
Frontiers in Microbiology 01 frontiersin.org

Deep learning strategies for 
addressing issues with small 
datasets in 2D materials 
research: Microbial Corrosion
Cody Allen 1,2,3, Shiva Aryal 4, Tuyen Do 4, Rishav Gautum 4, 
Md Mahmudul Hasan 1,2,3, Bharat K. Jasthi 2,3,5,  
Etienne Gnimpieba 3,4 and Venkataramana Gadhamshetty 1,2,3*
1 Department of Civil and Environmental Engineering, South Dakota Mines, Rapid City, SD, United 
States, 2 Two-Dimensional Materials for Biofilm Engineering Science and Technology (2DBEST) 
Center, South Dakota Mines, Rapid City, SD, United States, 3 Data-Driven Materials Discovery Center, 
South Dakota Mines, Rapid City, SD, United States, 4 Department of Biomedical Engineering, 
University of South Dakota, Sioux Falls, SD, United States, 5 Department of Materials and 
Metallurgical Engineering, South Dakota Mines, Rapid City, SD, United States

Protective coatings based on two dimensional materials such as graphene 

have gained traction for diverse applications. Their impermeability, inertness, 

excellent bonding with metals, and amenability to functionalization renders 

them as promising coatings for both abiotic and microbiologically influenced 

corrosion (MIC). Owing to the success of graphene coatings, the whole 

family of 2D materials, including hexagonal boron nitride and molybdenum 

disulphide are being screened to obtain other promising coatings. AI-based 

data-driven models can accelerate virtual screening of 2D coatings with 

desirable physical and chemical properties. However, lack of large experimental 

datasets renders training of classifiers difficult and often results in over-fitting. 

Generate large datasets for MIC resistance of 2D coatings is both complex 

and laborious. Deep learning data augmentation methods can alleviate this 

issue by generating synthetic electrochemical data that resembles the training 

data classes. Here, we investigated two different deep generative models, 

namely variation autoencoder (VAE) and generative adversarial network (GAN) 

for generating synthetic data for expanding small experimental datasets. Our 

model experimental system included few layered graphene over copper 

surfaces. The synthetic data generated using GAN displayed a greater neural 

network system performance (83-85% accuracy) than VAE generated synthetic 

data (78-80% accuracy). However, VAE data performed better (90% accuracy) 

than GAN data (84%-85% accuracy) when using XGBoost. Finally, we show 

that synthetic data based on VAE and GAN models can drive machine learning 

models for developing MIC resistant 2D coatings.
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1. Introduction

Microbial induced corrosion (MIC) cause ~$30–50 billion of 
the annual expenditure (Heitz et al., 1996; Guo et al., 2018) in the 
oil and gas industry, marine infrastructure, water distribution 
systems, and many other environmental and energy sectors. The 
occurrence is unfortunately a spontaneous process that is 
unavoidable and can only be delayed, not prevented. Currently to 
delay this pipelines and holding tanks use solvent free epoxy 
liners, thiol monolayers, self-assembled monolayers and biocides 
to mitigate bacterial attachment and subsequent corrosion (Song 
and Feng, 2020). Recently, a new class of protective coatings based 
on 2D materials (e.g., graphene and hexagonal boron nitride) are 
being developed for MIC prevention applications (Chilkoor et al., 
2019, 2020, 2021). This is due to their unique impermeability, 
inertness, excellent bonding, and passivation properties that resist 
the acts of corrosion. Unfortunately, other 2D materials are not 
providing the same promising results, many newly discovered 2D 
materials such as MoS2, NbSe2, and CrO2 have not been explored 
as extensively due to their structural instabilities in aggressive 
environments (Tanjil et al., 2019). To date empirical approaches 
have been the most common approach used in the development 
of protective coatings and is no longer sufficient (Wilson and 
Guan, 2020). Therefore, next generation methods based on 
machine learning (ML) need to be considered when developing 
next generation material coatings for microbial induced corrosion 
mitigation. Specifically, we look into how electrochemical datasets 
from corrosion experiments can be used to aid future ML models. 

ML has been used previously for corrosion detection (Galvāo 
et al., 2020; Xu et al., 2020; Diao et al., 2021; Coelho et al., 2022). 
A vast majority of all of these works use environment conditions 
and material composition as their selected input features. To our 
understanding there have been no ML papers reporting on 
microbial induced corrosion rates with the use of electrochemical 
circuit parameters.

Electrochemical reactions at a material solution interface can 
be broken down into a series of steps, including mass transport, 
charge transfer processes and adsorption. Methods such as 
electrochemical impedance spectroscopy (EIS) and linear 
polarization resistance (LPR) are used to generate these datasets. 
EIS is a rapid non-invasive technique widely applied to the 
analysis of conductive materials (Mansfeld, 1990). The EIS 
technique applies a frequency dependent sinusoidal input 
potential that leads to a current. The results are the detected as the 
changes in output potential and current. Because resistance is 
independent of frequency, and capacitance is inversely dependent 
to frequency, EIS measurements effectively differentiate between 
resistance and capacitance (Wang et al., 2019). By comparing the 
input values to the output values EIS is able to determine the 
impact, efficiency and magnitude of different components within 
the electrical circuit. The physical processes involved in 
electrochemical reactions are commonly represented in circuit 
elements. Understanding circuit elements provides information 
on kinetics, mass transport behavior and diffusion coefficients 
(Laschuk et al., 2019), providing surface coverage (Muthurasu and 
Ganesh, 2012), characterizing corrosion processes (Ramanathan 
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and Fasmin, 2017), and determining the mechanisms of surface 
interactions with the electrode. Faradaic circuit components 
include Ionic (Rion) and electric (Relec) resistances that account for 
the ionic and electronic movement within the electrode, Bulk 
solution resistance (RS) which accounts for the resistance between 
the working and counter electrodes, and charge transfer resistance 
(RCT) which is the electron transfer resistance across the electrode-
electrolyte interface. Non-faradaic components on the other hand 
are responsible for capacitance circuit elements and these include 
the double layer capacitance (Cdl) that gives the specific 
capacitance at the interface of the electrolyte within the electrode, 
and the coating capacitance (Cc) is the observed capacitance 
between the metal and electrolyte with the coating acting as the 
dielectric. While electrochemical circuit components are often 
used to estimate corrosion levels, there are no clear relationships 
between all electrochemical data and specific corrosion systems. 
The use of machine leaning (ML) algorithms may aid in the 
extraction of complex relationships from collected data.

Commonly machine learning models are trained with data 
sets ranging from tens of thousands to state of the art models on 
the order of millions of labels. When ML is applied to 
electrochemical data from corrosion studies these large datasets 
do not exist. In addition, we further decrease the dataset sizes with 
our criteria of electrochemical data from 2D materials used for 
microbial induced corrosion prevention. The small datasets are 
due to a few reasons: data generation from wet lab experiments is 
time-consuming and the use of 2D materials in microbial 
corrosive environments is in its infancy, as well as poor data 
sharing practices in literature. To increase our dataset sizes from 
our experimental work, we look into deep learning methods to 
improve our small datasets. This is the premise of data 
augmentation, where we  quickly generate synthetic data to 
eliminate the time and efforts needed for wet lab experimentation. 
Data augmentation is a technique in which a training set is 
expanded with class-preserving transformations (Dao et al., 2019). 
There are two major families of deep generative models, variation 
autoencoder (VAE) and generative adversarial network (GAN). 
VAE’s have been used extensively in the fields of pathology 
detection (Uzunova et  al., 2019), medical data (Pesteie et  al., 
2019), and image analysis (Biffi et al., 2019; Ahmad et al., 2022; 
Alves and Traina, 2022). Where GAN was been used in 
environmental monitoring (Wang et al., 2020), medical imaging 
Yi et al., 2019), and generation of synthetic test data for corroded 
pipelines (He and Zhou, 2022). The following are questions 
we aim to answer in the manuscript. (1) Can deep learning based 
data augmentation be  used to generate statistically relevant 
electrochemical impedance parameters generated from small wet 
lab experimentation datasets. (2) Can synthetic data be paired 
with experimental data in machine learning models, XGBoost and 
neural networks, to accurately predict corrosion rate groupings. 
(3) Do larger electrochemical datasets generate insights, 
predictions, and or recommendations that were previously 
unavailable due to lack of relevant data. Here, we analyze synthetic 

data from VAE and GAN models for electrochemical modeling of 
microbial corrosive systems using electrochemical parameters.

2. Materials and methods

2.1. Data preparation

All experimental work was done using Desulfovibrio 
alaskensis strain G20 (DA-G20) that was anaerobically grown in 
the Lactate C (L-C) medium containing the following constituents 
(g/L): sodium lactate, 6.8; sodium sulfate, 4.5; sodium citrate, 0.3; 
dehydrated calcium chloride, 0.06; ammonium chloride, 1.0; 
magnesium sulfate, 2.0; potassium phosphate monobasic, 0.5 and 
yeast extract, 1.0. The listed L-C medium components were mixed 
thoroughly using type III ASTM Standards for Laboratory 
Reagent Water 3 (ASTM D1193-91). The pH of the medium was 
adjusted to 7.2 and then sterilized by autoclaving at 121 OC for 
30 min. The DA-G20 cultures were grown in 150 ml serum bottles 
containing 100 ml of L-C having a headspace of N2-H2 (95% N2 
v/v and 5% H2 v/v) (Qiu et al., 2011). DA-G20 cultures were 
incubated at 30°C using modest agitation (125 rpm) on an orbital 
platform shaker for 48 h.

To establish an electrochemical database for 2D materials 
we extracted 49 sets of EIS and LPR data, equivalent circuits and 
corresponding corrosion rates from current laboratory 
experimentation and published papers (Chilkoor et al., 2019, 2020, 
2021). All data can be found in supplementary information. To 
observe how 2D materials increase corrosion resistance, corrosion 
rates were normalized to the bare metal samples ran in the same 
conditions. Therefore, samples with normalized corrosion rates 
less than 1, observed improve corrosion resistance, where rates 
larger than 1 observed decreases in corrosion resistance versus 
their bare metal controls. Data was then classified as effective 
coatings if normalized rates were less than 0.999, and a failed 
coating if higher than 1. From the classified corrosion resistances 
values seven input components (Cdl, Cc, m, OCP, Rsoln, Rct, and Rpo) 
were synthetically generated to match respective corrosion 
resistances. These parameters were chosen due to their importance 
in understanding physical processes during corrosion, such as, 
kinetics, mass transport and diffusion coefficients (Laschuk 
et al., 2019).

All electrochemical data was collected at discrete timepoints. 
Therefore, when the electrochemical impedance parameters 
were used as labels for the supervised learning model, the 
corrosion rate target were continuous variables. While 
continuous variables are easy to relate to it is difficult from a 
predictive modeling point of view. Due to our small dataset the 
target corrosion rate variables were binned, meaning that the 
continuous variables were divided into two groupings, effective 
coatings (less than 0.999) and failed coatings (greater than 
1.000), making it easier to discover patterns. The seven labels 
remained as continuous variables (Figure 1).
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2.2. Data augmentation

To increase the number of training samples, variation 
autoencoder (VAE) and generative adversarial network (GAN) 
were used to generate synthetic samples for each class of corrosion 
resistances. First synthetic data was generated based on discrete 
corrosion rates, but provided worse results than when classified by 
effective coatings (less than 0.999) and failed coatings (greater 
than 1.000). 100 synthetic data points were added to the original 
49 data points collected via experimentation and literature. Fifty 
of the samples were effective in coating resistance (encoded as 0), 
50 of the samples were failed in coating resistance (encoded as 1). 
Corresponding equivalent circuit parameters were generated with 
respect to the coating resistance classification.

2.3. Machine learning models

Electrochemical reactions at a material solution interface can 
be broken down into a series of steps, including mass transport, 
charge transfer processes and adsorption. EIS is able to determine 
the impact, efficiency and magnitude of different components 

within the electrical circuit. The physical processes involved in 
electrochemical reactions are commonly represented in these 
circuit elements. Understanding circuit elements provides 
information on kinetics, mass transport behavior and diffusion 
coefficients (Laschuk et al., 2019), providing surface coverage 
(Muthurasu and Ganesh, 2012), characterizing corrosion 
processes (Ramanathan and Fasmin, 2017), and determining the 
mechanisms of surface interactions with the electrode. EIS 
spectra are commonly represented as a Nyquist or Bode plot. A 
Nyquist plot represents the mass transfer and kinetic behavior, 
while the Bode plot represents frequency dependent behavior. 
Nyquist plots represent a combination of resistances, capacitances 
or inductances, and faradaic impedances. Faradaic circuit 
components include ionic (Rion) and electric (Relec) resistances 
that account for the ionic and electronic movement within the 
electrode, Bulk solution resistance (Rsoln) which accounts for the 
resistance between the working and counter electrodes, and 
charge transfer resistance (Rct) which is the electron transfer 
resistance across the electrode-electrolyte interface. Non-faradaic 
on the other hand is responsible for capacitance circuit elements 
and these include the double layer capacitance (Cdl) that gives the 
specific capacitance at the interface of the electrolyte within the 

A

C

B

FIGURE 1

(A) Nyquist plot from electrochemical impedance spectroscopy. (B) Corrosion rates from linear polarization resistance. (C) equivalent circuit 
model derived from spectra.
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electrode. The coating capacitance (Cc) is the capacitance of the 
coating that is covering the substrate. These circuit elements help 
describe the presence and magnitude of the corrosion process 
(Ahmad et  al., 2021). Deep Neural Network with back 
propagation and XGBoost were performed in Python using 
Keras and Scikit Learn to verify the data generated from the EIS 
model. Seven components (Cdl, Cc, m, OCP, Rsoln, Rct, and Rpo) 
were chosen as the features of the dataset and were used as input 
for the machine learning models (Figure  2). Normalized 
corrosion rates were chosen as the model output. 1,000 pairs of 
inputs and outputs obtained at different timeframes were fed into 
the model with 75% used as training data and 25% used as 
testing data.

3. Results and discussion

3.1. Data augmentation

In order to verify the effectiveness of the augmentation, 
we visualize the original charge transfer resistance (Rct), open 
circuit potential (OCP) and solution resistance (Rsoln) data and 
the new samples generated by VAE and GAN augmentation 
models. Tables 1–3 show the statistics of the experimentation 
corrosion data and the synthetic corrosion data generated from 
GAN and VAE models. Figure 3 shows the original data generated 
doing wet lab experimentation. Figures 4, 5 show the distribution 
of original and synthetic data points using GAN and VAE models.

TABLE 1 Characteristics of the real corrosion data used in machine learning model.

Index OCP Rsoln Rct Rpo Cc m Cdl

Max −678.00 95.87 1.91 × 105 1.65 × 105 1.39 × 10−3 0.89 2.49 × 10−2

Min −815.10 33.88 4.27 × 10−1 1.34 × 10−1 8.00 × 10−6 0.43 2.50 × 10−11

Mean −770.90 42.30 1.66 × 104 8.59 × 103 4.21 × 10−4 0.79 1.22 × 10−3

Std 37.32 12.38 3.98 × 104 2.94 × 104 2.46 × 10−4 0.08 4.12 × 10−3

FIGURE 2

Generate tabular synthetic data using GAN architect. (Improving the Classification Effectiveness of Intrusion Detection by Using Improved 
Conditional Variational AutoEncoder and Deep Neural Network).

TABLE 2 Characteristics of the VAE based synthetic corrosion data used in machine learning model.

Index OCP Rsoln Rct Rpo Cc m Cdl

Max −734.56 61.73 2.48E+04 2.50E+04 7.62E-04 0.86 2.18E-03

Min −804.21 34.13 5.11E+03 6.48E+03 2.29E-04 0.70 −7.33E-04

Mean −787.26 38.50 6.40E+03 2.72E+03 4.63E-04 0.81 4.31E-04

Std 12.66 3.03 5.59E+03 4.12E+03 7.30E-05 0.03 5.70E-04

TABLE 3 Characteristics of the GAN based synthetic corrosion data used in machine learning model.

Index OCP Rsoln Rct Rpo Cc m Cdl

Max −678.00 95.87 1.92E+05 1.65E+05 1.39E-03 0.89 2.49 × 10−2

Min −815.10 33.88 4.27E-01 1.37E-01 8.00E-06 0.43 2.50 × 10−11

Mean −766.25 56.26 8.94E+04 5.13E+04 3.79E-04 0.62 2.79 × 10−3

Std 36.75 24.22 6.94E+04 3.99E+04 4.01E-04 0.11 5.78 × 10−3
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FIGURE 3

Visualization of the distributions of different columns (A) Rct (B) OCP (C) Rsoln (D) m of original dataset. Color coded by the label where pink is a 
failed coating (normalized corrosion rates greater than 1.000), and black is an effective coating (normalized corrosion rates under 0.999).

A B

C

FIGURE 4

Visualization of the distributions of different columns (A) Rct (B) OCP (C) Rsoln of VAE generated dataset. Color coded by the label where pink 
is a failed coating (normalized corrosion rates greater than 1.000), and black is an effective coating (normalized corrosion rates under 0.999).
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3.2. Model training and testing

As the solution for quantifying important electrochemical 
parameter pertaining to microbial corrosion resistance using 
equivalent circuit components is not straightforward, we turned 
to machine learning to help leverage our growing database. 
eXtreme Gradient Boosting (XGBoost) and Neural Networks 
were tested in Python using Keras and Scikit learn and applied to 
check which model accurately classified the corrosion resistance 
data based on seven input variables (Cdl, Cc, m, OCP, Rsoln, Rct, and 
Rpo) and to verify if the data generated from the experiment can 
be tested using machine learning model. The Neural Network 
gave 45–50% accuracy at predicting the output of corrosion 
resistance. XGBoost outperformed all the other models with 
90–92% accuracy in classifying the data accurately.

3.2.1. Neural network
Seven input parameters (Cdl, Cc, m, OCP, Rsoln, Rct, and Rpo) were 

fed into the first hidden layer of neural network consisting of 12 nodes. 
The output from first hidden layer was then fed into second hidden 
layer consisting of 8 nodes in order to improve training. The first and 
second layer both used ReLU activation function (Qiu et al., 2011). 
ReLU function utilizes maximizer operation and can be written as:

          f(x) = max{0, z} (1)

The sigmoid function maps the output received from hidden 
layers between 0 to 1 or 1 to −1 and can be used as a predictive 
model. The model is represented by:

 
f x

e x( ) =
+ −

1
1  (2) 

The model was trained 50 times where a final accuracy of 
model was noted along with confusion matrix in Figure 6. The 
final accuracy of the model was calculated after implementing the 
testing dataset. Applying our Neural Network model on VAE 
augmented dataset, the training and evaluation accuracies 
obtained were 83.3 and 83.3% respectively, whereas when 
we applied k-fold cross validation, the testing accuracy obtained 
was 85.43% (±5.72%). Similarly, for GAN augmented dataset, the 
training and evaluation accuracies obtained were 86.11 and 
88.9%, respectively, and the k-fold cross validation testing 
accuracy was 81.57% (±13.89%).

3.2.2. XGBoost
The seven input parameters were fed into the XGBoost model 

to predict corrosion resistance classification. The model is built 
from XGBClassifier object of XGBoost python package. Gradient 
Boosting algorithm is the implemented form for XGBoost model. 
The model was trained and tuned using the training dataset of 

A B

C

FIGURE 5

Visualization of the distributions of different columns (A) m (B) OCP (C) Rct of GAN generated dataset. Color coded by the label where pink is a 
failed coating (normalized corrosion rates greater than 1.000), and black is an effective coating (normalized corrosion rates under 0.999).
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synthetic data from both VAE and GAN models. The model was 
trained for 100 times and final accuracy of model was noted along 
with confusion matrix in Figure  7. The final accuracy of the 
model was calculated after implementing the testing dataset.

XGBoost model loss function (Figures 7E,F) represents how 
well the model’s predictions fit the training data. Here, we find 
that XGBoost model is the most accurate model in predicting the 
corrosion resistance of 2D materials. Meaning that input 
impedance parameters can be used to accurately predict if 2D 
material coatings are effective or failed coatings to 90% accuracy. 
This information could increase accuracy of other corrosion 
models based on chemical and environmental conditions by 
introducing the accuracy generated from impedance parameters.

Figure 8 shows that the open circuit potential (OCP) and 
charge transfer resistance (Rct) are the two most important 
features for accurate corrosion resistance prediction. OCP is 
widely known in corrosion research as having a strong correlation 

with corrosion. This is because materials with a naturally high 
corrosion potential, meaning an increased corrosion is expected 
(Bastos et  al., 2004). The charge transfer resistance (Rct) is a 
function for the electrochemical corrosion reactions intensity at 
coating/metal interface. The higher value of (Rct) implies the 
higher integrity of the coating system and then the slower 
development of corrosion reactions under the coatings. Knowing 
these input feature are the most important feature in predicting 
corrosion resistance for 2D material coatings implies our 
augmented data is in line with experimental and theoretical work.

3.3. Generalizability of machine learning 
models

Typical corrosion rate prediction models use chemical 
compositions as the input feature, and therefore have been 

A B

C D

E F

FIGURE 6

Confusion matrices showing the system performance of neural network (A) on VAE based synthetic data (B) on GAN based synthetic data. ROC 
curve showing the system performance of neural network model on (C) VAE generated synthetic data (D) GAN generated synthetic data. Training 
loss vs. epoch graph of neural network on (E) VAE based synthetic data (F) GAN based synthetic data.
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limited to certain metals such as steel, copper, and aluminum 
(Wei et al., 2020). Challenges arise when predicting specific 
forms of corrosion such as atmospheric, marine and microbial 

induced due to their limited generalizability. The use of 
electrochemical impedance parameters as input functions in 
this study was firstly applied to generalize corrosion rate 

A B

C D

E F

FIGURE 7

Confusion matrices showing the system performance of XGBoost on (A) VAE based synthetic data (B) GAN based synthetic data. ROC curve of 
XGBoost model on (C) VAE based synthetic data (D) GAN based synthetic data. Loss function for train and test set of XGBoost on (E) VAE based 
synthetic data (F) GAN based synthetic data.

A B

FIGURE 8

Feature component analysis using XGBoost. Of (A) VAE based synthetic data (B) GAN based synthetic data.
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prediction. Meanwhile, the impedance features proposed an 
effective way to understand the influence of impedance 
components in an electrochemical system experiencing 
microbial induced corrosion. This approach has important 
application value in the future for guiding research into the 
use of impedance parameters for improved corrosion 
prediction models.

3.4. Challenges

In general, electrochemical studies always have some 
error while comparing the results obtained by different 
techniques and even by one technique measured on the 
equipment from different manufacturers. In the case of LPR 
and EIS, these techniques measure two different 
electrochemical parameters of the system. LPR provides real-
time kinetics of the electrochemical processes. In opposite, 
EIS data is usually obtained at the OCP and provides 
measured values of the overall interfacial resistance at the 
electrode-electrolyte interface. Therefore, the prediction of 
corrosion rates derived from EIS impedance parameters adds 
a level of uncertainty. With larger datasets researchers will 
begin to understand trends within the electrochemical data 
and how it can be leveraged for many corrosion applications. 
Including, more accurate corrosion predictions models for 
specific environments and increased accuracy for 2D material 
development for specific applications.

4. Conclusion

In conclusion, we demonstrated a first-generation machine 
learning based electrochemical impedance spectroscopy model 
that predicts the corrosion resistance of 2D material coatings 
subjected to microbial induced corrosion. Data augmentation 
methods were used to increase the number of training samples to 
enhance neural networks and XGBoost algorithms feature 
representation. GAN synthetic data performed better in our 
neural network model up to 88.9%, while VAE models performed 
at 83.3%. Whereas VAE synthetic data performed better in our 
XGBoost model at 90.9% and GAN models performed at 84.1%. 
Experiment results show that augmented data can be  used to 
increase algorithm performance. Prediction accuracy of 90.9% 
were observed using XGBoost. Note that our study is based on a 
small EIS sample set. Work will continue to be done to obtain 
additional EIS samples from different labs, including new 2D 
materials, environmental conditions and microbes. For more 
incorporation of machine learning within the corrosion 
community, efforts should be  made to improve data sharing 
practices. Corrosion researchers would significantly benefit from 
increased access to high quality electrochemical datasets.
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