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Introduction: Applications of organomineral fertilizer (OMF) are important 

measures for developing organic agriculture in karst mountain areas. However, 

the influence of OMF on the structure and function of soil microbial diversity 

and their relationship with crop yield and quality are still unclear.

Methods: Based on soil science, crop science, and high-throughput 

sequencing methods, we  investigated the changes of rhizosphere soil 

microbial communities of Perilla frutescens under different fertilization 

measures. Then, the relationship between P. frutescens yield and quality with 

soil quality was analyzed.

Results: The results showed that the addition of OMF increased the amount 

of total carbon and total potassium in soil. OF, especially OMF, improved P. 

frutescens yield and quality (e.g., panicle number per plant, main panicle 

length, and unsaturated fatty acid contents). Both OF and OMF treatments 

significantly increased the enrichment of beneficial microorganism (e.g., 

Bacillus, Actinomadura, Candidatus_Solibacter, Iamia, Pseudallescheria, and 

Cladorrhinum). The symbiotic network analysis demonstrated that OMF 

strengthened the connection among the soil microbial communities, and 

the community composition became more stable. Redundancy analysis and 

structural equation modeling showed that the soil pH, available phosphorus, 

and available potassium were significantly correlated with soil microbial 

community diversity and P. frutescens yield and quality.

Discussion: Our study confirmed that OMF could replace CF or common OF 

to improve soil fertility, crop yield and quality in karst mountain soils.
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Introduction

Application of chemical fertilizers (CFs) can significantly increase 
soil fertility and crop yield in a short time. However, long-term 
excessive application of CFs damages soil microbial communities and 
biological activities, which results in decreased soil quality, increased 
dependence of crop growth on fertilizer nutrients, and aggravated 
agricultural surface source pollution (Gomiero et al., 2011; Kour et al., 
2020; Ren et  al., 2020). To reduce the negative effects caused by 
excessive application of CFs, organic fertilizers (OFs) are usually used 
to replace or partially replace CFs to protect soil biodiversity and 
maintain soil ecological balance (Megali et al., 2013; Steffen et al., 
2015). Increased OFs application can increase soil carbon storage and 
plant nutrients, and improve soil biological activity, which are of great 
significance for mitigating climate warming and developing 
sustainable agricultural production (Gattinger et al., 2012; Seufert 
et al., 2012). Many studies have shown that OFs application is an 
effective way to improve crop yield and quality (Liu et al., 2020, 2021; 
Du et al., 2022), and increase soil microbial richness and diversity 
(Zhou et al., 2015; Cui et al., 2018; Li et al., 2020). However, the 
contents of mineral nutrients such as nitrogen, phosphorus, and 
potassium in OFs are low, and the increased amount of fertilizer 
needed increases the cost and application difficulty. Therefore, it is 
very necessary to improve the contents of mineral elements in 
traditional OFs.

As a new fertilizer combining the advantages of organic 
fertilizer and inorganic fertilizer, the nutrient release effect of 
OMFs occurs simultaneously with the crop growth process, 
making the agronomic efficiency higher when compared with the 
inorganic fertilizer (Kiehl, 2008). Compared with CFs, OMFs can 
reduce the loss of some nutrients, such as nitrogen volatilization, 
phosphorus fixation and potassium leaching (Aguilar et al., 2019). 
Compared with common OFs, OMFs are rich in mineral elements 
necessary for crop growth. OMFs are usually composed of natural 
organic matter sources and inorganic element sources. 
Organomineral fertilizer ingredients are mostly agricultural 
wastes such as chicken manure, coffee shell, wood waste, sewage 
sludge and sugarcane cake, combined with urea, calcium 
superphosphate, potassium chloride, magnesium silicate, calcium 
sulfate and other inorganic chemical fertilizers (Efanov et  al., 
2001; Carvalho et al., 2014; Grohskopf et al., 2019; Gonçalves 
et al., 2021; Hawrot-Paw et al., 2022; Ngo et al., 2022). According 
to the published articles, the research on the application effect of 
organic mineral fertilizer mainly focuses on the agronomic 
efficiency of crops. Compared with the crop response to inorganic 
fertilizers, the response to organomineral fertilizers is quite 
variable. The reported results are gains (Efanov et al., 2001; Deeks 
et al., 2013; Carvalho et al., 2014; Sakurada et al., 2016; Vollú et al., 
2018; Ngo et al., 2022), losses (Antille et al., 2017; Frazão et al., 
2019), or equivalent efficiency (Corrêa et al., 2018; Dias et al., 
2020; Mumbach et al., 2020). Those varied results may be related 
to the different ingredients of OMFs, the amount of fertilizer 
applied and the environment of the study sites. Limited research 
literature showed that OMF, as a source of organic carbon and 

mineral elements, had a positive effect on the quantity and activity 
of soil microorganisms (Hawrot-Paw et al., 2022), but had little 
effect on the rhizosphere bacterial diversity of crops (Vollú 
et al., 2018).

The staggering production of cuttings and quarry by-products 
from mining activities results in a huge environmental burden; 
however, the combined use of these cuttings and low-grade 
mineral rocks can help reduce this pollution (Basak et al., 2021; 
Syed et  al., 2021). The OMF formed by the combination 
fermentation of low-grade mineral powder and agricultural waste 
can more fully reflect the production concept of energy saving and 
environmental protection, and reduce the cost in the production 
process of inorganic fertilizers such as urea and phosphate 
fertilizer. Previous studies have shown that OMF produced by 
mixing rock powder containing potassium and phosphate with 
OF or mixing rock powder during OF fermentation can provide 
beneficial mineral nutrients for crop growth without introducing 
toxic heavy metal pollution (Theodoro and Leonardos, 2006; 
Biswas et al., 2009; Lian et al., 2020; Basak et al., 2021; Syed et al., 
2021). As an important support of soil quality, soil microorganisms 
are sensitive to fertilization managements (Wang et al., 2020; Bello 
et al., 2021). However, there have been no reports on the effects of 
OMFs application on soil microbial community diversity and 
composition in karst mountain soils.

P. frutescens is an annual herb in the Labiaceae family and is a 
widely cultivated cash crop in Asian countries (Hu et al., 2010; Yu 
et al., 2017). In China, it has traditionally been used in medicine 
and food, and has been cultivated for more than 2000 years (Lee 
and Kim, 2007). The oil-rich seeds of P. frutescens are used to 
make condiments in traditional Asian cuisines (Luitel et al., 2017). 
As the raw material of cooking oil, perilla grains are rich in 
unsaturated fatty acids and have a high content of ɑ-linolenic acid, 
up to 50–70%; this is the highest ɑ-linolenic acid content known 
in plants (Yu et al., 2017). In addition to value as a food item, 
P. frutescens is also used in traditional Chinese medicine, and as 
food decoration and a coloring agent (Tian et al., 2014). Moreover, 
P. frutescens is an important agricultural crop in karst areas of 
southwest China (Tian et al., 2017).

Potassium is one of the main elements necessary for plant 
growth. According to the standard of the Second Soil Survey of 
China (China Soil Science Database1), the soil in karst areas is in 
a state of potassium deficiency (total K < 10 g·kg−1 and available 
K  < 100 mg·kg−1). Therefore, potassium supplementation is 
necessary to improve soil fertility in karst areas of southwest 
China. For this reason, our OMF was fermented from potassium-
containing rocks (potassium feldspar) together with agricultural 
wastes such as chicken manure and straw. We hypothesized that 
the application of potassium-containing OMF was beneficial to 
improving P. frutescens quality and yield, and had positive effects 
on the distribution and structure of soil microbial communities. 
To test this hypothesis, the yield, quality, and rhizosphere soil 

1 http://vdb3.soil.csdb.cn/
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microbial community characteristics of P. frutescens were analyzed 
and studied based on soil science, crop science, and high-
throughput sequencing technology methods. The aim of this study 
was to reveal: (1) differences in soil microbial diversity and 
community structure of the P. frutescens rhizosphere under 
different fertilization treatments; (2) the relationship among 
P. frutescens yield and quality, soil characteristics, and microbial 
community under different fertilization treatments; and (3) the 
effects of OMF on soil and crop quality. This study investigated for 
the first time the feasibility of using OMFs to improve the quality 
of P. frutescens and the abundance of soil beneficial microbial 
community in the potassium-deficient karst areas. The results will 
be conducive to the application of new OMFs in karst areas, and 
improve the yield and quality of P. frutescens which is widely 
cultivated in this area.

Materials and methods

Experimental design and sample 
collection

The experimental field site was located in Changzhai Village, 
Changshun County, Guizhou Province, China (26°01′25″ N, 
106°30′55″ E; elevation, 1,004 m). The strata are mainly light-
colored limestone of the Permian Qixia Formation and Maokou 
Formation. The soil type is yellow soil according to the Chinese 
soil classification system (Gong, 1999) and Orthic Acrisols 
according to the World Reference Base (WRB) soil classification 
system (USS Working Group WRB, 2015). The region has a 
subtropical monsoon humid climate. The annual average 
temperature is 15.1°C, the annual average precipitation is 
1396.7 mm, the annual sunshine duration is 1202.1 h, and the 
annual frost-free period is 275 days.

Four treatments were set up in the field experiment: blank 
control group (CK), no fertilization; CF group, compound CF was 
applied; OF group, ordinary OF was applied; OMF group, 
potassium-containing OMF was applied. Four parallel plots 
(5 m × 5 m) were set for each treatment group (total, 16 plots). The 
randomized complete block design was used to divide the sample 
area blocks (Supplementary Figure S1). On 7 May 2019, 
P. frutescens was planted and fertilized. The P. frutescens seeds were 
the 1st generation hybrids cultivated by the Oil Materials Research 
Institute of Guizhou Academy of Agricultural Sciences (China).

The fertilizer specifications used were as follows:
The raw materials for OF fermentation were mushroom 

residue, distiller’s grains, straw, and chicken manure, which were 
mixed according to a mass ratio of 1:1:1:2 and EM microbial agent 
was added for fermentation (1 kg bacterial agent was added for 
every 10 T substrate). The mixture was then fermented in a 
fermentation tank for 30 days with periodic stirring. The total 
nutrient content (N + P2O5 + K2O) was 7.2%, among which the 
content ratio of N:P2O5:K2O was 0.9%:2.9%:3.4%, organic matter 
was 48.3%, and pH was 7.7.

Potassium-containing OMF was made by mixing the raw 
fermentation materials of the OF and potassium-containing rock 
powder, which contained 76% potassium feldspar, and passing the 
mixture through a 2-mm sieve. In accordance with a mass ratio of 
3:1, the chemical composition was as follows: Al2O3, 17.11%; SiO2, 
54.06%; K2O, 9.09%; CaO, 1.9%; Fe2O3, 6.15%; and MgO, 3.41% 
(Sun et  al., 2019). Then, EM microbial agent was added for 
fermentation (1 kg bacterial agent per 10 T substrate). The raw 
materials were thoroughly mixed and fermented for 30 days with 
periodic stirring. The total nutrient content of OMF was 6.4%, 
with a content ratio of N: P2O5: K2O of 1.6%:1.1%:3.7%, the 
content of organic matter was 56.4%, and the pH was 7.6. OF and 
OMF were produced by Guizhou Guifu Ecological Fertilizer Co., 
LTD. (China).

The compound CF was produced by Guizhou Xiyang 
Fertilizer Co., LTD. (China) and had a total nutrient content 
≥45%, N:P2O5:K2O content ratio was 15%:15%:15%. Urea was 
produced by Guizhou Chitianhua Tongzi Chemical Co., 
LTD. (China) with a total N ≥ 46.4%. Phosphate fertilizer was 
produced by Fuda Phosphorus Chemical Co., LTD. (China) with 
P2O5 ≥ 12%. The proportions of N, P, and K in OF and OMF 
groups were balanced by urea and phosphate fertilizer. All 
treatment groups had fertilizer applied with a content ratio of 
N:P2O5:K2O of 15:15:15, and application amounts are shown in 
Table 1.

Rhizosphere soil sampling was conducted on 19 August 2019, 
which was the 105th day of P. frutescens growth. Rhizosphere soil 
samples were arbitrarily collected from eight P. frutescens plants in 
each plot and mixed into one sample. A total of 16 mixed soil 
samples were collected. When collecting rhizosphere soil, the 
whole plant was first dug up, and the scattered soil at the root was 
gently shaken off. The remaining soil attached to the root system 
was considered the rhizosphere soil (Sun et al., 2021). The soil 
samples were frozen and transported to the laboratory on dry ice, 
passed through a 2-mm sterile sieve, and the plant roots were 
removed. Each sample was divided into two parts: one part was 
naturally air-dried to determine physicochemical properties, and 
the other was stored in a − 80°C freezer for DNA extraction.

Soil physicochemical analysis

Soil pH was analyzed by vibrating slurry with a water:soil ratio 
of 2.5:1 (v/w) and determined using a pH meter (Mettler-Toledo 
FE28, Switzerland; Marcos et al., 2019). Soil total organic carbon 
(TOC), total organic nitrogen (TON), total carbon (TC), and total 
nitrogen (TN) were determined using an elemental analyzer 
(Vario MACRO Cube, Germany; Liu et  al., 2014). Total 
phosphorus (TP) and total potassium (TK) were determined by 
sodium hydroxide melting flame spectrophotometry (Ren et al., 
2016). Available phosphorus (AP) was determined by the 
NaHCO3 method, and available potassium (AK) was determined 
by ammonium acetate extraction–flame spectrophotometry 
(Lu, 1999).
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P. frutescens yield and quality analysis

On 21 September 2019, P. frutescens were harvested on the 
137th day of growth. The P. frutescens yield was measured after 
harvest. The main indicators were plant height, biomass per plant, 
number of stem nodes, number of effective branches at one time, 
length of effective branches at one time, number of branch angles, 
number of panicles per plant, length of the main panicle, number 
of fruits in a single row of the main panicle, number of fruits on 
the main ear, and number of grains in the 10 main ears. After the 
perilla seeds were harvested, seed quality was inferred by 
determining fatty acid content (e.g., palmitic acid content, stearic 
acid content, oleic acid content, linoleic acid content, and linolenic 
acid content), total lipid content, and crude protein content. The 
fatty acid content was determined by gas chromatography–mass 
spectrometry (GCMS-QP2010, Schimadzu, Japan; Javier et al., 
2018; Ko et al., 2018). Fat content was determined by sequential 
Soxhlet extraction according to ISO 659:2009 (Kourimska et al., 
2018). The crude protein content was determined by the Kjeldahl 
method, the nitrogen concentration of the sample was calculated 
with a conversion factor (6.25), and the total nitrogen and protein 
mass were determined to obtain the crude protein content (Yaldiz 
and Camlica, 2020).

DNA extraction and high-throughput 
sequencing

Total soil DNA was extracted from 0.5 g soil according to the 
manufacturer’s instructions for the E.Z.N.A.® Soil DNA Kit 
(Omega Bio-Tek, USA). The DNA extraction quality was detected 
using 1% agarose gel electrophoresis, and the DNA concentration 
and purity were determined using a NanoDrop2000 
spectrophotometer (Thermo Fisher Scientific Co., LTD., USA). 
Using the extracted DNA as a template, the V3–V4 region of the 
bacterial 16 s rRNA gene was amplified using the primers 338F 
(5′-ACTCCTACGGGAGGCAGCAG-3′) and 806R 
(5′-GGACTACHVGGGTWTCTAAT-3′; Xu et  al., 2016). The 
fungal ITS region was amplified using the primers ITS1F 
(5′-CTTGGTCATTTAGAGGAAGTAA-3′) and ITS2R 

(5′-GCTGCGTTCTTCATCGATGC-3′; Adams et al., 2013). PCR 
amplification conditions and high-throughput sequencing were 
conducted as described in Li et  al. (2021). Sequencing was 
performed on Illumina’s MiSeq PE300 platform (Shanghai 
Majorbio Bio-pharm Technology Co., LTD., China). The raw 
sequence data reported in this paper were deposited in the NCBI 
SRA database (serial numbers: bacteria, PRJNA836163; fungi, 
PRJNA836186).

Trimmomatic (version 0.332) was used for quality control of 
the original sequences (Bolger et al., 2014), and FLASH (version 
1.2.113) was used for splicing (Magoc and Salzberg, 2011). The 
splicing sequence data were analyzed using UPARSE (version 7.1;4 
Edgar, 2013), and sequences with a similarity of ≥97% were 
assigned to the same operational taxonomic unit (OTU). After 
quality control and concatenation of the original sequences of all 
samples, 1,088,672 and 976,526 high-quality sequences of bacteria 
and fungi were obtained, respectively. At the 97% sequence 
similarity level, the sequences clustered into 5,685 and 2,585 
OTUs, respectively. For each representative sequence, the SILVA 
(bacteria5) and UNITE (fungi6) databases were used to annotate 
taxonomic information (Fan et al., 2020; Kang et al., 2022).

Statistical analysis

Mean value, standard deviation, and variance analysis of soil 
physicochemical properties and Perilla yield and quality were 
analyzed using Microsoft Excel 2010 and SPSS Statistics (version 
20.0, IBM, USA). Differences between mean values were 
determined by one-way ANOVA and LSD post-hoc test (p < 0.05). 
All bioinformatic analyses were performed using R (version 3.6.1; 
https://cran.r-project.org/bin/windows/base/old/3.6.1/).

2 http://www.usadellab.org/cms/?page=trimmomatic

3 https://ccb.jhu.edu/software/FLASH/

4 http://drive5.com/uparse/

5 http://www.arb-silva.de

6 http://unite.ut.ee

TABLE 1 Fertilization doses of different treatment groups.

Treatments

Base fertilizer

Inorganic 
compound fertilizer

kg.hm−1

Conventional 
organic fertilizer

kg.hm−1

Organomineral 
fertilizer
kg.hm−1

Urea (N)
kg.hm−1

Calcium 
superphosphate 

(P2O5)
kg.hm−1

CK 0 0 0 0 0

CF 225.00 0 0 0 0

OF 0 993.35 0 53.48 40.37

OMF 0 0 912.47 41.28 197.55

CK is the control blank group; CF is conventional inorganic compound fertilizer group; OF is conventional organic fertilizer group; OMF is organomineral fertilizer group.
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The alpha diversity (Sobs, Chao, and Shannon indices) of 
Perilla rhizosphere soil microbial communities was estimated 
based on OTUs. All indices were calculated by the “vegan” (Dixon, 
2003) and “picante” (Kembel et al., 2010) packages in R (version 
3.6.3). The linear discriminant analysis (LDA) effect size (LEfSe) 
method was used to assess potential bacterial and fungal 
biomarkers (from phylum to genus) within soil microbiomes that 
were specifically enriched under different fertilization 
management types based on p < 0.05 and an LDS score > 4.0 
(Segata et al., 2011). Principal coordinates analysis (PCoA) was 
performed to calculate the gradient of compositional changes for 
bacterial and fungal microbial communities (based on Weighted-
Unifrac distance matrix) using the ggplot2 package (Lozupone 
and Knight, 2005). Differences in bacterial and fungal 
communities between different samples were analyzed by 
Adonis test.

After variance inflation factor (VIF) analysis, pH, TC, TOC, 
TN, TK, AP, and AK with a VIF threshold less than 10 were 
selected for redundancy analysis (RDA) between environmental 
factors and soil microbial communities. Variance partitioning 
analysis (VPA) was used to quantitatively evaluate the individual 
and common explainability of environmental factor variables for 
microbial community differences. In addition, FAPROTAX 
(Louca et al., 2016) and FUNGuild (Nguyen et al., 2016) were used 
to analyze the ecological functions of soil bacteria and fungi, 
respectively. Kruskal–Wallis H test was used to test the significance 
of differences between groups.

Co-occurrence network analysis

To study the effect of different fertilization management 
techniques on the relationship of soil microbial communities, soil 
bacterial and fungal communities were combined based on 
fertilization management technique, and a soil microbial 
co-occurrence network based on genus classification was 
constructed. The co-occurrence network was constructed with 
genera that had a relative abundance greater than 0.1% based on 
random matrix theory (Deng et  al., 2012). To simplify the 
networks for better visualization, a Spearman’s correlation 
between the two genera was considered statistically significant if 
the Spearman’s correlation coefficient (r) was >0.6 and the p value 
was <0.05. Moreover, p values were adjusted using the Benjamini–
Hochberg FDR method (Benjamini and Hochberg, 1995). 
Spearman’s correlation and network attributes were calculated 
using the WGCNA, Psych, Igraph, and fdrci packages in R 
(version 3.6.3) (Csardi and Nepusz, 2006). The network attributes 
included the number of edges, average clustering coefficient, 
average degree, modularity, average path length, graph density, 
and betweenness centrality. Higher numbers of nodes and edges, 
graph density, average degree, and lower average path length 
indicate a more complex and connected network (Ma et al., 2016; 
Jiao et al., 2021). The higher the betweenness centrality value of 
microbial species, the greater the critical role of the species in the 

network. The Fruchterman–Reingold layout algorithm was used 
in the interactive platform Gephi (version 0.9.27) for network 
visualization and network topology parameter calculation 
(Bastian et  al., 2009). The network stability was evaluated by 
removing the nodes in the static network to estimate the speed of 
robustness decline, and the network robustness was evaluated by 
the natural connectivity of the nodes (Yuan et  al., 2021; Zhu 
et al., 2022).

Structural equation model analysis

A structural equation model (SEM) was used to identify the 
direct and indirect effects of soil physicochemical properties (such 
as pH, TC, AK, and AP) on bacterial and fungal diversity 
(Shannon index), and P. frutescens yield (biomass per plant) and 
quality (linoleic acid content). To reduce SEM complexity, the 
representative indices of soil physicochemical properties were 
calculated by PCoA (Sun et  al., 2021). All variables were 
standardized using Z-transformation (mean = 0, standard 
deviation = 1; Du et al., 2022).

The theoretical model assumed that: (1) soil pH has a direct 
impact on soil nutrient content, microbial community diversity, 
and P. frutescens quality or yield, (2) the soil available phosphorus, 
potassium, and total carbon had direct or indirect effects on the 
P. frutescens quality and yield and the soil microbial community, 
and (3) the P. frutescens yield has a direct effect on the soil 
microbial community. Model fitting was performed using root 
mean square error of approximation (RMSEA), probability level 
p value, Bentler comparative fit index (CFI), maximum likelihood 
goodness of fit (χ2), and degrees of freedom (df) tests (Du et al., 
2022). The SEM was constructed using Amos Graphics (version 
24.0, IBM Corp., USA; Liu, L. et al., 2019).

Results

Soil physicochemical properties

Compared with the CK group, the OMF group significantly 
increased soil TC and TK contents (p < 0.05; Table 2). Fertilization 
also significantly increased soil AK content (p < 0.05; Table 2). In 
addition, there were no significant differences in the 
physicochemical properties between the different fertilization 
treatment groups. The measurement results of different 
fertilization treatment groups indicated that short-term 
fertilization treatments may not significantly improve soil 
physicochemical properties. However, numerical analysis 
demonstrated that OF and OMF treatments tended to produce 
better results than no fertilization and CF treatment.

7 https://gephi.org/
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P. frutescens yield and quality

The analysis of P. frutescens yield during the harvest period 
showed that, compared with the CK group, the CF, OF, and OMF 
groups all significantly improved the yield indicators, including the 
number of stem nodes, number of effective branches at one time, 
and number of branch angles. However, there were no significant 
differences among the three fertilization treatments (Table 3). In 
addition, the number of panicles per plant and length of the main 
panicle in the OMF group were significantly greater than those in 
the other treatment groups.

Analysis of P. frutescens seed quality showed that the contents of 
oleic acid, linoleic acid, α-linolenic acid, and fat in the OF and OMF 
groups were significantly higher than those in the CK and CF groups. 
Additionally, the OMF group had the highest contents of oleic acid, 
α-linolenic acid, and fat (Figure 1). The crude protein content of the 
OMF group was significantly higher than that of the other treatment 
groups (p < 0.05). This indicated that the application of OFs, especially 
OMF, helped improve P. frutescens quality.

Effects of fertilization treatments on soil 
microbial community composition

Alpha diversity analysis showed that different fertilization 
treatments did not significantly affect soil bacterial community 
richness and diversity, whereas OMF significantly increased soil 
fungal community richness (Figure 2). PCoA showed that there 
was no clear distinction between samples from different treatment 
groups on the PC1 and PC2 axes (Figures 3A,B); this indicated 
that there was no significant difference in soil bacterial community 
and fungal community composition among different fertilizer 
treatment groups in the short term.

TABLE 2 Soil chemical properties under different fertilization 
treatments.

Chemical 
factor CK CF OF OMF

pH 5.98 ± 0.19a 5.91 ± 0.07a 6.04 ± 0.10a 6.00 ± 0.13a

TOC 15.73 ± 0.79a 16.12 ± 0.72a 16.31 ± 0.78a 16.49 ± 1.14a

TON 0.14 ± 0.01a 0.15 ± 0.01a 0.15 ± 0.01a 0.15 ± 0.01a

TC 20.43 ± 0.50b 20.78 ± 0.66ab 20.86 ± 0.29ab 21.16 ± 0.34a

TN 1.92 ± 0.06a 1.97 ± 0.05a 1.95 ± 0.04a 1.93 ± 0.03a

TP 0.80 ± 0.05a 0.81 ± 0.04a 0.82 ± 0.04a 0.81 ± 0.04a

TK 5.59 ± 0.14b 5.68 ± 0.20ab 5.70 ± 0.19ab 5.84 ± 0.09a

AP 28.51 ± 6.65a 35.24 ± 5.88a 30.89 ± 5.73a 30.42 ± 5.61a

AK 92.75 ± 20.35b 99.5 ± 44.44a 98.50 ± 31.29a 109.75 ± 30.83a

pH stands for soil pH; TOC represents soil total organic carbon content, g·kg−1; TON 
stands for soil total organic nitrogen content, g·kg−1; TC stands for soil total carbon 
content, g·kg−1; TN stands for soil total nitrogen content, g·kg−1; TP represents soil total 
phosphorus content, g·kg−1; TK represents soil total potassium content, g·kg−1; AP stands 
for soil available phosphorus content, mg·kg−1; AK stands for soil available potassium 
content, mg·kg−1. Different letters (a, b) on the same row indicate values that are 
significantly different (p < 0.05) based on one-way ANOVA and LSD post-hoc test.
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Fertilization management did not cause significant changes in 
phylum-level bacterial composition (p > 0.05, ANOVA analysis; 
Figure 3C). Proteobacteria, Actinobacteria, Acidobacteria, and 
Chloroflexi were the main dominant bacterial phyla in each 
fertilization treatment group. Fertilization management also did 
not significantly affect the fungal community composition at the 
phylum level (p > 0.05, ANOVA; Figure  3D). Ascomycota, 
Mortierellomycota, Basidiomycota, and Glomeromycota were the 
dominant fungal phyla in each treatment group. The taxonomic 
analysis of the dominant bacterial genera with relative abundance 
>1% showed that different short-term fertilization treatments had 
no obvious effect on most dominant bacterial genera 
(Supplementary Table S1). However, the relative abundances of 
Bacillus and Candidatus_Solibacter significantly increased after 
fertilization, especially in the OF and OMF groups; the relative 
abundance of Bryobacter significantly decreased in the OF and 
OMF groups. The relative abundances of Clonostachys and 
Gonytrichum in the OMF group were significantly lower than 
those in the other groups, and the relative abundance of 
Penicillium in the OF group was significantly lower than that in 
the other treatment groups. In addition, there were no significant 
differences in other dominant fungal genera among the treatment 
groups (Supplementary Table S2).

The LEFSe results showed that Bryobacter was significantly 
enriched in the CK group; the nitrogen-fixing bacteria 

Saccharimonadia and iron-reducing bacteria Desulfobacca were 
significantly enriched in the CF group; Actinomadura, 
Nakamurellaceae and Nakamurella were significantly enriched in 
the OF group; and Iamia and Iamiaceae was significantly enriched 
in the OMF group (Figure 4A). The LEFSe analysis of the fungal 
community showed (Figure  4B) that Cyphellaceae, 
Piskurozymaceae, Filobasidiales, Solicoccozyma, and 
Funneliformis were mainly enriched in the CK group, and 
Mycosphaerellaceae, Didymosphaeriaceae, Paraphaeosphaeria, 
and Pseudopithomyces were mainly enriched in the CF group. 
Helotiales, Glomerales, Cladorrhinum, and Pseudallescheria in the 
OF group, and Phaeosphaeriaceae, Bulleribasidiaceae, and 
Sodiomyces were mainly enriched in the OMF group.

Co-occurrence network analysis of soil 
microbial communities under different 
fertilization management techniques

Analysis of the topological indicators of the bacterial 
community co-occurrence network revealed that the OMF group 
had the highest increase in the number of network edges and 
average degree (Table 4). The OF group had the highest modularity 
index, followed by the OMF group. This finding indicated that the 
application of OF and OMF could enhance the association of soil 

A B C

E F G

D

FIGURE 1

Perilla frutescens quality index under different fertilization treatments. Based on one-way ANOVA and LSD post hoc test, different letters (a,b) 
indicated significant differences among fertilization treatment groups (P < 0.05).
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FIGURE 2

Alpha diversity index of soil microbial community in different treatment groups. *indicates a significant difference at the level of 0.01 < p ≤ 0.05 
(Student t test).

bacterial communities because the degree of modularity was 
higher. The robustness analysis results showed that the robustness 
of OF and OMF treatment groups were higher than that of CK and 
OF groups, and OMF groups was highest (Figure 5C).

Analysis of the network topology indicators of the fungal 
community showed that, compared with other treatment groups, 
the OMF group significantly increased the total number of edges 
in the network, number of positive correlation edges, number of 
nodes, graph density, and average degree (Table 4). The OMF 
group had the highest modularity index; this demonstrated that 
OMF can improve the association of fungal communities, and 
OMF can make the fungal community structure more modular 
and more stable. The robustness analysis results showed that the 
robustness of OMF and CF groups had little difference, but was 
higher than that of CK and OF groups (Figure 5D).

Analysis of the scale proportions of the top three modules in 
each group revealed that the proportion of the top three modules 

of bacterial and fungal communities was greatest in the OF 
group followed by the OMF group (Supplementary Figure S2). 
This indicated that the bacterial communities and the fungal 
communities of the OF and OMF groups were more 
closely related.

The main nodes in the bacterial community network of each 
treatment group belonged to Proteobacteria, Actinobacteria, 
Acidobacteria, Chlorobacteria, Bacteroidetes, and Firmicutes; the 
main nodes in the fungal community network belonged to 
Ascomycota, Basidiomycota, and Glomeromycota. This finding 
indicated that these bacterial and fungal phyla were keystone 
microbiota in all treatment groups (Figure 5). According to the 
analysis of the betweenness centrality values 
(Supplementary Table S3), the top 10 genus-level species were 
different in each treatment group, which indicated that the genus-
level microbiota that played a key role in the co-occurrence 
network differed among treatment groups.
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Effects of different fertilizer treatments 
on the ecological function of soil 
microbial communities

According to FAPROTAX functional analysis, 
chemoheterotrophy, aerobic chemoheterotrophy, nitrification, 
aerobic ammonia oxidation, and nitrogen fixation were the top 
five bacterial community functions in each treatment group 
(Figure 6A). Among the top 50 functions, only human pathogens 
all significantly differed among different treatments, and the OF 
and OMF treatments reduced the proportion of human 
pathogenic bacteria in soil compared with CK and CF treatments. 
There were no significant differences in other bacterial community 
functions among different treatment groups.

FUNGuild functional analysis indicated that Saprotroph, 
Saprotroph–Symbiotroph, Pathotroph–Saprotroph–Symbiotroph, 
Pathotroph, and Symbiotroph were the top five trophic modes of 
the fungal community (Figure  6B). Analysis of the relative 
abundance of arbuscular mycorrhizal fungi (AMF) in symbiotic 

trophic fungi showed that the AMF abundance was significantly 
reduced in the CF group (Supplementary Figure S3A); this 
indicated that CFs inhibited AMF growth. F_unclassified_o_
Paraglomerales, Glomeraceae, Diversisporales_fam_Incertae_
sedis, f_unclassified_o_GS24, and Paraglomeraceae were the 
dominant families in AMF, but there were significant differences 
in their relative abundances among different fertilization 
treatments groups (Supplementary Figure S3B).

Effects of soil environmental factors on 
microbial community composition and 
diversity, and P. frutescens yield and 
quality

RDA indicated that the selected environmental factors 
explained 38.20% of the total change in bacterial communities 
(Figure 7A) and 31.32% of total changes in fungal communities 
(Figure  7B). The results of RDA showed that pH (ANOVA, 

A C

B D

FIGURE 3

Principal coordinates analysis of the Weighted-Unifrac distance matrix for bacteria (A), and fungi (B), in different fertilizer treatment groups. Bar 
plots of relative abundance of bacterial phyla (C), and fungal phyla (D), in different fertilization groups.
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A

B

FIGURE 4

Effects of different fertilization treatments on the relative abundance of soil bacterial (A), and fungal (B), lineages. The linear discriminant analysis 
(LDA) effect size analysis was performed to identify the indicator taxa representing each group, and the values were significant (p < 0.05) when the 
LDA score was greater than 4. There are five rings in the cladogram, that represent the phylum, class, order, family, and genus from inside to 
outside, respectively. The different color nodes (except yellow, which indicates no significant changes) on the ring represent significant changes in 
taxonomic composition due to the treatments. Abbreviations for classification levels: P, phylum; C class; O, order; F, family; G, genus.

TABLE 4 Topological indices of each co-occurrence network in Figure 5.

Bacteria Fungi

CK CF OF OMF CK CF OF OMF

No. of edges1 1,629 1,915 1,833 1,985 411 473 420 659

Modularity2 3.702 5.209 7.045 5.807 1.154 1.190 1.584 1.808

Graph density3 0.065 0.077 0.070 0.076 0.075 0.080 0.071 0.097

Average degree4 14.480 17.175 15.939 17.336 7.829 8.679 7.706 11.265

Average path length5 4.508 4.306 4.274 4.390 7.941 7.498 5.829 3.252

Average clustering 

coefficient6

0.660 0.666 0.648 0.659 0.752 0.760 0.703 0.778

1Number of connections/correlations obtained by Gephi software.
2Capability of the nodes to form highly connected communities, that is, a structure with high density of between nodes connections.
3Measure network integrity. A complete graph with all possible edges, that is, any two nodes with edge connections, has a density of 1.
4Average number of connections per node in the network, that is, the node connectivity.
5Average network distance between all pair of nodes or the average length off all edges in the network.
6How nodes are embedded in their neighborhood and the degree to which they tend to cluster together.
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p = 0.021) and AP (ANOVA, p = 0.024) were the main factors 
affecting the soil bacterial community composition, and pH 
(ANOVA, p = 0.034) and AK (ANOVA, p = 0.011) were the main 
factors affecting the soil fungal community composition (Figure 7).

The SEM fit the measured data well (bacteria, χ2/df = 0.658, 
p = 0.764, CFI = 1.000, RMSEA = 0.000; fungi, χ2/df = 1.493, 
p = 0.135, CFI = 0.920, RMSEA = 0.181); this indicated high 
consistency between the hypothesized model and the observed 
data (Figure  8). The SEM showed that soil physicochemical 
properties accounted for 68% of P. frutescens quality, among 

which AK and TC were significantly positively correlated with 
P. frutescens quality, and pH and AP were significantly negatively 
correlated with P. frutescens quality (Figure 8). AK and AP were 
significantly positively correlated with bacterial diversity, and 
P. frutescens yield was significantly negatively correlated with 
bacterial diversity; these factors accounted for 68% of bacterial 
diversity (Figure 8A). AP was significantly positively correlated 
with and explained 61% of P. frutescens yield. TC and P. frutescens 
yield were directly and significantly positively correlated with 
fungal community diversity, whereas AK was directly and 

A

B

C D

FIGURE 5

Co-occurrence networks of the soil microbial communities at the genus level in different fertilization treatment groups (A,B); and the robustness 
of bacterial network (C), and fungal network (D). The node size is proportional to the taxon abundance, and the nodes represent bacterial or fungi 
taxa at the genus level (genera with relative abundances greater than 0.1%). The node colors represent different bacterial and fungal phyla. The 
edges are colored according to interaction types; positive correlations are labeled in pink and negative correlations are labeled in green.
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A B

FIGURE 6

Functional analysis of soil microbial community in different treatment groups. FAPROTAX function analysis of bacterial communities (A), and 
FUNGuild function analysis of fungal communities (B). The abscissa indicates the function name, the ordinate indicates the percentage value of a 
function abundance of the sample, and different colors indicate different groups. Based on Kruskal–Wallis H test, the rightmost values represent 
p values, where *indicates 0.01 < p ≤ 0.05.

A B

FIGURE 7

Distance-based redundancy analysis (RDA) among bacterial (A), or fungal (B), communities and environmental factors.
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significantly negatively correlated with fungal community 
diversity (Figure 8B).

Discussion

Effects of organomineral fertilizer on soil 
properties and P. frutescens yield and 
quality

Compared with the CK group, OMF application significantly 
increased the TC and TK contents of the soil (Table  2). The 

experiment proved that although short-term application of OMF 
could not significantly improve most of the soil physicochemical 
properties, it could guarantee the same effect as the same amount 
of inorganic fertilizer. Numerical analysis showed that OF 
especially OMF application had a trend of improving soil fertility 
compared with no fertilization and CF application, which was 
consistent with previous continuous fertilization results (Zhao 
et al., 2016; Du et al., 2022).

The yield test results of P. frutescens at harvest showed that 
the number of panicles per plant and length of the main panicle 
were significantly greater in the OMF group compared with the 
other treatment groups (Table  3); this indicated that OMF 

A

B

FIGURE 8

Structural equation modeling results describing the relationship among soil nutrients, microbial diversity, and P. frutescens yield and quality. The 
relationship among soil pH value, total soil carbon content (TC), available potassium (AK), available phosphorus (AP), P. frutescens production, and 
P. frutescens quality with bacterial diversity (A), and fungal diversity (B). Red lines: positive correlation; green lines: negative correlation. The 
numbers above the arrows indicate correlation strength. r2 values indicate the proportion of variance explained for each variable. χ2, Chi-square; 
df, degrees of freedom; p, probability level; RMSEA, goodness-of-fit statistics for each model. Significance levels of each predictor are shown as  
*for p < 0.05, **for p < 0.01, and ***for p < 0.001.
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increased P. frutescens yield to a certain extent. The quality 
inspection results of P. frutescens showed that OF and OMF 
treatments significantly increased the contents of unsaturated 
fatty acids, total fat, and total protein in P. frutescens, and the 
OMF treatment values were higher (Figure 1). These results 
were similar to those of a previous study that investigated the 
effect of OMF on Purslane growth, which also showed that OMF 
treatment increased unsaturated fatty acid content (Yang et al., 
2020). The SEM results also demonstrated that soil AK content 
was significantly positively correlated with P. frutescens quality 
(Figure  8). Therefore, OMF application was beneficial for 
improving P. frutescens quality.

Effects of different fertilization 
treatments on soil microbial 
communities

Microorganisms are the driver of soil fertility changes; they 
can directly indicate soil quality and play an important role in 
plant growth and crop yield (Fan et al., 2020; Finkel et al., 2020). 
In this study, short-term fertilization treatments did not 
significantly affect alpha diversity (Figure 2). Similar studies also 
showed that soil microbial alpha diversity was stable and not easily 
affected by agricultural management practices (Coller et al., 2019; 
Gui et al., 2021; Kang et al., 2022). How fertilization management 
affects soil microbial diversity depends on soil properties (Mendes 
et  al., 2015), such as soil pH, which is generally considered a 
decisive factor underlying microbial diversity (Bissett et al., 2011).

Actinobacteria and Firmicutes are generally considered to 
be  beneficial microorganisms for plants (Yang et  al., 2017). 
Actinobacteria can control plant bacterial diseases by producing 
various antibiotics, secreting cell wall-degrading enzymes, and 
inducing host resistance (Conn et al., 2008; Chater et al., 2010; Liu 
et al., 2012). LEFSe analysis showed that the treatment of OF and 
OMF promoted the enrichment of some bacteria belong to 
Actinobacteria, including Actinomadura, Nakamurellaceae, 
Nakamurella, Iamiaceae, and Iamia (Figure 4). Actinomadura can 
produce several antibiotics that inhibit the growth of soil 
pathogens and reduce the occurrence of crop diseases and insect 
pests (Li et al., 2022). Bacillus and Candidatus_Solibacter were 
also significantly increased in OF and OMF groups 
(Supplementary Table S1). Bacillus is commonly formulated as 
biocontrol agents because they secrete antibiotics or antimicrobial 
proteins (Ahimou et al., 2000; Weller et al., 2002; Moyne et al., 
2004), and improve soil fertility by increasing soil mineral nutrient 
availability (Chen et  al., 2016). Additionally, Candidatus_
Solibacter is a bacterium that decomposes organic matter (Rime 
et al., 2015).

LEFSe analysis showed that the main enriched fungal species 
(e.g., Glomerales, Cladorrhinum, and Pseudallescheria) in the OF 
groups belonged to the phyla Ascomycota and Glomeromycota 
(Figure 4B). Among them, Pseudallescheria is a biocontrol fungus; 
it is an important natural enemy of some plant parasitic nematodes 

that can parasitize eggs and infect larvae and females, and can 
significantly reduce the damage of plant nematode diseases such 
as those caused by root-knot, cyst, and stem nematodes of various 
crops (Wang et  al., 1997; Ko et  al., 2010; Zhu et  al., 2020). 
Cladorrhinum is an effective biocontrol fungus for controlling the 
soil-borne Rhizoctonia solani pathogen (Liu, H. et  al., 2019). 
Ascomycota is a key driver of the degradation of organic residues 
in soil (Richardson, 2009; Ma et  al., 2013); therefore, the 
Ascomycota abundance may increase with increasing organic 
matter content (Du et al., 2022). Glomeromycota can undergo 
symbiosis with terrestrial plants to form arbuscular mycorrhizae, 
and this symbiosis can help plants absorb inorganic salts in soil, 
especially phosphorus (Smith and Read, 2008; Calaca and 
Bustamante, 2022). Our results showed that, OF treatments 
promoted increase in the number of beneficial fungi in the 
karst soil.

In conclusion, short-term fertilization treatments affected soil 
microbial communities, and OF and OMF had advantages over 
CF. However, compared with previous long-term experimental 
results, some differences in this study were not significant. 
Therefore, extending the fertilization period and intensifying 
fertilization may produce significant fertilization effects (Kox 
et al., 2020).

OMF treatment increased connectivity 
and structural stability of soil microbial 
communities

There is a complex association network among soil 
microbial communities, and they do not exist alone. When soil 
microbial community composition changes because of 
fertilization management, the microbial co-occurrence 
network also changes (Kang et al., 2022). The OF and OMF 
groups had higher modularity indices, which indicated that 
OF and OMF improved the soil microbial community 
connectivity and made the community connected more closely 
(Figure 5; Supplementary Figure S2; Table 4). This result is 
generally consistent with those of other studies on OF 
application (Ling et  al., 2016; Wang et  al., 2017; Liu et  al., 
2020; Kang et al., 2022).

Complex networks with higher connectivity are more tolerant 
of environmental disturbances than simple networks with lower 
connectivity (Santolini and Barabási, 2018). In this study, the 
network connectivity of both bacterial and fungal communities 
was highest in the OMF group (Table 4); this indicated that OMF 
treatment resulted in higher anti-interference ability of soil 
microorganisms. As the core components of soil organic matter 
degradation, bacteria and fungi usually form different functional 
groups and change the interaction between their ecological 
networks because of the decomposition or utilization of organic 
and inorganic nutrients (Wang et  al., 2017; Dai et  al., 2018; 
Samaddar et  al., 2019), and they tend to maintain a complex 
network structure (Kang et al., 2022). The robustness analysis 
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showed that the application of OF, especially OMF, could improve 
the stability of bacterial and fungal network structures 
(Figures 5C,D).

Keystone microbial groups play an important role in 
maintaining ecosystem homeostasis (Banerjee et al., 2018; Fan 
et al., 2020). According to the degree values of the network nodes, 
it was found that the key bacterial and fungal phyla in the  
nodes were not significantly different among the treatment 
groups (Figure  5); this was consistent with the composition  
and distribution of dominant species in the community 
(Figures 3C,D). At the phylum level, microorganisms had strong 
stability and were not easily affected by fertilization management. 
The genera with the highest betweenness centrality scores are 
generally considered keystone taxa (González et al., 2010; Vick-
Majors et al., 2014). In this study, the keystone genera differed 
among fertilization treatment groups. The keystone genus of the 
bacterial community in the OMF group was Pseudomonas, and 
the keystone genus of the fungal community was Metarhizium 
(Supplementary Table S3), both of which are recognized as 
biocontrol microorganisms. Pseudomonas can adsorb heavy 
metals in soil and promote plant growth (Costa-Gutierrez et al., 
2020; Ghorbanzadeh et  al., 2020; Wu et  al., 2022), whereas 
Metarhizium can kill plant pests and mitigate plant diseases 
(Riguetti Zanardo Botelho et al., 2019; Gebremariam et al., 2021; 
González-Pérez et  al., 2022). In conclusion, this study 
demonstrated that the application of organic fertilizer, especially 
OMF, can not only enhance the connectivity, cohesiveness and 
stability of microbial community network structure, but also 
increase the abundance of beneficial microorganisms.

Relationship among soil physicochemical 
properties, soil microbial community, 
and P. frutescens yield and quality

The RDA results showed that soil pH was the most 
important factor affecting bacterial and fungal communities 
(Figure 7). This results was consistent with the previous study 
(Cho et al., 2016; Gu et al., 2019). Changes in soil pH can alter 
soil structure, fertility, and vegetation communities, thereby 
directly or indirectly affecting soil microbial community 
composition (Lauber et al., 2009; Qi et al., 2018). In addition, 
in this study, AP was also the main factor affecting bacterial 
communities, and AK was the main factor affecting fungal 
communities (Figure 7). Fertilizers may be absorbed and used 
by plants after entering the soil, or they may remain in the 
soil, leading to changes in the composition of bacterial 
communities (Sun et  al., 2016) and fungal communities 
(Zhou et  al., 2016). Therefore, different fertilization 
treatments affected soil microbial community composition by 
mediating the effects of soil physicochemical properties, 
especially pH, and AP and AK.

SEM results showed that both soil TC and AK content was 
positively correlated to the quality (linoleic acid content) of 

P. frutescens (Figure 8), indicated that improve soil carbon and 
available potassium content could improve the quality of 
P. frutescens. There was a direct and significant positive 
correlation between P. frutescens yield and AP (Figure 8); this 
indicated that P. frutescens yield was mainly affected by the AP 
content in soil, and increasing the AP content can improve 
P. frutescens yield. Soil bacterial diversity was significantly 
positively correlated with soil AK (Figure  8A), but fungal 
diversity was significantly negatively correlated with soil AK 
(Figure 8B). Some previous studies showed that soil bacteria and 
fungi exhibited different patterns in response to fertilization 
treatments (Álvarez-Martín et al., 2016; Ai et al., 2018), and our 
study also supported this conclusion. Fungi are generally 
considered more closely related to plants and they are able to 
provide nutrients to plants in a symbiotic relationship (Chen 
et al., 2017), whereas bacteria are more affected by soil properties 
and environmental factors (Singh et al., 2008; Delgado-Baquerizo 
et al., 2016, 2018); our study obtained similar results (Figures 7, 
8). In this study, we  found that soil bacterial diversity was 
significantly negatively correlated with P. frutescens yield, and 
fungal diversity was significantly positively correlated with 
P. frutescens yield. This result may be opposite to many previous 
long-term fertilization studies. Because, in this study, short-term 
application of OF and OMF significantly increased P. frutescens 
yield (biomass per plant), but there was no significant change in 
bacterial diversity (Shannon index), and the value of OMF group 
even showed a downward trend (Figure 2). The application of 
organic fertilizer may stimulate the rapid growth of some 
dominant bacteria and beneficial bacteria in soil in a short time, 
while the abundance of some oligotrophic microorganisms that 
are not adapted to the existence of organic fertilizer will decline, 
resulting in the decrease of bacterial diversity. Through the 
correlation analysis among soil physicochemical properties, 
microbial communities and P. frutescens agronomic efficiency, it 
can be  concluded that the application of OF or OMFs can 
improve the physicochemical properties of soil, especially the 
contents of total carbon, available potassium and available 
phosphorus, which can promote the quality and yield of 
P. frutescens.

Conclusion

The results of this study demonstrated that, under short-
term fertilization management, OMF increased the total 
carbon and total potassium contents of soil. OF, especially 
OMF, improved measures of P. frutescens yield and quality, 
including the number of panicles per plant, length of the 
main panicle, and contents of unsaturated fatty acids such as 
α-linolenic acid, total fat, and total protein, while significantly 
increasing the number of beneficial microbial communities 
in the soil. The co-occurrence network analysis also revealed 
that OF and OMF improved the connectivity and stability of 
soil microbial communities. In conclusion, application of OF, 
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especially OMF, is a good strategy to shape the composition 
of beneficial bacterial communities in the soil, and to improve 
soil fertility and crop yield and quality in karst areas.
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