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A bacterial strain A1-3 with iprodione-degrading capabilities was isolated from 

the soil for vegetable growing under greenhouses at Lhasa, Tibet. Based on 

phenotypic, phylogenetic, and genotypic data, strain A1-3 was considered to 

represent a novel species of genus Azospirillum. It was able to use iprodione 

as the sole source of carbon and energy for growth, 27.96 mg/L (50.80%) 

iprodione was reduced within 108 h at 25°C. During the degradation of 

iprodione by Azospirillum sp. A1-3, iprodione was firstly degraded to N-(3,5-

dichlorophenyl)-2,4-dioxoimidazolidine, and then to (3,5-dichlorophenylurea) 

acetic acid. However, (3,5-dichlorophenylurea) acetic acid cannot be degraded 

to 3,5-dichloroaniline by Azospirillum sp. A1-3. A ipaH gene which has a highly 

similarity (98.72–99.92%) with other previously reported ipaH genes, was 

presented in Azospirillum sp. A1-3. Azospirillum novel strain with the ability 

of iprodione degradation associated with nitrogen fixation has never been 

reported to date, and Azospirillum sp. A1-3 might be a promising candidate for 

application in the bioremediation of iprodione-contaminated environments.
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Introduction

Iprodione (C13H13Cl2N3O3, CAS No: 36734-19-7), is a dicarboxamide fungicide that 
inhibits DNA and RNA synthesis, cell division, and cellular metabolism in fungi 
(Davidse, 1986), which is commonly used to control fungal infestations by Botrytis 
cinerea, Alternaria sp., Monilinia fructigena, Rhizoctonia solani, Sclerotinia sclerotiorum, 
Penicillium sp., Sclerotinia sp., and other fungal pathogens in crops (Mukherjee et al., 
2003; Morales et  al., 2013; Grabke et  al., 2014; Campos et  al., 2015). Iprodione is 
moderately persistent in soil, with a half-life of 7–60 days depending on the 
environmental conditions (Wang et  al., 2012; Loutfy et  al., 2015), and it has been 
detected in many samples, such as crops, soil, environmental water, animals, and human 
urine (Lindh et al., 2007; Grabke et al., 2014; Carneiro et al., 2020; Celeiro et al., 2020). 
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The U.S. environmental protection agency, European 
commission, and pest management agency of Canada had 
classified iprodione as a highly toxic to aquatic animals, 
moderately toxic to plants and birds, and a probable carcinogenic 
to humans (Verdenelli et al., 2012; Eevers et al., 2017; Bernardes 
et al., 2019). Thus, the presence of iprodione residues is a matter 
of serious concern.

Some studies demonstrated that microbial degradation was 
the primary mechanism for the dissipation of iprodione in the 
environment (Zhang et  al., 2021). To date, several bacterial 
strains capable of iprodione-degrading have been reported, 
including Arthrobacter sp. MA6, Pseudomonas sp., Arthrobacter 
sp. CQH-1, Microbacterium sp. YJN-G, Arthrobacter sp. C1, 
Achromobacter sp. C2, Bacillus sp. KMS-1, and Paenarthrobacter 
sp. YJN-5 (Athiel et al., 1995; Mercadier et al., 1997; Campos 
et al., 2017; Yang et al., 2017, 2018; Cao et al., 2018; Li, 2018). 
However, no report has been made on bioremediation of 
iprodione in Qinghai-Tibet plateau. The objectives of this study 
were (i) to identify a potential novel taxon (A1-3) with 
iprodione-degrading capabilities using phenotypic, phylogenetic, 
and genotypic methods, which was isolated from the soil for 
vegetable growing under greenhouses at Lhasa, Tibet and (ii) to 
analyze the degradation characteristic and pathway of iprodione 
in strain A1-3. It will provide a candidate for the bioremediation 
of iprodione-contaminated environments.

Materials and methods

Chemicals, media, and instruments

Iprodione (purity ≥ 96%), N-(3,5-dichlorophenyl)-2,4-
dioxoimidazolidine (purity ≥96%) were purchased from Toronto 
Research Chemicals Inc.(TRC). N-[[(3,5-dichlorophenyl) amino]
carbonyl] glycine (purity ≥ 96%) was synthesized by Shanghai 
Nafu Biotechnology Co., Ltd. Acetonitrile, acetone, and n-hexane 
(GC grade) were provided by Fisher Scientific International Inc. 
Sodium chloride (AR grade) was provided by Chron Chemicals. 
Luria-Bertani (LB) broth consisted of the following components 
(g/L): 10.0 tryptone, 5.0 yeast extract, and 10.0 NaCl. Mineral 
salts medium (MSM) consisted of the following components 
(g/L): 1.0 NH4NO3, 1.0 NaCl, 1.5  K2HPO4, 0.5 KH2PO4, 0.2 
MgSO4·7H2O, and pH 7.0. Yeast morphology agar (YMA) 
consisted of the following components (g/L): 14.0 mannitol, 4.5 
yeast meal, 0.1 MgSO4·7H2O, 0.4 K2HPO4, 0.3 NaCl, 0.01 CaCl2, 
and pH7.0 ± 0.2. Gas chromatograph (6,890 N, ECD with HP-5 
Capillary column) was provided by Agilent Technologies. Gas 
chromatography-tandem mass spectrometer (450GC-320MS, EI 
with DB-5MS Capillary column) was provided by Bruker. 
Electronic Balance (JA2003N) was provided by Jinghua 
instruments. Ultraviolet visible photometer (TU-1901) was 
provided by Beijing Purkinje General Instrument Co., Ltd. 
Ultrapure water preparation system (Milli-Q) was provided 
by Millipore.

Isolation of iprodione-degrading strain

Iprodione-degrading bacteria were isolated using enrichment 
culture technique. The samples were collected from the soil for 
vegetable growing under greenhouses at Lhasa, Tibet 
(29°66′84.4″N, 90°94′27.6″E, Altitude: 3,667 m). A 5.0 g amount 
of soil sample was added into a 250 ml flask with 100 ml of sterile 
MSM containing 100 mg/L iprodione and was incubated on a 
rotary shaker (180 rpm) at 25°C for 5 days. The suspension (5 ml) 
was successively transferred to fresh MSM containing 200, 300, 
and 400 mg/l iprodione and incubated for another 5 days, 
respectively. After four rounds of enrichment, the culture was 
diluted and spread onto solid MSM plates containing 100 mg/L 
iprodione and incubated at 25°C for 7 days. A bacterial named 
A1-3 with transparent ring was purified for further study.

Phenotypic characterization and 16S 
rRNA gene analysis

The phenotypic characteristics of strain A1-3 were tested on 
yeast mannitol agar (YMA). Cell morphology of strain A1-3 
cultured at 25°C for 3 days were observed and photographed by 
light microscopy (CX31, Olympus). The temperature for optimal 
growth was tested at 5–40°C (5, 10, 15, 20, 25, 30, 37, and 40°C). 
The pH range for growth was measured from pH 4.0 to pH 12.0, 
with an interval of 1.0 units. The salt tolerance was determined 
with various NaCl concentrations (0, 1, 2, 3, 4, 5, and 6%, w/v). 
Other biochemical characteristics were carried out according to 
Ferreira et al. (2020).

Genomic DNA was extracted from strain A1-3 after cultivated 
in Luria-Broth for 48 h, using MiniBEST Bacterial Genomic DNA 
Extraction Kit Version 2.0 (TaKaRa Biotechnology Co., Tokyo, 
Japan). Amplification of 16S rRNA gene was performed under the 
following conditions: 95°C for 10 min, followed by 94°C for 45 s, 
56°C for 45 s, and 72°C for 90 s for 30 cycles with a final 10 min 
extension at 72°C, the PCR products were detected by agarose gel 
electrophoresis and then sent to GENEWIZ.lnc for sequencing. 
Primers used for amplification and sequencing of 16S rRNA was 
described by Pan et al. (2021). 16S rRNA gene was aligned using 
EzBioCloud.1 Maximum-likelihood (ML) tree was constructed 
using MEGA7.0 software with bootstrap values of 1,000 replicates 
(Kumar et al., 2016).

Genome sequencing and comparative 
genomic analysis

The genomic DNA of strain A1-3 was sequenced using 
Illumina and Nanopore platform in MAGIGENE. The genomic 
sequence information of A1-3 had been submitted to the National 

1  https://eztaxon-e.ezbiocloud.net/
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Center for Biotechnology Information (NCBI) database under the 
accession number JAMSLU000000000. Draft genome assemblies 
were prepared from the ONT reads using Apades v3.11.0, gene 
prediction using Glimmer 3.02 software. The predicted coding 
sequences were translated and used as queries to search the 
COG database.

The digital DNA–DNA hybridization (dDDH) values and 
confidence intervals were calculated using the recommended 
settings of Genome-to-Genome Distance Calculator (GGDC; 
Meier-Kolthoff et al., 2013). The average nucleotide identity (ANI) 
was determined between strain A1-3 and closely related strains of 
genus Azospirillum by OrthANIu (Yoon et al., 2017). The whole-
genome orthologous clusters were compared and analyzed by 
OrthoVenn2 (Xu et al., 2019). The whole-genome evolution tree 
were constructed using Type (Strain) Genome Server (Meier-
Kolthoff et al., 2022).

Mensuration of iprodione and the 
metabolites

Cells of strain A1-3 were cultured in liquid LB medium for 
24 h at 25°C and then collected by centrifugation at 8,000 rpm for 
5 min. The cell pellets were washed twice with sterilized MSM, 
adjusted to an optical density at 600 nm (OD600) of approximately 
1.5, and used as the inoculant. An aliquot of the cells (5%, vol/vol) 
was inoculated into a 100 ml erlenmeyer flask containing 30 ml of 
MSM supplemented with 50 mg/L iprodione as the sole source of 
carbon. The flasks were then incubated at 25°C with shaking 
(180 rpm). At each sampling point, six flasks were sacrificed for 
various measurements, three flasks were used to measure the 
iprodione concentration or for identification of metabolites by 
GC-ECD or GC–MS/MS, while other three flasks were used to 
determine the values of OD600 of strain A1-3. Each treatment was 
performed in triplicate, and control experiments (medium 
without inoculum) were carried out under the same conditions.

Sample preparation of fermentation broth: 20.0 g sample were 
placed in 150 ml beaker, then 40 ml acetonitrile and 5–6 g NaCl 
were added, vibration at 180 rpm for 10 min, after 30 min of 
stratification, 10 ml of supernatant were rotatably evaporated to 
nearly dry, 5.0 ml acetone with n-hexane (1:9) was used as constant 
volume for GC-ECD or GC–MS/MS analysis (Celeiro et al., 2020).

The test conditions by Gas chromatography are as follows: 
HP-5 capillary column (30 m × 0.25 mm × 0.45 μm), carrier gas 
(N2, 99.999% purity), flow rate (3.0 ml/min), flow mode (10:1), 
sample volume (1 μl), inlet temperature (280°C), heating process: 
150°C for 0 min, 15°C/min to 210°C, and 10°C/min to 260°C, 
20°C/min to 300°C for 6 min, electron capture detector 
temperature (230°C).

The test conditions by Gas chromatography-triple tandem 
quadrupole mass spectrometer are as follows: DB-5MS capillary 
column (30 m × 0.25 mm × 0.25 μm), carrier gas (N2, 99.999% 
purity), flow rate (1.0 ml/min), no-flow mode, sample volume (1 μl), 
inlet temperature (230°C), heating process: 60°C for 1 min, 15°C/

min to 150°C for 2 min, 10°C/min to 290°C for 4 min. EI mode, 
electron bombardment energy (70ev), transmission line temperature 
(280°C), and ion source temperature (230°C). Scan mode was used 
for qualitative analysis of each component. The scanning quality 
range was 50–500 amu (Özdoğan et al., 2018; Dai et al., 2022).

Amplification of ipaH and ddaH genes

Genomic DNA was extracted from strain A1-3 using 
MiniBEST Bacterial Genomic DNA Extraction Kit Version 2.0. 
Amplification of iprodione-degrading genes (ipaH and ddaH) 
were performed under the following conditions: 95°C for 5 min, 
followed by 94°C for 30 s, 56°C for 30 s, and 72°C for 45 s for 
32 cycles with a final 10 min extension at 72°C, the PCR products 
were detected by agarose gel electrophoresis and then sent to 
GENEWIZ.lnc for sequencing. Primers used for amplification and 
sequencing of ipaH and ddaH genes were described by Zhang 
et al. (2021).

Results

Characterization and 16S rRNA gene 
results of strain A1-3

Colonies of strain A1-3 was white, round, moist, and opaque 
on YMA solid medium. Strain A1-3 was Gram-strain-negative, 
curved or slightly curved rods, inmotility, 0.4–0.6 μm × 2.7–3.2 μm. 
Strain A1-3 grew at 15–30°C and pH 6.0–9.0 (optimum, 20–25°C 
and pH 7.0–8.0) with 0–2% (w/v) NaCl (optimum, 1%). Negative 
for oxidase activity, urease activity, and MR-test, while catalase 
activity, starch hydrolysis, sucrose fermentation, and gelatin 
hydrolysis were positive.

Compared to the sequences deposited in EzBioCloud, the 16S 
rRNA gene sequence of strain A1-3 was shared the highest 
similarity with Azospirillum palustre B2T (98.85%), followed by 
Azospirillum humicireducens SgZ-5T (98.79%), Azospirillum 
oryzae COC8T (98.65%), Azospirillum lipoferum NCIMB 11861T 
(98.43%), and Azospirillum melinis TMCY 0552T (98.35%). A ML 
tree derived from full 16S rRNA alignments was shown in 
Figure  1. Phylogenetic analysis of 16S rRNA confirmed its 
placement within the Azospirillum genus, but to form a separate 
branch of evolution. However, the bootstrap values of the ML tree 
were low, and the data between the ML tree and the EzBioCloud 
database were inconsistent, so the taxonomic status of strain A1-3 
need to be further confirmed.

Genomic characteristics and 
comparative genomics analysis

To further confirm the taxonomic status of Azospirillum sp. 
A1-3, the draft genome was sequenced using Illumina and Nanopore 
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platform. The draft genome of Azospirillum sp. A1-3 contained nine 
contigs with an N50/N90 value of 795,522/606,539 bp. The genome 
size and DNA G + C content of Azospirillum sp. A1-3 were 7.71 Mb 
and 67.12 mol%, respectively. The whole-genome evolution tree of 
strain A1-3 and 20 related bacteria shown that strain A1-3 formed 
a separate lineage with a very high bootstrap support. Furthermore, 

the dDDH and ANI values between strain A1-3 and other related 
strains were 21.3–54.4 and 76.5–93.8% (Figure 2), which were lower 
than the threshold values of 70% and 95–96% for species 
discrimination (Goris et al., 2007; Meier-Kolthoff et al., 2022). The 
data from the whole-genome evolution tree were consistent with the 
EzBioCloud database. So Azospirillum palustre B2T, Azospirillum 
humicireducens SgZ-5T, Azospirillum oryzae COC8T, Azospirillum 
lipoferum NCIMB 11861T, and Azospirillum melinis TMCY 0552T 
were selected for comparative genomic analysis and the genomic 
properties were listed in Table 1. The orthologous clusters analysis 
of Azospirillum sp. A1-3 and related Azospirillum species was shown 
in Figure  3. Azospirillum sp. A1-3, Azospirillum palustre B2T, 
Azospirillum humicireducens SgZ-5T, Azospirillum oryzae COC8T, 
Azospirillum lipoferum NCIMB 11861T, and Azospirillum melinis 
TMCY 0552T were had 5,756, 6,250, 5,295, 5,299, 6,019, and 6,309 
proteins, respectively, of which only 3,795 orthologous clusters were 
identified among all the six strains.

A complete set of genes encoding enzymes involved in 
nitrogen fixation (16,025 bp) was found in the genomic of 
Azospirillum sp. A1-3 (Figure 4). The genetic organization of the 
nif genes performed the high similarity among the genus 
Azospirillum, and were distributed into three portions of the 
genome. Herein, the first group of genes contained fixAB and 
nifUSV. The fixAB genes encode a membrane protein complex 
involved in electron transport to nitrogenase, the nifUS genes are 
generally dedicated to biogenesis of the nitrogenase Fe-S cluster, 
the nifV encode the homocitrate synthase which is an essential 
component of nitrogenase (Edgren and Nordlund, 2004; Bellés-
Sancho et  al., 2021; Benoit et  al., 2021). The second group 
contained a series of genes (nifHDK and nifENX) arranged in the 
same order. The nifH encode the Fe protein and the nifDK encode 
the MoFe protein. NifEN proteins are biosynthetic scaffold for the 
FeMo-co and NifX is involved in the efficient transfer processes 
of NifB-co to the NifEN proteins (Fay et al., 2016; Nonaka et al., 
2019). The third group of genes contained nifB and nifTZ 
involved in synthesis of nitrogenase and nifA in Azospirillum sp. 
A1-3, Azospirillum palustre B2T, Azospirillum humicireducens 
SgZ-5T, and Azospirillum oryzae COC8T. In addition, draT and 
draG genes known to metabolic regulation nitrogenase (Wang 
et al., 2018) were found in A1-3, but draT was not present in 
Azospirillum palustre B2T, Azospirillum humicireducens SgZ-5T, 
Azospirillum oryzae COC8T, Azospirillum lipoferum NCIMB 
11861T, and Azospirillum melinis TMCY 0552T. All the above 
analyses confirmed that strain A1-3 was represented a novel 
species of genus Azospirillum.

Degradation of iprodione by Azospirillum 
sp. A1-3

The degradation kinetics of iprodione and growth of 
Azospirillum sp. A1-3 were simultaneously investigated 
(Figure 5). During the first 84 h, Azospirillum sp. A1-3 grew 

FIGURE 1

Maximum-likelihood tree based on 16S rRNA gene sequences 
revealing the relationship between strain A1-3 and other species 
of the genus Azospirillum. Skermanella aerolata 5416 T-32T was 
used as an out-group. Bar, 0.01 substitutions per nucleotide 
position.

FIGURE 2

The whole-genome evolution tree of A1-3 and related bacteria 
with dDDH and ANI values.
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faster, and then there was a slight decrease in conjunction with 
the decrease of iprodione. After 108 h of incubation, 
27.96 mg/L iprodione was reduced by Azospirillum sp. A1-3 
with the degradation rate of about 50.80%, and the cell density 
(OD600) was increased from 0.078 to 0.249. The results 
indicated that Azospirillum sp. A1-3 could utilize iprodione to 
support its growth. Herein, it was deduced that strain A1-3 
could not completely degrade iprodione but could utilize 
iprodione as the sole carbon source for its growth.

Identification of metabolites of iprodione

For the sample collected after inoculation 60 h, three compounds 
(I, II, and III) were detected at 8.245, 6.990, and 1.598 min by 
GC-ECD (Figure 6A).The total ion flow diagram of compounds I, 
II, and III detected by GC-MS/MS were shown in Figures 6B–D, 
respectively. All compounds contained benzene-ring structures and 
base peaks of Cl-ion isotopes (Cl 35-and Cl 37−). It was found that 
compound I, II, and III had a prominent peak of Cl-ion isotopes at 
m/z 314.0999 [C12H10Cl35−

2N3O3
+]/316.645 [C12H10Cl37−

2N3O3
+], 

243.9 [C9H6Cl35−
2N2O2]/245.9 [C9H6Cl37−

2N2O2], and 187.0999 [C7H
3Cl35−

2NO+]/189.0660 [C7H3Cl37−
2NO+], respectively. In database of 

Bruker-NIST, compounds I, II, and III were identified as 
iprodione,  N-(3,5-dichlorophenyl)-2,4-dioxoimidazolidine and 
(3,5-dichlorophenylurea) acetic acid, which was the same as the 
typical one (Yang et al., 2018). However, (3,5-dichlorophenylurea) 
acetic acid could not be  degraded to 3,5-dichloroaniline by 
Azospirillum sp. A1-3, this may be related to the deletion of related 
genes (Zhang et al., 2021). The metabolic pathway of iprodione by 
Azospirillum sp. A1-3 was shown in Figure 7.

The amplification results of ipaH and 
ddaH genes

The ipaH gene was responsible for hydrolyzing the N1 amide 
bond of iprodione, and the ddaH gene was responsible for hydantoin 
ring cleavage of N-(3,-5-dichlorophenyl)-2,4-dioxoimidazolidine 
(Zhang et al., 2021). The PCR amplification results of ipaH and ddaH 
genes in Azospirillum sp. A1-3 were shown that the ipaH gene was a 
distinct single band, while the ddaH gene was diffuse and could not 
be sequenced. The sequencing result of ipaH gene was shown that it 
has a highly similarity (98.72–99.92%) with other reported ipaH 
genes (Figure 8). While the previously reported ddaH gene were not 
presented in Azospirillum sp. A1-3, other types of hydrolases maybe 
involved in the process of hydantoin ring cleavage of N-(3,-5-
dichlorophenyl)-2,4-dioxoimidazolidine in Azospirillum sp. A1-3.

TABLE 1  Genomic properties of Azospirillum sp. A1-3 and related strains.

Azospirillum 
sp. A1-3

A. palustre B2T A. 
humicireducens 

SgZ-5T

A. oryzae 
COC8T

A. lipoferum 
NCIMB 11861T

A. melinis 
TMCY 0552T

Assembly 

accession

GCA_023806445.1 GCF_002573965.1 GCA_001639105.2 GCA_008364795.1 GCA_008364955.1 GCA_017876055.1

Total Size 

(Mb)

7.71 7.99 6.86 6.75 6.85 7.95

GC (%) 67.1 67.8 67.5 67.4 67.7 67.7

rRNA genes 30 3 14 5 23 4

tRNA genes 92 66 66 63 79 65

Total genes 7,071 7,128 6,054 6,071 6,112 7,111

nif symbiotic 

genes

+ + + + + +

FIGURE 3

Venn diagram analysis of Azospirillum sp. A1-3 and related 
Azospirillum species.
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Discussion

Iprodione was a very popular fungicide used in many kinds of 
crops all over the world, with microbial degradation being the 
main way to its environmental dissipation. Several bacterial 
strains capable of iprodione-degrading have been reported, but 
not Azospirillum spp. Herein a novel Azospirillum sp.A1-3 with 
iprodione-degrading capabilities was reported. Azospirillum novel 
strains with the ability of iprodione degradation associated with 
nitrogen fixation has never been reported to date. Azospirillum 
was contained 24 validly published species and nine not validly 
published species2 at the time of writing. Some studies have shown 
that Azospirillum spp. not only have nitrogen-fixing function, but 

2  https://lpsn.dsmz.de/Azospirillum

also have some other functions, such as heavy oil degrading, 
atrazine degrading, denitrification ability, carotenoids produce 
(Jang et al., 2019; Liu et al., 2019; Wu et al., 2020; Mishra et al., 
2021), and the functional diversity of Azospirillum spp. needs to 
be studied future.

Previous studies have shown that the initial concentration, 
degradation rate, and time of iprodione in different 
microorganisms were 1.5 mM/L–100 mg/L, 41.4–100% and 
20 h-10 days, respectively (Table 2; Athiel et al., 1995; Mercadier 
et al., 1997; Campos et al., 2017; Yang et al., 2017, 2018; Cao et al., 
2018; Li, 2018). In this study, 50.80% iprodione was degraded by 
Azospirillum sp. A1-3 after 108 h, and iprodione could been firstly 
degraded to N-(3,5-dichlorophenyl)-2,4-dioxoimidazolidine, and 
then to (3,5-dichlorophenylurea) acetic acid. The Pseudomonas 
spp. and Microbacterium spp. could quickly degraded iprodione 
within 24 h, while the degradation pathway and molecular 

FIGURE 4

Comparison of the nif gene clusters of Azospirillum sp. A1-3 with Azospirillum palustre B2T, Azospirillum humicireducens SgZ-5T, Azospirillum 
oryzae COC8T, Azospirillum lipoferum NCIMB 11861T, and Azospirillum melinis TMCY 0552T. The arrow indicates genes transcriptional direction. 
The hypothetical proteins were colored in white.
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mechanism of iprodione in these strains were not resolved. The 
degradation pathway of iprodione in Azospirillum sp. A1-3 was 
partly the same as the typical one in Paenarthrobacter sp. YJN-5 

&YJN-D, while the initial tolerance concentration of iprodione of 
strain A1-3 were higher than them. Some studies demonstrated 
that the coding genes involved in the above-mentioned processes 

FIGURE 5

Utilization of iprodione by Azospirillum sp. A1-3.

A B

C D

FIGURE 6

Degradation pathway of iprodione in Azospirillum sp. A1-3. (A) GC analysis of metabolites that appeared during the degradation of iprodione by 
strain A1-3, (B) MS/MS analysis of compound I, (C) MS/MS analysis of compound II, and (D) MS/MS analysis of compound III.
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TABLE 2  Basic characteristics of iprodione-degrading strains.

Source Species of isolates Initial 
concentration of 
iprodione

Degradation rate Degradation 
time

Degradation 
genes

Soil Arthrobacter sp. MA6 9.90 mg/L 86.7% 7 days ND

Soil Pseudomonas fluorescens, 

Pseudomonas sp., P. 

paucimobilis

8.25 mg/L 100% 20–24 h ND

Soil Zygosaccharomyces rouxii 

DBVPG 6399

1 mg/L 100% 9 days ND

Farmland soil Arthrobacter sp.CQH 100 mg/L 100% 112 h ND

Soil Microbacterium sp. CHQ-1 100 mg/L 100% 96 h ND

Activated Sludge Microbacterium sp.YJN-G 100 mg/L 100% 24 h ipaH

Acidic soil Arthrobacter sp. C1, 

Achromobacter sp. C2

60 mM/L 100% 10 days ND

Soil Bacillus sp.KMS-1 25 mg/L 41.4% 7 days ND

Grapes grow soil Paenarthrobacter sp. YJN-5 

Paenarthrobacter sp. 

YJN-D

1.5 mM/L 95% 80 h ipaH, ddaH, and duaH

FIGURE 7

The metabolic pathway of iprodione by Azospirillum sp. A1-3.

FIGURE 8

The differences of ipaH gene sequences in Azospirillum sp. A1-3 and other iprodione-degrading strains.
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had a highly similarity (Zhang et al., 2021). In our follow-up study, 
the ipaH gene, which was responsible for the initial step in the 
iprodione degradation pathway, have a 98–99% similarity in many 
kinds of microorganisms (Acinetobacter sp., Paenarthrobacter sp., 
Microbacterium sp., and Azospirillum sp., part of the data does not 
show; Zhou, 2022). The difference copy numbers or mutation of 
amino acid site of iprodione-degrading genes maybe are the 
mainly reasons for the different degradation rate of iprodione in 
microorganisms. The molecular mechanism of different 
degradation rate of iprodione with the highly similarity iprodione-
degrading genes (ipaH, ddaH, and duaH) in different genera of 
microorganisms have need to be further studied.
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