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Elevation gradients could provide natural experiments to examine 

geomorphological influences on biota ecology and evolution, however little is 

known about microbial community structures with soil depths along altitudinal 

gradients in karst graben basin of Yunnan-Kweichow Plateau. Here, bulk soil 

in A layer (0 ~ 10 cm) and B layer (10 ~ 20 cm) from two transect Mounts were 

analyzed by using high-throughput sequencing coupled with physicochemical 

analysis. It was found that the top five phyla in A layer were Proteobacteria, 

Acidobacteria, Actinobacteria, Bacteroidetes, and Verrucomicrobia, and the 

top five phyla in B layer were Proteobacteria, Acidobacteria, Actinobacteria, 

Verrucomicrobia, and Chloroflexi in a near-neutral environment. Edaphic 

parameters were different in two layers along altitudinal gradients. Besides 

that, soil microbial community compositions varied along altitudinal gradient, 

and soil organic carbon (SOC) and total nitrogen (TN) increased monotonically 

with increasing elevation. It was further observed that Shannon indexes with 

increasing altitudes in two transect Mounts decreased monotonically with 

significant difference (p = 0.001), however beta diversity followed U-trend with 

significant difference (p = 0.001). The low proportions of unique operational 

taxonomic units (OTUs) appeared at high altitude areas which impact the 

widely accepted elevation Rapoport’s rules. The dominant Bradyrhizobium 

(alphaproteobacterial OTU 1) identified at high altitudes in two layers 

constitutes the important group of free-living diazotrophs and could bring 

fixed N into soils, which simultaneously enhances SOC and TN accumulation 

at high altitudes (p < 0.01). Due to different responses of bacterial community to 

environmental changes varying with soil depths, altitudinal gradients exerted 

negative effects on soil bacterial communities via soil physical properties 

and positive effects on soil bacterial diversities via soil chemical properties 

in A layer, however the results in B layer were opposite. Overall, our study is 

the first attempt to bring a deeper understanding of soil microbial structure 

patterns along altitudinal gradients at karst graben basin areas.
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Introduction

Complex landforms shaped by nature as an aspect of the 
combined and interacting influences of geology, climate, time, 
biota and the secondary composite products of those 
interactions provide the habitat for life on earth (Phillips, 2016). 
Moreover, landforms can be distributed following an altitudinal 
gradient, which result in environmental changes such as 
temperature and humidity. Consequently, altitudinal gradients 
provide the most powerful ‘natural experiments’ for examining 
the hypothesis about geomorphological influences on biota 
ecology and evolution (Körner, 2007). The research on 
characteristics, origin and evolution of fauna and flora along 
altitudinal gradients has long been the focus (Brown, 2001; 
Sundqvist et al., 2013; Bhat et al., 2020). Based on 441 group data 
of fauna and flora along altitudinal gradients across Northern 
and Southern hemispheres, it was found that most elevational 
diversity curves were skewed positively, that is maximum 
diversity below the middle of the gradient (Guo et al., 2013). 
Though soil microorganisms play important roles in material 
cycles and energy flow in nature, only few studies were did to 
examine their diversity patterns along altitudinal gradients and 
soil microbes do not follow elevational diversity patterns of 
plants and animals (Bryant et  al., 2008; Fierer et  al., 2011; 
Keller, 2022).

The distribution patterns of soil microbiome along altitudinal 
gradients are multiple, complex and changeable. For example, the 
taxon richness and phylogenetic diversities of soil bacteria 
decreased monotonically with increasing elevation in Colorado 
and Southwestern Tibetan Plateau (Bryant et al., 2008; Shen et al., 
2019), however Cai et  al. (2020) found that soil bacterial and 
fungal community diversities increased monotonically in 
northwest Yunnan plateau, China. Moreover, the hump-backed 
trend in bacterial diversities from Mount Fuji (Singh et al., 2012) 
as well as declines, increases, mid-elevation or no discernable 
trend in soil microbial diversities (Looby and Martin, 2020) were 
found. Moreover, it is a common belief that the number of 
endemic species decreased and their proportions increased with 
increasing altitude (Vetaas and Grytnes, 2002; Zhou et al., 2019). 
However, Grau et al. (2007) found that the proportion of endemic 
bryophytes with other plant groups in Nepal at the highest 
altitudes decreased. The multiple microbe patterns along 
altitudinal gradients may have been due to edaphic factors that 
shaped the microbial diversities and community compositions 
varying with the changed sampling areas. Secondly, the responses 
of soil microorganisms to above-and below-ground ecosystems 
were out of sync. Consequently, these studies have not uncovered 
the soil microbial patterns along altitudinal gradients on global 
scales, especially without representative samples from karst area 
(Bryant et al., 2008; Singh et al., 2012; Shen et al., 2019; Cai et al., 
2020; Looby and Martin, 2020). Therefore, more work is still 
needed to address soil microbiome patterns along altitudinal 
gradients to better understand microbial ecology and function 
(Looby and Martin, 2020).

Despite less reports of soil microbial ecology along karst 
altitudinal gradients, Hu et al. (2022) and Yan et al. (2022) pointed 
out the soil microbial diversity, composition and assembly along 
vegetation succession sequence or calcareous succession process 
from karst montane areas. Knowing that calcareous soil 
originating from weathering products of carbonate rocks 
(limestone, dolomite or marble) has calcium-rich and alkaline 
characteristics with scales, spatial heterogeneity and temporal 
dynamics (Yuan, 2001), karst soil microbiome would exhibit 
different lifestyles and adaptive strategies from non-karst soil. 
Then, studying their distribution patterns and community 
characters may reveal the distinctive groups from karst montane 
areas. Moreover, the response of bacterial community to 
environmental change varies with surface soil depths (Barbour 
et  al., 2022). Due to greatest number and largest spatial 
distribution sites with sampling depths from 0 to 10 cm (Wieder 
et al., 2021) and most karst soil with depths of 0 ~ 20 cm (Yan et al., 
2022), the previous studies mainly focused on soil microbial 
ecology with depths of 0 ~ 10 cm (defined as A layer) or 0 ~ 20 cm. 
To provide more information on their vertical variability (Qiu 
et al., 2020) and identify the bacterial community patterns along 
elevation gradients in karst graben basin of Yunnan-Kweichow 
Plateau, bulk soil from two layers (A layer and 10 ~ 20 cm defined 
as B layer) were collected, respectively, for analysis by using high-
throughput sequencing coupled with physicochemical analysis. To 
reduce the knowledge gap, we focus on the following issues in this 
study: (i) The diversity pattern of soil bacteria in two layers along 
altitudinal gradients is different. (ii) The proportions of endemic 
bacteria increase or decrease along altitudinal gradients. (iii) What 
are the relationships among altitudinal gradients, soil physical/
chemical properties, and soil bacterial communities?

Materials and methods

Study sites

Eighty soil samples were collected in Xibeile Village from 
Mengzi City of Yunnan-Kweichow Plateau, China. At this area, 
karst intermountain basins, namely karst graben basins are typical 
due to the subsidence and dissolution of fault blocks caused by 
Cenozoic tectonic uplift. The geomorphic zones are distinct, 
neotectonic movements are intense, water resource distribution is 
uneven, soil and vegetation zonings are prominent, vertical 
climate variations are significant, and regional differences in 
human activities are large (Wang, Y. et al., 2017). Moreover, red 
calcareous soil with high Fe2O3, Al2O3, and SiO2 contents is widely 
distributed at this area. Due to uneven depths of calcareous soil, 
45 soil samples from A layer and 35 soil samples from B layer were 
collected, respectively. Because intense neotectonic movements 
resulted in discontinuous elevation, two transects with altitude 
interval of 505 m between Mount Cuomodi (CMD, altitude from 
1,844 to 1,997 m) and Mount Wugongshan (WGS, altitude from 
1,290 to 1,339 m) were investigated at this area (Table 1). The plant 
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TABLE 1 Environmental parameters with soil depth changes along altitudinal gradients in karst graben basin of Yunnan-Kweichow Plateau.

Altitude (m) T (°C) EC (ms/m) SM (%) SOC (g/kg) TN (g/kg) TP (g/kg) AK (g/kg) pH

(0–10 cm)

A layer

CMD1 1997 6.13 ± 0.6d 45.25 ± 6.55f 12.75 ± 2.21d 127.81 ± 45.91a 8.25 ± 3.31a 0.68 ± 0.04c 199.03 ± 55.85c 6.41 ± 0.07c

CMD2 1966 5.18 ± 0.43e 60 ± 3.56e 17.6 ± 1.72d 91.32 ± 65.08b 7.33 ± 5.04ab 0.77 ± 0.23bc 122.35 ± 51.06 cd 6.4 ± 0.22c

CMD3 1947 5.43 ± 0.76ed 73.5 ± 4.12d 32.6 ± 2.87bc 17.28 ± 3.75c 1.62 ± 0.25c 0.3 ± 0.08d 68 ± 19.26d 6.73 ± 0.23ab

CMD4 1934 7.5 ± 0.79c 70.5 ± 1.73de 34.78 ± 2.2b 20.05 ± 0.83c 1.83 ± 0.1c 0.61 ± 0.22c 55 ± 6.55d 6.55 ± 0.09bc

CMD5 1873 6.06 ± 0.77d 96.8 ± 6.3c 45.1 ± 8.08a 38.21 ± 13.41c 3.43 ± 1.17bc 0.92 ± 0.06b 265.18 ± 53.73bc 6.65 ± 0.07b

CMD6 1844 6.88 ± 0.35 cd 96.75 ± 7.59c 48.33 ± 1.36a 20.86 ± 0.65c 1.71 ± 0.03c 0.71 ± 0.02c 352.75 ± 48.2b 6.6 ± 0.19bc

WGS1 1,339 12.65 ± 0.17b 112.5 ± 5.2bc 22.45 ± 6.22 cd 62.78 ± 3.62bc 4.87 ± 0.48b 0.83 ± 0.08bc 169.08 ± 84.08 cd 6.66 ± 0.24ab

WGS2 1,324 14.5 ± 0.44a 111.25 ± 8.5bc 25.48 ± 10.19c 48.84 ± 17.88c 3.07 ± 0.32bc 0.67 ± 0.07c 193.5 ± 12.04c 6.68 ± 0.04ab

WGS3 1,312 13.33 ± 0.46b 101.25 ± 4.03c 14.48 ± 5.02d 45.67 ± 12.21c 3.89 ± 1.35bc 0.68 ± 0.12c 279.55 ± 178.92bc 6.6 ± 0.18bc

WGS4 1,299 13.88 ± 0.5ab 120.75 ± 5.25b 34.85 ± 2.28b 17.73 ± 1.39c 1.51 ± 0.12c 0.64 ± 0.03c 127.38 ± 10.74 cd 6.86 ± 0.07a

WGS5 1,290 12.6 ± 0.27b 153.25 ± 20.68a 24.95 ± 0.82c 24.34 ± 1.29c 1.85 ± 0.27c 1.17 ± 0.31a 574.25 ± 140.62a 6.32 ± 0.09c

(10–20 cm)

B layer

CMD1 1997 8.5 ± 1.83e 56.67 ± 5.86c 21.67 ± 7.44c 112.82 ± 59.74a 7.6 ± 4.29a 0.51 ± 0.07c 80.13 ± 8.64bc 6.55 ± 0.26ab

CMD2 1966 8.1 ± 0.71e 73.5 ± 17.68c 23.35 ± 12.09c 31.05 ± 6.13bc 2.35 ± 0.2bc 0.55 ± 0.01c 42.3 ± 16.12bc 6.21 ± 0.1b

CMD3 1947 8.93 ± 0.36de 73 ± 4.08c 48.2 ± 4.21ab 9.9 ± 6.56c 1.07 ± 0.47c 0.22 ± 0.02d 30.95 ± 10.75c 6.58 ± 0.08ab

CMD4 1934 9.63 ± 0.31d 67.5 ± 6.35c 47.48 ± 3.18ab 11.26 ± 0.86c 1.08 ± 0.19c 0.51 ± 0.02c 31.75 ± 10.98c 6.66 ± 0.19a

CMD5 1873 8.3 ± 0.62e 109.6 ± 9.45b 52.32 ± 4.8a 23.24 ± 8.92c 2.1 ± 0.61bc 0.82 ± 0.09b 119.72 ± 28.13b 6.8 ± 0.12a

CMD6 1844 8.43 ± 0.55e 97.75 ± 3.59b 51.88 ± 1.96a 12.4 ± 0.27c 1.07 ± 0.04c 0.57 ± 0.03c 126.08 ± 13.69b 6.57 ± 0.22ab

WGS1 1,339 14.87 ± 0.15b 106.33 ± 4.16b 21.63 ± 6.19c 52.33 ± 5.4b 3.49 ± 0.73b 0.72 ± 0.1bc 140.07 ± 22.98b 6.63 ± 0.05ab

WGS2 1,324 16.55 ± 0.07a 111.5 ± 0.71b 36 ± 0bc 33.66 ± 0.6bc 2.05 ± 0.04bc 0.61 ± 0c 129.5 ± 22.77b 6.64 ± 0.09ab

WGS4 1,299 15.73 ± 0.13ab 116.5 ± 15.46b 42.13 ± 1.56b 9.11 ± 2.35c 0.84 ± 0.21c 0.52 ± 0.02c 73.95 ± 6.76bc 6.62 ± 0.27ab

WGS5 1,290 13.45 ± 0.26c 168.5 ± 30.73a 28.78 ± 3.2c 21.75 ± 1.25c 1.55 ± 0.19bc 0.96 ± 0.18a 370.78 ± 169.2a 6.41 ± 0.14b

Different lower case letters represent significant difference from different sampling sites in the same soil layer (p < 0.05). Data are means ± standard error. Five duplicates in CMD5 and four repetitions in other sample sites from A layer. Three duplicates in WGS1, 
WGS2, CMD1, and CMD2, no samples in WGS3, and the same repetitions in other sample sites from B layer as in A layer.
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species at here were Arundinella setosa, Dodonaea viscosa (L.) 
Jacq., Bothriochloa ischaemum (L.) Keng., Bidens pilosa L., Hedera 
nepalensis var. sinensis (Tobl.) Rehd., Parthenium hysterophorus L., 
and Alnus ferdinandi-coburgii Schneid. The bare rock rates at this 
area were 2.7–28.9% (Yin et  al., 2020). Moreover, the average 
annual rainfall at this area was 2026.5 mm and the average annual 
temperature was 16.3°C.

Soil sample collection

Six sampling sites in Mount CMD and 5 sampling sites in 
Mount WGS were investigated in January 2018. At each randomly 
selected sampling site almost without man-made management to 
avoid pseudo-replication, at least three replicates of soil samples 
with 5 m distances in every soil layer were randomly collected 
along S-shapes. If soil layer was less than 20 cm, only soil samples 
in A layer were collected. If soil layer was more than 20 cm, soil 
samples in two layers were simultaneously collected. After 
substance invasion removed, the soil samples were evenly divided 
into two parts and kept in sterile polyethylene bags for future 
work. One part was used for edaphic analysis and another part 
was kept in −80°C for soil bacterial community analysis. The 
detailed sampling information is listed in Supplementary Table S1.

Edaphic analysis

Soil organic carbon (SOC) and total nitrogen (TN) were 
determined on SerCon Integra 2 Elemental Analyzer (Sercon Ltd., 
England). Soil pH, total phosphorus (TP) and available potassium 
(AK) were determined according to the methods described in Hu 
et  al. (2022) and Yan et  al. (2022). Soil temperature (T), soil 
moisture (SM), and electrical conductivity (EC) were measured in 
situ by soil three-parameter tachometer (UK three-parameter 
tachometer HH2/WET).

Sequencing of 16S rRNA genes and 
bioinformatic analysis

Soil DNA extraction and high-throughput sequencing were 
performed in Magigene Ltd., China. Their detailed protocols were 
described in Hu et al. (2022) and Yan et al. (2022). The V3-V4 
region of 16S rRNA gene was amplified using PCR primers of 
338F and 806R (Wang, J. et  al., 2017) and sequenced on the 
Illumina HiSeq 2,500 platform (Illumina Inc., San Diego, CA, 
United  States). The sequence reads were deposited in the  
NCBI Sequence Read Archive under the accession number  
PRJNA514872.

Raw sequencing reads were processed on QIIME 1.9.1. About 
4,637,609 raw reads of 80 soil samples filtered with length less than 
300 bp or average base quality score more than 20 resulted in 
1,446,651 high-quality and chimera-free reads, with a minimum 

sequencing depth of 8,138 reads per sample, according to Silva 
v.123 16S rRNA database. All clean sequences were grouped into 
operational taxonomic units (OTUs) based on a genetic similarity 
of 97%. Alpha diversities (Chao 1, Simpson, Shannon, observed 
OTUs, PD whole tree and Goods coverage) and beta diversity 
based on Bray-Curtis metrics were calculated based on rarefied 
OTU tables. The Goods coverage of all samples was more than 
93% indicating that the achieved sequencing depth was sufficient 
for sequential studies. The detailed data are shown in 
Supplementary Table S1.

Statistical analysis

One-way ANOVA and Pearson’s correlation analyses 
(two-tailed test) were carried out with SPSS 19.0. to perform 
statistical analysis. The Origin 8.5 software was used to illustrate 
the variations of mean relative abundances at phylum level and the 
alpha diversities, as well as the influence of altitudinal gradients 
on Shannon index.

Moreover, principal coordinate analysis (PCoA) was used to 
assess the influence of altitudinal gradients on the similarity/
dissimilarity of soil bacterial communities by using beta diversity 
data based on Bray-Curtis metrics. Redundancy analysis (RDA) 
was carried out by Canoco 5 software to display the relationships 
between environmental factors and identified phyla in our study. 
The heat map was performed by using R studio 2.15.1 to detect the 
relationships between the most abundant OTUs and 
environmental factors, as well as the relative frequency of the most 
abundant OTUs in each sampling site. To explore the influence of 
altitudinal gradients on the proportions of shared and unique 
OTUs, the OTUs with more than five sequences were used to sort 
the shared and unique OTUs at different altitudes for network-
based visualization generated with Cytoscape 3.6.1 (Shen et al., 
2019). The partial least squares path model (PLS-PM) and 
PASSaGE 2 software was used to detect the relationships between 
altitudinal gradients, soil physical/chemical properties, soil 
bacterial communities based on the most abundant OTUs, and 
soil bacterial alpha diversities. Partial Mantel test was carried to 
recognize the influence of altitudinal gradients and soil physical/
chemical properties on soil bacterial communities. Moreover, 
analysis of similarity (ANOSIM) test was performed with the 
vegan R package to determine the statistical differences of beta 
diversities along altitudinal gradients (Anderson and Walsh, 2013).

Results

Edaphic parameters along altitudinal 
gradients

In general, the monotonically increased SOC and TN had no 
obvious changes (Table 1). In our study, soil pH was in a near-
neutral environment. T, SM and EC in A layer were lower than 
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those in B layer, however TP, AK, SOC and TN in A layer were 
higher than those in B layer. Besides that, altitudinal gradients had 
significantly negative effects on T, EC and AK in different soil 
layers (p < 0.05), and had significantly negative and positive effects 
on TP and SM, respectively, in B layer (p < 0.05, 
Supplementary Table S2). Despite all this, the influence of 
altitudinal gradients on edaphic parameters in the two transects 
was different. Altitudinal gradients had significantly positive effects 
on TN and SOC in A layer from Mount WGS (p < 0.05), and in the 
two layers from Mount CMD (p < 0.05), and had significantly 
negative effects on pH in A layer from Mount CMD (p < 0.05).

Soil microbial community structures and 
diversities along altitudinal gradients

Of all the reads, ≥94.7% were assigned to 10 phyla (e.g., 
Proteobacteria, Acidobacteria, Actinobacteria, Firmicutes, 
Bacteroidetes, Gemmatimonadetes, Chloroflexi, Verrucomicrobia, 
Planctomycetes, and Nitrospirae) in A layer, and ≥ 95.1% were 
assigned to 11 phyla (e.g., Acidobacteria, Actinobacteria, 
Proteobacteria, Verrucomicrobia, Firmicutes, Chloroflexi, 

Gemmatimonadetes, Bacteroidetes, Planctomycetes, Nitrospirae, 
and Latescibacteria) in B layer. Moreover, their abundances in the 
two layers along altitudinal gradients were different (Figure 1). 
The top five phyla with mean relative abundances in A layer were 
Proteobacteria (24% ~ 43%), Acidobacteria (17% ~ 34%), 
Actinobacteria (4% ~ 21%), Bacteroidetes (4% ~ 13%) and 
Verrucomicrobia (2% ~ 13%), and the top five phyla in B layer 
were Proteobacteria (19% ~ 38%), Acidobacteria (20% ~ 32%), 
Actinobacteria (5% ~ 36%), Verrucomicrobia (2% ~ 34%), and 
Chloroflexi (2% ~ 15%). The mean relative abundances of 
Proteobacteria followed U-shaped patterns, Actinobacteria, 
Firmicutes, Bacteroidetes, Chloroflexi, Planctomycetes, and 
Nitrospirae had hump-shaped patterns, Gemmatimonadetes 
decreased monotonically while Verrucomicrobia and 
Acidobacteria increased monotonically with increasing altitudes 
in A layer (Supplementary Figure S1). By contrast, the mean 
relative abundances of Acidobacteria, Proteobacteria, and 
Bacteroidetes followed U-shaped patterns, Firmicutes, Chloroflexi, 
Planctomycetes, Nitrospirae, Latescibacteria, and Actinobacteria 
had hump-shaped patterns, Verrucomicrobia increased 
monotonically as well as Gemmatimonadetes decreased 
monotonically with increasing altitudes in B layer.

A B

FIGURE 1

The mean relative abundance (≥0.1%) of dominant soil bacterial phyla in karst graben basin of Yunnan-Kweichow Plateau (A) indicating A layer and 
(B) indicating B layer. The mean relative abundance less than 0.1% were classified into other.
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FIGURE 2

Alpha diversity of soil bacteria from Mount WGS and Mount CMD in karst graben basin of Yunnan-Kweichow Plateau.

A B

FIGURE 3

The relationships between altitudinal gradients and Shannon indexes in karst graben basin of Yunnan-Kweichow Plateau (A) indicating A layer and 
(B) indicating B layer.

The alpha diversities along altitudinal gradients were higher 
in Mount CMD than those in Mount WGS, and were also higher 
in A layer than those in B layer (Figure  2). Considering that 
Shannon diversity usually was recommended to analyze 
microbial diversity, it was selected as the metric to investigate the 
effects of altitudinal gradients on alpha diversities. It was found 
that Shannon indexes decreased monotonically with increased 
elevation in Mount CMD and Mount WGS (Figure 3). Moreover, 
similar variations were also found in the two layers. The 
similarities and differences in soil bacterial community structures 
can be described by using beta diversity based on Bray-Curtis 

distances. The results indicated that two independent bacteria 
groups from A layer and B layer were identified in Mount CMD 
and Mount WGS, and U-trend was formed, though no monotonic 
changes appeared with increasing altitude (Figure 4). Moreover, 
ANOSIM revealed that altitudinal gradients exerted significantly 
influences on soil bacteria diversities (Alpha 
diversities—R = 0.399, P  =  0.001  in A layer, alpha 
diversities—R = 0.597, P  =  0.001 in B layer, beta diversity based on 
Bray-Curtis—R = 0.862, P  =  0.001 in A layer, and beta diversity 
based on Bray-Curtis—R = 0.985, P  =  0.001 in B layer), as seen in 
Supplementary Figure S2.
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To better evaluate the similarity and difference of bacterial 
communities along altitudinal gradients, network-based 
visualization with the proportions of shared and unique OTUs was 
applied. The proportions of shared OTUs in A layer and B layer 
were 12.56% (shared OTUs = 496, total OTUs = 3,948) and 11.27% 
(shared OTUs = 383, total OTUs = 3,407) respectively (Figure 5). 
The proportions of unique OTUs with increasing altitude 

exhibited the similar variation trend to Shannon diversities in 
Mount CMD and Mount WGS. Moreover, the proportions of 
unique OTUs in Mount CMD were lower than those in Mount 
WGS. In any case, the low proportion value of unique OTUs 
appeared in the joint area of Mount CMD and Mount WGS.

Among the most frequent OTUs, only Rubrobacter 
(actinobacterial OTU 12), Arthrobacter (actinobacterial OTU 15), 

A B

FIGURE 4

PCoA plots indicating influences of altitudinal gradients on the similarity/dissimilarity of soil bacterial communities by using beta diversity data 
based on Bray-Curtis metrics (A) indicating A layer and (B) indicating B layer.

A B

FIGURE 5

Influences of altitudinal gradients on the proportions of shared and unique OTUs based on network-based visualization (A) indicating A layer and 
(B) indicating B layer.
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Bradyrhizobium (alphaproteobacterial OTU 1), and Sphingomonas 
(alphaproteobacterial OTUs 2, 37 and 182) were classified at the 
genus level in A layer (Figures  6C,D). In contrast, only 
Bradyrhizobium (alphaproteobacterial OTU 1), Sphingomonas 
(alphaproteobacterial OTU 9), and Ferruginibacter (Bacteroidetes 
OTU 28) were classified at the genus level in B layer. The altitudinal 
gradients had obvious effects on them (Figures 6A,B). In A layer, 
Actinobacteria-related OTUs (12 and 15) were dominant at low 
altitudes, and Proteobacteria-related OTUs (1 and 182) were 
dominant at high altitudes. In contrast, only Proteobacteria-related 
OTU1 was dominant at high altitudes in B layer.

Relationships between soil microbial 
communities and environmental 
parameters

Heatmap was drawn to reveal relationships between 
environmental parameters and the most frequent OTUs as well as 
dominant phyla in this study (Figure  6). In general, only SM 
showed significantly negative correlations with some OTU clusters 
in the two layers (p < 0.05), and other environmental factors had 
significantly negative or positive correlations with some OTU 
clusters (p < 0.05, Supplementary Table S3). Moreover, altitudinal 
gradients, T, EC, SM, SOC, TN, TP, AK and pH had significantly 
negative or positive correlations with some dominant phyla 
(p < 0.05, Figures 6E,F; Supplementary Table S4).

Instead of focusing on the relationships between individual 
environmental factors and soil bacterial communities, partial 
Mantel test was used to reveal the inter-relationships among 
altitudinal gradients, soil physical/chemical properties and soil 
bacterial communities (Table  2). Altitudinal gradients had 
significant influence on microbial communities from A layer and 
B layer (p < 0.01). Moreover, PLS-PM indicated that altitudinal 
gradients exerted negative effects on soil physical properties, and 
exerted positive effects on soil chemical properties via soil physical 
properties (Figure 7). Altitudinal gradients exerted negative effects 
on soil bacterial communities via soil physical properties and 
positive effects on soil bacterial diversities via soil chemical 
properties in A layer, however the results in B layer were opposite.

Discussion

This study showed the results of bacterial community 
characters, and the relationships between them and environmental 
factors along altitudinal gradients in karst graben basin of 
Yunnan-Kweichow Plateau.

Influence of altitudinal gradients on 
edaphic parameters

As previous report, climate, topography, and parent material 
are natural factors affecting SOC storage and distribution (Baveye 

et al., 2020). The maximum value of SOC was observed at high 
altitude which also may be due to the low microbial activities or 
the contributions of endemic microorganism at this area. Soil 
microorganisms performing SOC cycles involve two main stages: 
(i) ex vivo modification of organics relating to extracellular 
enzymes, and (ii) in vivo turnover of substances controlled by soil 
microorganisms (Liang et  al., 2017). Then, the decreased 
activities of specific enzymes via microbial secretion at high 
altitude may contribute to high SOC accumulation in karst 
graben basin of Yunnan-Kweichow Plateau (Kumar et al., 2019), 
though we  did not assess the exoenzyme activities. The 
contribution of endemic microorganism to SOC accumulation at 
high altitude will be discussed later in this article. It was well 
known that 96–98% soil N existed as complex and insoluble 
polymers which can be broken down by specific soil enzymes 
produced by specific soil microorganisms (Van Der Heijden 
et al., 2008). Coupled with the significant correlation between 
SOC and TN (p < 0.01, Supplementary Table S2), high soil TN 
was found at high altitude.

Moreover, the environmental features at high altitude are 
typical of low temperature and arid (Li et al., 2019). Consequently, 
SM and T decreased with increasing altitude. As to EC, it was 
usually used to indicate soil salt content or chemical supply which 
decreased with increasing altitudes due to weathering product from 
carbonate rocks easily transported and carried away by runoff. This 
phenomenon also occurred in TP and AK, which may be relating 
to soil drying and re-wetting significantly affecting P and K leached 
from soils (Gao et al., 2020; Amin et al., 2021). Except for the lower 
SM and T in A layer reflecting the direct influence of climate change 
(Kardol et al., 2010), the decreased SOC, TN, TP, AK and EC in 
deep soil correlates to previous studies (Pham et al., 2018). The high 
input of plant residues and plant activity could explain their higher 
levels in top soils (Jobbágy and Jackson, 2001; Pham et al., 2018).

Influence of altitudinal gradients on soil 
bacterial communities

Considering that environmental conditions determine soil 
bacterial compositions (Xun et al., 2015), and the occurrence and 
functioning of soil bacteria depend on their niches (Banerjee et al., 
2018), soil bacterial abundances (e.g., Acidobacteria, 
Actinobacteria, Proteobacteria, Verrucomicrobia, Firmicutes, 
Chloroflexi, Gemmatimonadetes, Bacteroidetes, Planctomycetes, 
Nitrospirae, and Latescibacteria) can follow hump-shaped, 
decreasing, increasing or U-shaped patterns along altitudinal 
gradients. These bacteria followed the above patterns due to them 
at their own optimum conditions though the responses of their 
ecological lifestyles to altitudinal gradients remain unclear 
(Nottingham et al., 2018; Dai et al., 2021). Besides that, the different 
distribution patterns of bacteria taxa in two layers may be due to 
their response depending on soil depth (Barbour et al., 2022).

The monotonically decreased Shannon indexes with elevation 
increasing in Mount CMD and Mount WGS indicate that 
inducible mutations in easily accessed low-altitude areas may 
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FIGURE 6

Heat map representing relationships between the most abundant OTUs (>0.5%) and environmental factors (A) from A layer and (B) from B layer, 
as well as the relative frequency of the most abundant OTUs (>0.5%) in each sampling site (C) from A layer and (D) from B layer. RDA plots 
displaying the relationships between environmental factors and the identified phyla (E) from A layer and (F) from B layer. EG indicating 
altitudinal gradient.
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promote the enormous appearance of unique/endemic species, 
especially rare bacterial species (Fitzgerald and Rosenberg, 2019). 
By contrast, in the harsh environments at high altitudes, only few 
rare taxa adapting to this environment can be induced. Though 
unique/endemic species restricted in specific habitats are 
important contributors to soil microbial diversities (Lynch and 
Neufeld, 2015), our result was contrary to previous reports that 
endemic species decreased with elevation increasing (Zhou et al., 
2019). Second, and more speculatively, red calcareous soil with 
spatial heterogeneity and temporal dynamics in Yunnan-
Kweichow Plateau may drive the occurrence of high Shannon 
indexes at low altitude areas because rare taxa acting as ‘seed bank’ 
could become dominant under proper conditions (Yuan, 2001; 
Lennon and Jones, 2011; Jiao and Lu, 2020). These reasons also 
were applied to the variations of other alpha diversities. Moreover, 
based on independent-monotonically decreasing Shannon 
indexes from Mount CMD and Mount WGS, it can be speculated 
that the coordinated patterns of Shannon indexes may 
be  monotonically decreased with elevation increasing though 
karst graben basin caused sampling discontinuous. Considering 
that nutrients (e.g., SOC and TN) in surface soils are usually high 
than those in sub-surface soils (Hayat et  al., 2021), and high 
nutrient accessibilities could cause the imbalances of soil microbial 
communities and the appearance of atypical nutrient substrates 
favoring unique bacterial strains (Leeming et  al., 2019; 
Mirmohamadsadeghi et  al., 2021), the alpha diversities were 
higher in A layer than those in B layer. As to higher alpha 
diversities in Mount CMD than those in Mount WGS, perhaps 
spatiotemporal heterogeneity at high altitude areas may be the 
major drivers of microorganism alpha diversity (Banerjee et al., 
2018). Though vegetation type has been reported to influence soil 
bacterial community diversity and composition (Karimi et al., 
2018), alpha diversities in our study has no obvious changes with 
vegetation type variations (Supplementary Figure S3).

It is should be noted that alpha diversity was used as a measure 
of species richness and beta diversity was used to indicate the 
compositional dissimilarity at community levels. Though alpha 
diversities (e. g. Shannon indexes) may be  monotonically 
decreased with elevation increasing, the U-trend of beta  
diversity in our study was in accordance with previous studies 

(Nottingham et al., 2018). These results suggested that though the 
dissimilarity of soil bacterial communities was affected by multiple 
environmental factors (Dai et al., 2021), changeable conditions at 
low or high elevation area sustained higher biodiversity than that 
at long-term stability environment in middle elevation area 
(Simpson, 1980). Moreover, if continuous samplings were 
obtained in karst graben basin of Yunnan-Kweichow Plateau, the 
real changing rules may be not U-trend. Then, beta diversity was 
the suitable indicator of karst soil bacterial structure patterns 
along altitudinal gradients in Yunnan-Kweichow Plateau.

Though it is a common belief that endemic species decreased 
and their proportions increased with elevation increasing (Zhou 
et al., 2019), the monotonically decreased proportions of unique 
OTUs with elevation increasing in Mount CMD and Mount WGS 
might impact the widely accepted opinions, namely elevation 
Rapoport’s rules (Stevens, 1992). The reason is that soil microbial 
communities usually contain a large number of low-abundance 
species (usually referred as the unique/endemic species) and a 
small number of high-abundance species at low altitude areas, 
and only few rare taxa at high altitude areas can be  induced 
(Lennon and Jones, 2011; Jiao and Lu, 2020). In this respect, high 
proportions of unique OTUs appear at low altitude areas, and low 
proportions of unique OTUs appear at high altitude areas. This 
result conforms to the changed regularities of Shannon indexes. 
Moreover, due to high proportions of unique OTUs appearing at 
low altitude areas, the proportions of unique OTUs in Mount 
CMD were lower than those in Mount WGS, which in general 
followed hump-shaped patterns along altitudinal gradients 
perhaps due to the discontinuous ridge at his area. In spite of this, 
their ecology mechanisms which are contrary to elevation 
Rapoport’s rules in karst graben basin of Yunnan-Kweichow 
Plateau are not well clear and further research is needed.

The interactions between environmental 
factors and soil bacterial communities 
along altitudinal gradients

At phylum level, the associations between environmental 
factors and soil bacterial taxa varied, which may have been due to 

TABLE 2 Influence of altitudinal gradients and soil physical/chemical properties on soil bacterial communities by partial Mantel test with soil depth 
changes in karst graben basin of Yunnan-Kweichow Plateau.

Effect of a a a a b b b b

A layer Controlling for b c bc a c ac

Bacterial communities r r r r r r r r

0.642 0.263 0.638 0.266 0.643 0.266 0.633 0.245

B layer Effect of a a b b b b

Controlling for c a c ac

Bacterial communities r r r r r r

0.418 0.408 0.517 0.336 0.5 0.318

All p values are less than 0.01. a. Altitudinal gradients; b. Soil physical properties (T, EC and SM); c. Soil chemical properties (SOC, TP, AK, pH, and TN).
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environmental filtering. That is, specific environmental factors favor 
the formation of particular soil bacterial communities (Delgado-
Baquerizo et al., 2018; Nottingham et al., 2018). In this respect, a 
certain environmental factor may promote the fast-growth of some 

bacteria but could restrict the growth of other bacteria (Delgado-
Baquerizo et  al., 2018; Langenheder and Lindström, 2019). 
Consequently, the most frequent OTUs, especially those classified 
at the genus level had the significantly negative or positive 

FIGURE 7

PLS-PM indicating the relationships between altitudinal gradients, soil physical properties (T, EC, and SM), chemical properties (SOC, TP, AK, pH, 
and TN), soil bacterial communities based on the most abundant OTUs and soil bacterial alpha diversities (Shannon, Simpson and observed OTUs). 
The path coefficients and the explained variability (R2) are calculated after 999 bootstraps and reflected in the arrows with blue and red indicating 
positive and negative effects, respectively (solid line represents direct effect and dotted line represents indirect effect). Models with different 
structures were assessed using the Goodness of Fit (GoF) statistic, a measure of the overall prediction performance.
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correlations with environmental factors in our study (p < 0.05). 
Significantly, Bradyrhizobium (alphaproteobacterial OTU 1) 
appearing in all layers had significantly positive relationships with 
SOC and TN (p < 0.01), which may have been due to them 
performing free-living N2 fixation (Tao et al., 2021). Tao et al. (2021) 
also have reported that Bradyrhizobium could constitute the 
important group of free-living diazotrophs and potentially bring a 
amount of fixed N into soils, which simultaneously enhances SOC 
accumulation. Moreover, Bradyrhizobium could be  tolerant to 
stressors due to them harboring HspQ gene which encodes a 
chaperone protein to combat detrimental effects (Shimuta et al., 
2004; Tao et al., 2021). Consequently, Proteobacteria-related OTU1 
was dominant at high altitudes in all layers.

Though a particular factor can be examined by experiments to 
obtain their role in microbial ecology, the studies about soils 
reacting to multifactor changes at a time are less (Rillig et al., 2019). 
In fact, soils are usually influenced by multiple-factors due to their 
spatial heterogeneity and temporal dynamics (Baldrian, 2019; Rillig 
et al., 2019). Understanding the impacts of multiple factors acting 
in concert is important because they can display the intrinsic 
characters in soil microbial ecology. To address the effects of 
multiple-factors on soil bacteria, partial Mantel test and PLS-PM 
have been used in our study. Altitudinal gradients had the significant 
effects on soil bacteria community compositions, supported by the 
fact that, altitude gradients associating with abiotic changes, 
including temperature and precipitation, can build soil bacterial 
communities in their corresponding habitat (Sundqvist et al., 2013). 
Besides that, soil physical changes along altitudinal gradients had 
directly adverse effects on microbial community compositions and 
diversities, and the soil chemical properties in their corresponding 
habitat were favorable to the appearing of specific species relating to 
the microbial community diversity changes (Ogola et  al., 2021; 
Anselmo and Rizzioli, 2022). In this respect, soil physical changes 
had negative effects on microbial community compositions and 
diversities, and soil chemical property changes had positive effects 
on microbial community diversities. However, soil physical and 
chemical properties usually change with depths so that different soil 
layer harbors distinct microbial communities and the response of 
bacterial community to environmental changes depends on soil 
depth (Barbour et  al., 2022). Consequently, the responses of 
microbial community compositions to soil chemical property 
changes were different, and altitudinal gradients had different effects 
on soil microbial community compositions and diversities in all 
layers. In spite of this, there still has some knowledge gaps existed 
on the responses of bacteria to altitudinal gradients. Then, future 
work should be focusing on their evolutionary and physiological 
processes in response to elevation gradient changes that could 
usefully move the understanding of soil microbial ecology forward.

Conclusion

Our results showed that soil microbial community 
compositions varied along altitudinal gradient in Yunnan karst 

graben basin due to environmental filtering. Because unique/
endemic species restricted in specific habitats could become 
dominant under proper conditions and are important 
contributors to soil microbial diversities, high Shannon indexes 
were found in low altitude areas with changing environment 
conditions. The monotonically decreased Shannon indexes 
with elevation increasing in Mount CMD and Mount WGS also 
demonstrated that the coordinated patterns of Shannon 
indexes may be  monotonically decreased along altitudinal 
gradients. Considering that unique species are not enormous 
in high altitude areas, the low proportions of unique OTUs 
appear at high altitude areas, which conforms to the changed 
regularities of Shannon indexes and impacts the widely 
accepted elevation Rapoport’s rules. Moreover, edaphic 
parameters were different in all layers, and SOC and TN 
increased monotonically with elevation increasing. The 
dominant Bradyrhizobium (alphaproteobacterial OTU 1) 
identified at high altitudes in all layers constitutes the 
important group of free-living diazotrophs and could bring 
fixed N into soils, which simultaneously enhances SOC and TN 
accumulation at high altitudes. Due to the responses of 
bacterial community to environmental changes varying with 
soil depths, the altitudinal gradients had different effects on soil 
microbial community compositions and diversities in all layers. 
Though it is the primary work about soil microbial community 
structure and diversity varying along altitudinal gradients in 
karst graben basin of Yunnan-Kweichow Plateau, our finding 
provides powerful information that can improve our better 
understanding of soil microbial ecology along altitudinal 
gradients at karst areas.
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