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The increased interest in phages as antibacterial agents has resulted in a rise 

in the number of sequenced phage genomes, necessitating the development 

of user-friendly bioinformatics tools for genome annotation. A promoter 

is a DNA sequence that is used in the annotation of phage genomes. In 

this study we  proposed a two layer model called “iProm-phage” for the 

prediction and classification of phage promoters. Model first layer identify 

query sequence as promoter or non-promoter and if the query sequence 

is predicted as promoter then model second layer classify it as phage or 

host promoter. Furthermore, rather than using non-coding regions of the 

genome as a negative set, we created a more challenging negative dataset 

using promoter sequences. The presented approach improves discrimination 

while decreasing the frequency of erroneous positive predictions. For feature 

selection, we investigated 10 distinct feature encoding approaches and utilized 

them with several machine-learning algorithms and a 1-D convolutional 

neural network model. We discovered that the one-hot encoding approach 

and the CNN model outperformed based on performance metrics. Based on 

the results of the 5-fold cross validation, the proposed predictor has a high 

potential. Furthermore, to make it easier for other experimental scientists to 

obtain the results they require, we set up a freely accessible and user-friendly 

web server at http://nsclbio.jbnu.ac.kr/tools/iProm-phage/.
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Introduction

Bacteriophages, commonly referred to as phages, are viruses 
that infect and destroy bacteria (Salmond and Fineran, 2015). The 
number of sequenced phage genomes has increased exponentially 
in recent decades, primarily owing to their small size and ability 
to bacterial infections (Silva and Echeverrigaray, 2012). This 
richness of genomic data necessitates the development of user-
friendly bioinformatics tools to aid biologists in genome analyses. 
Recognition of regulatory elements is the most difficult phase in 
phage genome analysis. Promoters are DNA sequences responsible 
for transcription initiation. These sequences are difficult to 
identify because they are composed of short, nonconserved 
components. However, it is essential to comprehend and describe 
the genetic regulatory networks of phages, which may permit the 
engineering of improved phages for medicinal or biotechnological 
applications (Guzina and Djordjevic, 2015).

Several attempts have been made to develop promoter 
prediction tools for bacterial genomes. The majority of these tools 
use computational techniques based on-10 and-35 motifs (Sierro 
et al., 2008; Mishra et al., 2020; Wang et al., 2020). In contrast to 
these promoters with typical motifs, phage genome promoters are 
composed of host and phage promoters with varying motifs 
(Sampaio et al., 2019).

Therefore, existing tools are not suitable for identifying 
promoters in phages. Computational tools are required to predict 
promoters in phages. Prediction of phage promoters has seldom 
been studied. The PHIRE method (Lavigne et  al., 2004) 
systematically scans a bacteriophage genome to determine the 
frequency of subsequences in a sequence. All sequences are 
compared, which significantly increases the running time. 
PromoterHunter (Klucar et al., 2010) is an online tool to identify 
phage promoters; however, it requires additional information as 
input, such as weight matrices of the two promoter elements and 
is limited concerning the size of the input genome sequences. The 
PhagePromoter tool (Sampaio et al., 2019) can be used to identify 
promoters across the entire phage genome. It was created using 
machine learning (ML) methods, such as artificial neural networks 
or support vector machines, in conjunction with sequence 
characteristics (size and score of motifs, frequency of adenine and 
thymine, and free energy value). Additionally, PhagePromoter can 
distinguish host promoters from phage promoters. However, 
PhagePromoter has to be used in a deterministic manner with 
some previous experimental or predictive knowledge, such as 
phage family, host bacterium species, and phage type (temperature 
or virulence), which limits the effectiveness of PhagePromoter. 
DPProm (Wang et al., 2022) is a proposed convolutional neural 
network (CNN)-based method for predicting phage promoters and 
their types as phages or hosts. However, the proposed sequence-
processing workflow requires a long time for a query sequence.

Significant progress has been achieved in the essential aspects 
of phage promoter identification, although improvements are 
required in different aspects. We  identified the following 
shortcomings of prior research:

 1. Most of the aforementioned studies only predicted the 
promoter sequence as phage or non-promoter. 
Classification of predicted promoter sequences as phages 
or hosts was rare.

 2. Most studies utilized ML models to classify 
predicted sequences.

 3. Not all studies created a user-friendly and publicly available 
web server, which has proven inconvenient for practical use 
by experimental scientists.

 4. Performance analysis of different feature encoding 
schemes on different ML and CNN models was 
not performed.

 5. In the previously proposed tools, the number of false 
positive values for promoter prediction requires 
further improvement.

 6. Previous studies selected non-coding regions as negative 
dataset, that’s makes a very easy task for the classifier on 
other hand trained model cannot perform well on difficult 
test datasets.

In this study, we focused on overcoming these drawbacks to 
improve the prediction capabilities in identifying phage 
promoters. First, high-quality benchmark datasets were 
constructed. Subsequently, we  extracted the best feature 
representation vector and model from a variety of encoding 
techniques, ML, and CNN models. To achieve this, we sequentially 
fed encoded vector sequences from all encoding methods into 
various ML and CNN algorithms. Based on performance 
evaluation, we chose the one-hot encoding technique and CNN 
algorithm. We investigated the sequence and properties of phage 
promoters and presented a two-layer model designated “iProm-
phage.” In the first layer model, the query sequence is identified 
as a promoter or non-promoter. If it is a promoter sequence, then 
the second layer classifies the identified sequence as a phage 
promoter or host promoter. To assess model performance, 
we measured the accuracy (Acc), sensitivity (Sn), specificity (Sp), 
and Matthew’s correlation coefficient (MCC). All these 
parameters are frequently used in state-of-the-art methods in 
computational biology and bioinformatics (Rahman et al., 2019; 
Ali et  al., 2020; Shujaat et  al., 2020; Rehman et  al., 2021). In 
addition, we evaluated the model using five-fold cross validation 
and receiver operating characteristic (ROC) curves. Finally, the 
iProm-phage web server was built in compliance with the 
suggested paradigm. The proposed flow diagram of the study is 
shown in Figure 1.

Materials and methods

Benchmark dataset

While developing an effective biological predictor, it is critical 
to select an appropriate benchmark dataset to evaluate the 
proposed predictive model. We prepared separate datasets for 
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each layer of the model, as described in Sections “Dataset for the 
first layer” and “Dataset for the second layer.”

Dataset for the first layer
The promoters of phage genomes have been poorly 

characterized. Only the phiSITE database has identified the 
promoters of phage genomes (Klucar et  al., 2010). The phage 
promoter sequence utilized in this study is the same as that used 
in previous studies (Sampaio et al., 2019; Wang et al., 2022). For 
the model’s first layer, 1,140 promoter sequences from 69 phages 
were collected and divided into training and test datasets; 901 
promoter sequences were utilized as the training dataset and 198 
promoter sequences were utilized as the test dataset. 
Supplementary Table S1 in Supplementary file summarize the 
promoter sequences from each phage genome.

The selection of a negative dataset is an important step in 
ensuring model performance. In previous studies, non-promoter 
regions were randomly selected to build a negative dataset. 
However, this method tends to be illogical because there is no 
intersection between positive and negative sets. Consequently, 

the model immediately detected the key differences between the 
two groups. Therefore, precision could not be maintained when 
tested on more difficult datasets. To overcome this problem, 
we propose a negative dataset generation technique. We created 
a negative dataset from positive promoter sequences by the 
following three steps. First, each positive sequence is divided 
into eight subsequences. Second, five subsequences are randomly 
selected and placed. Thirdly, the remaining three subsequences 
are placed at the same position. Using this method, each positive 
promoter sequence creates one negative sequence with 35–40% 
conserved portions from the promoter sequence. This 
proportion is ideal as a reliable predictor of promoter activity.

Dataset for the second layer
To create the positive and negative sets for the second layer of 

the model, promoter sequence type information as a host or phage 
was retrieved. The collection contains several promoters of unknown 
types. Finally, we collected 139 phage promoter-negative and 478 
host promoter-positive samples. We randomly chose 80% of these 
positive and negative samples as the training dataset and 20% as the 
test dataset. Table 1 lists the dataset parameters for both layers.

Methods

In this section, we briefly explain the proposed model, feature 
encoding techniques, and baseline models.

Proposed model
The proposed two-layer model is designated “iProm-phage.” 

The model’s first layer predicts the query sequence as a phage 

FIGURE 1

Flow diagram of iProm-phage.

TABLE 1 Summary of the Benchmark dataset.

Model Layer Dataset Promoter Non-promoter

First layer Training 901 901

Test 198 198

Second layer Phage Host

Training 111 382

Test 28 96
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promoter or non-promoter. If the predicted sequence is a phage 
promoter then the model’s second layer classifies it as a phage or 
host. Figure 2 illustrates the proposed model.

Based on performance measures, we  opted for the CNN 
model and one-hot encoding technique for this two-layer 
predictor. The selection of the model and encoding technique are 
briefly explained in the performance measure section.

Convolutional neural network model 
architecture

The CNN is composed of 2 one-dimensional convolutional 
layers (Conv1D), which are followed by maximum (max) pooling 
and dropout layers. The filter and kernel sizes of both Conv1D is 16 
and 5, respectively. The max pooling size is four with strides of two 
in both the max pooling layers. A dropout layer is utilized after each 
max pooling layer, with a value of 0.5. A flattened layer was utilized, 
followed by a dense layer with 64 nodes. Subsequently, we used a 
dropout layer with a value of 0.5. The ReLU activation function was 
utilized in all the Conv1D and dense layers. Finally, the dense layer 
is employed as an output layer with a single node and sigmoid 
activation function that classifies the input sequence as positive or 
negative based on the probability scores. The mathematical 
expression for the sigmoid activation function is as follows:

 
S p

p
( ) =

+ -( )
1

1 exp

We used L2 regularization and bias regularization in the 
convolution and dense layers to ensure that the model did not 
overfit. The values for both regularizations were set to 0.0001. The 
loss function of the model is binary cross-entropy. Adam was used 
as the optimizer. The batch size was set to 20 with a total of 85 
epochs. iProm-phage was created and trained using the Keras 
framework. The CNN architecture is illustrated in Figure 3.

Feature encoding techniques
A DNA sequence is comprised of the A, C, G, and T 

nucleotides. To perform computational operations, the sequence 
must be  translated into a numerical representation. Feature 
encoding schemes play a vital role in creating optimal predictors. 
The input size should be the same for all sequences. We apply the 
zero-filled method to make every DNA sequence with an equal 
length of 99 bp. This technique was previously applied by DPProm 
(Wang et al., 2022). In this study, we find the best feature encoding 
technique among the 10 different techniques. The details of each 
encoding scheme are presented below.

One-hot feature encoding

One-hot encoding techniques are used by many state-of-
the-art bioinformatics tools (Umarov and Solovyev, 2017; Liu and 
Li, 2019; Shujaat et al., 2021; Kim et al., 2022). Each nucleotide in 
a DNA sequence is represented by a four-dimensional vector, 
which is a vector of zeros with a single one. Nucleotide A is encoded 
as (1,0,0,0), C (0,1,0,0), G (0,0,1,0), and T (0, 0,0,1). Each DNA 
sequence can be represented by a (99,4) two-dimensional vector.

Nucleotide chemical property feature encoding

The chemical characteristics of the four DNA nucleic acids 
differ (Jeong et al., 2014). Nucleotides are classified into three 
types based on their chemical characteristics: hydrogen-bond 
strength, base type, and functional groups. Purines with two 
rings are represented by the letters A and G, whereas pyrimidines 
with one ring are represented by the letters C and T. The hydrogen 
bonds between A and T are weak, whereas the hydrogen bonds 
between C and G are strong. In terms of functional groups, the 
amino group includes A and C, whereas the keto group includes 
G and T. Each DNA sequence is represented by a three-
dimensional vector (b, c, p) based on chemical properties, where 
ni  denotes the nucleotide n at position i; hence, b, c, and, p were 
computed as follows:

FIGURE 2

Flow diagram of the two-layer model.
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Dinucleotide-based auto-cross covariance feature 

encoding

DACC is a combination of dinucleotide-based auto-
covariance (DAC) and dinucleotide-based cross covariance 
(DCC) encoding. DAC computes the correlation of the same 
physicochemical index between two dinucleotides separated by a 
lag distance along the sequence. DAC is calculated as:
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where u , L  represent the physicochemical index and length 
of the sequence, respectively, and the physicochemical index u  
for the dinucleotide R Ri i+( )1  at position i  is expressed 
numerically as P R Ru i i+( )1 . 



Pu  represents the average value of 
the physicochemical index u  along the whole sequence, and is 
calculated as:

 


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L
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The DAC feature vector has a dimension of N ´LAG , where 
LAG is the maximum lag (lag = 1, 2,…, LAG) and N is the total 
number of physicochemical indices. DCC computes the 
correlation of two different physicochemical indices between two 
dinucleotides along the sequence separated by lag nucleic acids. 
Mathematically, DCC can be represented as
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where u u L1 2, and  represent the physicochemical indices and 
length of the nucleotide sequence, respectively, P R Ru i i1 1+( )  is the 
numerical value of the physicochemical index u1  for the 
dinucleotide R Ri i+( )1  at position i , and 



Pua  is the average value 
for the physicochemical index ua  along the whole sequence, 
calculated as:

 


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L
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The DCC feature vector has dimensions of N N´ -( )´1 LAG
, where LAG is the maximum lag (lag = 1, 2,.., LAG) and N is the 
total number of physicochemical indices. Thus, the dimension of 
the DACC encoding is N × N × LAG, where N is the number of 
physicochemical indices and LAG is the maximum lag (lag = 1, 2, 
…, LAG).

Pseudo dinucleotide composition

PseDNC encoding incorporates both contiguous local and 
global sequence order information into a feature vector of the 
nucleotide sequence. PseDNC is mathematically defined as follows:
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where fk  (k = 1, 2,…, 16) is the normalized frequency of 
dinucleotide occurrence in the nucleotide sequence, l  

FIGURE 3

iProm-phage CNN architecture.
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represents the highest counted rank (or tie) of the correlation 
along the nucleotide sequence, w is the weight factor ranging 
from 0 to 1, and q j  (j = 1,2,…, l ) is the jth correlation factor 
and is defined as
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The correlation function is given as follows:
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where physicochemical indices are represented by μ, 
P R Ri im +( )1  measures are the numerical values of the u-th (u = 1, 

2, …, μ) physicochemical index of the dinucleotide R Ri i+1 at 
position i  and P R Rj jm +( )1  represents the corresponding value 
of the dinucleotide R Rj j+1  at position j .Pseudo k-tupler 
composition (PseKNC).

PseKNC encoding uses a k-tuple nucleotide composition 
defined as

 
D d d d d dk k k

T= ¼ ¼[ ]+ +1 2 4 4 1 4, , , , , , l

Whereas:

 

f

f w
u

w

f w
u

u

i i j j

u

i i j j

k k

k

k

k

= =

-

= =

å å

å å

+
£ £( )

+
£ £

1
4

1

4

1
4

1

1 4

4 4

l

l

q

q

q

,

, ++( )

ì

í

ï
ïï

î

ï
ï
ï

l

where l  is the total number of ranks of correlations along a 
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The correlation function is defined as:
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where m  represents the physicochemical index. P R Rv i i+( )1  
is a numerical value v-th (v = 1, 2, …, μ). The physicochemical 
index of dinucleotide R Ri i+( )1  at position i and P R Rv i j i j+ + +( )1  
represents the corresponding value of dinucleotide R Ri j i j+ + +( )1  
at position i + j.

Electron-ion interaction pseudopotentials of 

trinucleotide

The values of nucleotides A, G, C, and T electron-ion 
interaction pseudopotentials (EIIP) were determined as previously 
described using Nair (Lavigne et al., 2004; A: 0.1260, C: 0.1340, G: 
0.0806, T: 0.1335). Nucleotides in the DNA sequence are directly 
represented by EIIP using the EIIP value. EIIPA, EIIPT, EIIPG, and 
EIIPC represent the EIIP values of nucleotides A, T, G, and C, 
respectively, in PseEIIP encoding. A feature vector is created using 
the mean EIIP value of the trinucleotides in each sample, as follows:

 
V EIIP f EIIP f EIIP fAAA AAA AAC AAC TTT TTT= ¼[ ]· · ·, , ,

Parallel correlation pseudo dinucleotide composition

Similar to PseDNC, PCPseDNC encoding differs in that it 
uses 38 default physiochemical indices for DNA instead of the six 
indices used in PseDNC encoding. Supplementary Table S2 in 
Supplementary file presents a list of 38 physicochemical indices.

Parallel correlation pseudo trinucleotide composition

PCPseTNC encoding is described as:
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where fk  (k = 1, 2,…, 64) is the normalized frequency of 
dinucleotide occurrence in the nucleotide sequence, l  represents 
the highest counted rank (or tie) of the correlation along the 
nucleotide sequence, w is the weight factor ranging from 0 to 1, 
and q j  (j = 1,2,…, l ) is the jth correlation factor and is 
defined as:
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The correlation function is defined as:
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u j j ju

P R R R
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P R R R

where physicochemical indices are represented by μ, 
P R R Ri i im + +( )1 2  measures are the numerical values of the u-th 

(u = 1, 2, …, μ) physicochemical index of the dinucleotide 
R R Ri i i+ +1 2 at position i  and P R R Rj j jm + +( )1 2  represents the 

corresponding value of the dinucleotide R R Rj j j+ +1 2  at position j .

Moran correlation

The distribution of amino acid characteristics along the 
sequence is used to create autocorrelation descriptors (Horne, 
1988; Feng and Zhang, 2000; Sokal and Thomson, 2006). The 
amino acid properties used here are different types of amino acid 
indices retrieved from the AAindex Database (Kawashima et al., 
2008) available at http://www.genome.jp/dbget/aaindex.html.

kmer

DNA sequences are represented as the occurrence frequencies 
of k adjacent nucleic acids in the kmer descriptor, which has been 
effectively used for human gene regulatory sequence prediction. 
The kmer descriptor (k = 3) is calculated as follows:

 
f t

N t
N

t AAA AAC AAG TTT( ) = ( )
¼{ }, e , , , ,

where N t( )  represents the number of kmer types (t) and N 
is the length of the sequence.

Baseline models
Selection of the optimal model is a vital step in developing 

a novel predictor. We have utilized different ML and CNN 

models and, based on performance measures, selected the 
best model. ML models include the Adaboost (AdB) classifier, 
multinomial naive Bayes, extreme gradient boosting 
(XGboost), gradient boosting (Gboost), logistic regression 
(LR), K-nearest neighbor, decision tree classifier, support 
vector machine (SVM), multilayer perceptron classifier, and 
SVM bagging. A CNN is composed of two convolution layers. 
We  used hyperparameter tuning to determine the  
best convolution, pooling, dropout, and dense layer  
parameters.

Performance measures

In this section, we explain the evolution metrics, selection of 
the best model and feature encoding scheme, model performance, 
and model comparison.

Evaluation metrics

In the performance assessment matrix, we used the accuracy 
(Acc), sensitivity (Sn), specificity (Sp), and MCC. These 
parameters have been used in several cutting-edge studies. The 
numerical representation of an evaluation matrix is expressed 
using the following equations:

 
Acc TP TN

TP TN FP FN
=

+
+ + +

 
Sn TP

TP FN
=

+

 
Sp TN

TN FP
=

+

 
MCC TP TN FP FN

TP FP TP FN TN FP TN FN
=

* - *
+( ) +( ) +( ) +( )

The terms TP, TN, FP, and FN in the aforementioned 
equations represent the appropriate numbers of true positives, 
true negatives, false positives, and false negatives, respectively.

Selection of best model and feature 
encoding

To generate an optimum model, we  compared all the 
encoding strategies stated above to the baseline approaches. 
Supplementary Tables S3, S4 in Supplementary file, and 
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FIGURE 4

Accuracy of First layer baseline models.

Figures  4, 5 illustrate the performance of each method on 
various encoding schemes for the first and second layers. For 
the first layer of the model CNN and one-hot encoding 
outperformed after that AdB performed better on PseKNC 
feature encoding and for the second layer almost every feature 
encoding scheme performed good on ML and CNN algorithms, 
but one-hot and CNN outperformed in the second layer as well. 
Therefore, based on performance evaluation, we chose the CNN 

and one-hot encoding technique for both layers and the 
proposed tool “iProm-phage.”

Model performance

The prediction performance of iProm-phage was evaluated 
using 5-fold cross validation. We employed the same parameters 
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used in choosing the best model and also considered ROC curve 
data. The first layer of iProm-phage achieved an Acc of 95.68 
93.47%, Sn of 96.12%, Sp of 92.63%, MCC of 0.872, and AUROC 
of 0.99 during cross validation. These findings suggest that our 
predictor is capable of properly recognizing whether a query 
sequence is a promoter. The second layer of iProm-Zea achieved 
values of 97.25, 94.32, 98.5%, 0.8619, and 0.97, respectively. In the 
test dataset model, the first layer achieved an accuracy of 94.2%, Sn 
90%, Sp 90%, and MCC 0.88. The second layer obtained accuracies 

of 95.2%, 94.37%, 97.14%, and 0.88% for the test dataset. Figures 6, 
7 depict the ROC curves for both layers of the iProm-phage model.

Comparison with existing models

We compared iProm-phage with state-of-the-art promoter 
identification tools PhagePromoter and DPProm for the 
identification of query sequences as promoters or promoters. 

FIGURE 5

Accuracy of Second layer baseline models.
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We measured the precision and recall for both layers to compare 
them with state-of-the-art methods. The following equations 
express precision and recall:

 
Recall TP

TP FN
=

+

 
Precison TP

TP FP
=

+

A performance comparison of the methods used for 
promoter identification is presented in Table 2. The superior 
performance of the proposed iProm-phage tool can 
be  observed in all four performance metrics for this 
particular task.

We demonstrate the performance comparison between 
DPProm in Table 3 for promoter classification as a phage or 
host. The iProm-phage tool was superior to DPProm in 
performance for all classification tasks. The precision and 
recall of iProm-phage for promoter identification and 
classification were higher than those of DPProm, and the 

values were more consistent. As a result, iProm-phage showed 
a considerably higher score than the state-of-the-art methods 
in all cases.

Webserver

A web server hosting the high performance iProm-phage tool 
is freely available at the following link1 to enable easy access to the 
proposed tool for the scientific community. This approach has been 
adopted by several scholars (Chantsalnyam et al., 2020; Ali SD 
et al., 2022). iProm-phage is an easy-to-use tool that can be utilized 
by researchers and specialists in bioinformatics. It consists of two 
stages first is input and second is output. To input it uses two input 
methods: direct sequence input and uploading a file containing 
sequences for prediction. Each sequence should be 99 bp long and 
contain the letters A, C, G, and T. Figures 8, 9 depict web server 
snippets; Figure 8 is an example of adding sequences for prediction 
and Figure 9 provides the predictor’s output. We also provide an 
example to better understand how to use the webserver.

1 http://nsclbio.jbnu.ac.kr/tools/iProm-phage/

TABLE 2 First layer performance comparison.

Methods Acc% Precision% Recall%

PhagePromoter 92 89 87

DPProm 85.5 88.9 83

iProm-phage 95.68 94.2 93.5

TABLE 3 Second layer performance comparison.

Methods Acc% Precision% Recall%

DPProm 93.0 95.2 96.4

iProm-phage 95.2 96.5 97.2

FIGURE 6

First layer ROC curve.
FIGURE 7

Second layer ROC curve.
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Conclusion

This work presents iProm-phage, a two-layer technique for 
identifying phage promoters and classifying them as phages or 
hosts. We  developed a new method for generating negative 
datasets to create a robust model that performs well on tough 
datasets. Based on cutting-edge performance tests, we also found 

the best model among several ML and CNN algorithms, as well 
as the best feature encoding method among the 10 distinct 
methods. The architecture of the proposed model was evaluated 
using publicly available datasets. Compared to earlier techniques, 
the program had superior overall results. Finally, we created a 
web server that is available online and will be extremely useful to 
other experimental scientists.

FIGURE 8

Webserver adding query sequence.

FIGURE 9

Predictor output.
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