nutritional value than 
dinoflagellates (Jones and Flynn, 2005). Isochrysis and Mallomonas, 
belonging to Chrysophyceae, contain higher levels of unsaturated 
fatty acid (e.g., DHA, EPA) than many other phytoplanktons, so 
they have been used as food for laboratory cultured Scallops and 
zooplankton (Seychelles et al., 2009; Bi et al., 2014; Freites et al., 
2016). Mallomonas, the high-quality Chrysophyceae, can support 
high population growth rates and offspring production in 
zooplankton (Taipale et al., 2019). Since zooplankton are known 
to preferentially feed on high nutritional quality algae (Taipale 
et al., 2019), the prey preference of Polyarthra can be explained by 
the nutritional value of the food items.

Both active and passive feeding behavior of zooplankton 
could be related to the prey size-selectivity (Chen et al., 2021). 
Polyarthra showed preference toward food items with a particle 
size ranging from 1 to 40 μm (Arndt, 1993). Most Chlorophyceae 
in the in situ diet of Polyarthra are well within nano particle size, 
such as Chlorella (5–20 μm), Chlamydomonas (3–10 μm) and 
Monoraphidium (7–20 μm). In addition, Synura (2–40 μm), 
Chromulina (3–20 μm), Mallomonas (2–16 μm) Paraphysomonas 
(8–17 μm) belonging to Chrysophyta and Chroomonas (4–20 μm) 
belonging to Cryptophyta are also in micro to nano particle size 
(Hu and Wei, 2006), which are suitable for direct ingestion 
by Polyarthra.

Feeding strategy responses to trophic 
status

Copepods can regulate their food intake according to their 
energy demands when exposed to warming environments. Their 
feeding preference shift with temperature, with a change from a 
diatom-dominated diet at 29°C to a metazoan-dominated diet 
at 35°C (Hu et  al., 2018). However, our study indicates that 
Polyarthra adjusted their feeding strategy according to food 
availability by applying an “opportunistic feeding” strategy. RDA 
analysis showed that the eukaryotic community of the ambient 
waters presented a seasonal differentiation pattern and was 
controlled by temperature and trophic status, which was 
consistent with the previous studies of zooplankton and 
phytoplankton communities in Lake Liuye (Liu, 2019; Liang 
et  al., 2020). CCA analysis showed that the eukaryotic 
community of the Polyarthra gut contents also exhibited a 
distinct pattern of seasonal differentiation, which was consistent 
with that of the ambient waters. The dietary composition of 
Polyarthra seems to be  regulated by environmental factors 
related to trophic status.

The “opportunistic feeding” strategy is also common for 
macro-zooplankton as copepod in food-limited conditions (Hu 
et  al., 2020). Dominant species can better their survival by 
widening the choice of potential food resources (Xu et al., 2020). 
They are capable to regulate their feeding, by exhibiting a rhythm 
of herbivorous feeding in midday and carnivorous feeding in 
morning and night, to better coordinate with other competitors 
for utilization of food resources (Hu et al., 2020). For example, the 
genus Centropages was more omnivorous-carnivorous and 
consistently displayed selection for large motile prey when the 
phytoplankton density was low in the outfall region (Xu et al., 
2020). In addition, they can use terrigenous detritus as 
supplementary food sources when phytoplankton production 
is  limited (Hu et  al., 2015). Polyarthra mainly grazed on 
phytoplankton and consumed the animal-derived prey (metazoan 
detritus or protozoan) as supplementary food sources. In the 
present study, the spatial–temporal pattern of the eukaryotic 
community in the Polyarthra gut contents varied along an 
increasing gradient of the trophic status (including TN, TP, Chl-a, 
and SD) in ambient waters (Figure  6B). Moreover, Polyarthra 
mainly feed on Chlorophyceae Trebouxiophyceae, Dinophyceae, 
Maxillopoda, Chrysophyceae and Synurophyceae when the 
trophic status was relatively high. To adopt to the relatively lower 
trophic status, Polyarthra had probably shifted from herbivorous 
feeding to relatively carnivorous (Oligohymenophorea and 
Spirotrichea) feeding. Our study indicates that Polyarthra is 
omnivorous with preference and responds to the environmental 
changes by adopting a flexible feeding strategy. This could partly 
explain why the cosmopolitan rotifers have apparently wide 
tolerance toward spatial and environmental changes.

Feeding strategy and ecological function

Carcasses of metazoan will release a continuum of 
particulate organic matter (POM) and dissolved organic matter 
(DOM), a complex suite of polymers and molecules, if they are 
not eaten by predators. These organic matters are further 
decomposed by bacteria and archaea and converted into 
inorganic nutrients (e.g., C, N, P, Si and Fe) which can be used 
by primary producers (Worden et al., 2015). Utilization of DOM 
and POM by zooplankton might increase the efficiency of the 
upward trophic transfer of matter and energy flow through 
secondary consumer under food-limited conditions, and thereby 
promotes the efficiency of aquatic ecosystem cycling (Hu 
et al., 2018).

Changes of the diet composition of zooplankton play a key 
role in the transfer of materials and energy along the food chain 
(Liu et  al., 2006). Phytoplankton density being affected by a 
feedback mechanism of zooplankton consumer grazing is termed 
consumer-driven nutrient recycling (Sterner et  al., 1995; 
Trommer et al., 2012). The composition of zooplankton and their 
excretions can regulate and stimulate the phytoplankton growth 
and biomass accumulation under N or P limitations (Trommer 

https://doi.org/10.3389/fmicb.2022.1048619
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Liang et al. 10.3389/fmicb.2022.1048619

Frontiers in Microbiology 11 frontiersin.org

et al., 2012). Zooplankton feeding on protozoa and metazoan 
detritus could obtain higher carbon than herbivorous feeding 
alone. If the POM content of phytoplankton in the water 
environment is insufficient to satisfy their daily carbon 
requirements (19 μg), the food intake of protozoa and organic 
detritus increases (David et al., 2006). Thus, when phytoplankton 
density was low in Lake Liuye, the high relative abundance of 
protozoans in the Polyarthra gut contents may be related to their 
carbon requirements. The carnivorous and detritus feeding of 
zooplankton ensures that secondary consumer can still contribute 
to the pathways of aquatic carbon flow, through the food chain 
while under low primary production.

Because feeding strategy of most zooplankton adaptively 
adjusts with the environment, knowledge of the in situ diet 
composition is crucial for accurately clarifying their ecological 
function in the aquatic ecosystem, understanding the prey 
diversity and the ingestion rate (Lin et  al., 2018). Our study 
indicates that HTS is a promising approach that provides us a 
more comprehensive perspective and more details on the diet 
composition of microorganism than by microscopic observations. 
However, to further explore the role and mechanism of 
zooplankton in biogeochemical cycles, both molecular evidence 
and microscopy should be combined to investigate the dietary 
assimilation, release, and physiological turnover rates of C, N and 
P in zooplanktons under different conditions.

Conclusion

1.  Our HTS data has revealed the dietary information of 
natural rotifer Polyarthra and expanded the knowledge of 
their in situ food resources. A total of 159 OTUs of 
eukaryotes belonging to phytoplankton, metazoans, 
protozoans, fungi and other unclassified eukaryotes were 
detected in Polyarthra gut contents.

2.  Diet composition indicated that Polyarthra is 
omnivorous with preference and responds to the 
environmental changes by adopting a flexible feeding 
strategy. Polyarthra mainly grazed on Chlorophyta, 
which may result from its “opportunistic feeding” 
strategy. On the contrary, it exhibited a high preference 
for Chrysophyceae and Synurophyceae.

3  When the concentration of nutrients in the water 
environment decreased, Polyarthra may shift from 
herbivorous feeding to relatively carnivorous feeding. This 
could partly explain why the cosmopolitan rotifers have 
apparently wide tolerance toward spatial and environmental  
changes.
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