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Coronavirus disease 2019 (COVID-19), a disease caused by severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently spreading rapidly 

around the world. Since SARS-CoV-2 seriously threatens human life and health 

as well as the development of the world economy, it is very urgent to identify 

effective drugs against this virus. However, traditional methods to develop 

new drugs are costly and time-consuming, which makes drug repositioning 

a promising exploration direction for this purpose. In this study, we collected 

known antiviral drugs to form five virus-drug association datasets, and then 

explored drug repositioning for SARS-CoV-2 by Gaussian kernel similarity 

bilinear matrix factorization (VDA-GKSBMF). By the 5-fold cross-validation, 

we found that VDA-GKSBMF has an area under curve (AUC) value of 0.8851, 

0.8594, 0.8807, 0.8824, and 0.8804, respectively, on the five datasets, which 

are higher than those of other state-of-art algorithms in four datasets. Based 

on known virus-drug association data, we  used VDA-GKSBMF to prioritize 

the top-k candidate antiviral drugs that are most likely to be effective against 

SARS-CoV-2. We confirmed that the top-10 drugs can be molecularly docked 

with virus spikes protein/human ACE2 by AutoDock on five datasets. Among 

them, four antiviral drugs ribavirin, remdesivir, oseltamivir, and zidovudine 

have been under clinical trials or supported in recent literatures. The results 

suggest that VDA-GKSBMF is an effective algorithm for identifying potential 

antiviral drugs against SARS-CoV-2.
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Introduction

Caused by severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2), a new infectious disease called coronavirus 
disease 2019 (COVID-19) has caused a big pandemic worldwide 
since 2019 (Eurosurveillance editorial team, 2020; Cheng et al., 
2021a; Zhang et al., 2021). SARS-CoV-2 can transmit by human-
to-human contacts, and is currently spreading rapidly to more 
than 400 countries around the world, causing millions of deaths 
(Coronaviridae Study Group of the International Committee on 
Taxonomy of V, 2020; Li et al., 2020; Cohain et al., 2021). Thus, 
SARS-CoV-2 seriously threatens human life and health as well as 
the development of world economy (Wu et al., 2020; Zhou P. et al., 
2020; Zhu et al., 2020; Cheng et al., 2021b), and it is critical to find 
effective measures to prevent the transmission and fight against 
this virus.

One effective way to prevent the transmission of a virus is 
through vaccination. However, viruses like SARS-CoV-2 and 
influenzas are under rapid genetic and antigenic evolution, 
especially in their spike proteins (Yao et al., 2017; Zhang et al., 
2017), which will make the vaccine less effective. Another method 
is to develop specific drug against the viruses. However, traditional 
methods to develop new drugs usually take years and cost tens of 
millions of dollars (Novac, 2013). With the development of 
various computational algorithms for mining intrinsic associations 
in biomedical data (Zhang et al., 2019; Xu et al., 2020a; Liu et al., 
2021; Xiang et al., 2021a, 2022b; He et al., 2022; Yang et al., 2022), 
drug repositioning has become an effective way of exploring new 
uses for approved drugs, since it can significantly reduce the time 
and cost in the development of drugs (Liu et al., 2016, 2020; Yang 
J. et al., 2020; Zhu et al., 2021).

There are a few studies to prioritize approved drugs against 
SARS-CoV-2. For example, Zhou et al. proposed a KATZ method 
to probe antiviral drugs against SARS-CoV-2 through virus-drug 
association prediction (Zhou L. et al., 2020). More recently, Tang 
et  al. prioritized drugs for COVID-19 through an indicator 
regularized non-negative matrix factorization method (Tang 
et al., 2020). Peng et al. collected an antivirial drug database and 
minied it to repurpose drugs aginst SARS-CoV-2 (Peng et al., 
2020; Zhou L. et  al., 2020). Wang et  al. predicted anti-
SARS-COV-2 drugs by bound nuclear norm regularization (Wang 
et al., 2021). Meng et al. builded the human drug virus database 
and identified anti-SARS-COV-2 drugs by similarity constrained 
probabilistic matrix factorization (Lu et al., 2021; Meng et al., 
2021; Parsza et al., 2021). Shen et al. prioritized anti-SARS-CoV-2 
drugs by combining an unbalanced bi-random walk and 
Laplacian regularized least squares (Shen et al., 2022). Though 
these methods achieved relatively good prediction performance 
in cross-validation and literature mining, the accuracy of 
prediction is yet to be improved and a more robust validation 
method is needed for further wet-lab experiments. Therefore, in 
this study, we collected the data of well-studied viruses that are 
similar to SARS-CoV-2 and their known antiviral drugs, forming 
a virus-drug association matrix (VDA). Then, we  proposed a 

novel method for exploring potential virus-drug associations of 
SARS-CoV-2 by using Gaussian kernel similarity bilinear matrix 
factorization (VDA-GKSBMF).

The rest of the work is organized as follows. First, we collect 
five datasets and propose the details of the VDA-GKSBMF method 
for predicting potential virus-drug associations of SARS-CoV-2. 
Then, we study the effectiveness of the method by the 5-fold cross-
validation experiments and compare VDA-GKSBMF with other 
state-of-art algorithms. Based on known virus-drug association 
data, we  use VDA-GKSBMF to prioritize top-10 candidate 
antiviral drugs that are most likely to fight against SARS-CoV-2, 
and then evaluate the molecular binding activity between predicted 
antiviral drugs and SARS-CoV-2 spike protein (Gralinski, 2020) 
or human ACE2 (Zhao et al., 2020), to confirm whether the top-10 
drugs are to be molecularly docked with the virus spikes protein 
or human ACE2. We also explore literatures to check if the top 
predicted drugs are under clinical trials or experiments against 
SARS-CoV-2.

Materials and methods

The overall workflow of the method is illustrated in Figure 1. 
We first introduce the datasets in this study, and then describe the 
details of the VDA-GKSBMF method for drug repositioning of 
SARS-CoV-2, including the construction of virus–drug 
heterogeneous network and the VDA-GKSBMF model, along with 
the alternating direction method of multipliers (ADMM) for 
solving the model to fill out unknown associations in virus–
drug matrix.

Materials

To identify potential VDAs involving SARS-COV-2, we collect 
five datasets. There is Virus similarity matrix, drug similarity 
matrix, and VDA matrix in each dataset. Viruses are similar to 
SARS-CoV-2, small-molecule drugs and VDAs between them 
from the DrugBank (Wishart et al., 2018), PubChem (Kim et al., 
2016), and NCBI (Wheeler et al., 2004) databases (see Table 1 
for details).

These VDAs are represented by a VDA matrix Bm × n, where 
Bdv = 1 if the d-th drug is associated with the v-th virus, otherwise, 
Bdv = 0. This forms a virus-drug association network, which can 
be  denoted as a bipartite graph G V D E, ,( ) , where 
E G e V Dij( ) = { } ⊆ ×  contains edges representing known 

associations between viruses and drugs.
For viruses, we  obtain the sequence-based similarities 

between viruses that are calculated by MAFFT (Katoh and Toh, 
2008). For drugs, we  obtain the chemical structure-based 
similarity scores between drugs by RDKit (Landrum, 2014), 
where chemical structures of drugs are obtained from the 
DrugBank database (Wishart et al., 2018). The details are shown 
in Table 1.
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Methods

Drug similarity matrix
Considering that drugs with common associated viruses may 

be similar, we denote the Gaussian association profile (AP) of 

drug di  by AP di( ) , i.e., the i -th row of the VDA matrix B, 
which is a binary vector encoding the associations between this 
drug and viruses in the VDA matrix. Then, we  calculate the 
similarity M d dd i j,( )  between two drugs di  and d j  based on 
association profiles of drugs by,

 
( ) ( ) ( )( )2, exp AP APd i j d i jM d d d dγ= − − 

where γ γd d= ′ /( ( ) 2

1

1 m
k

k
AP d

m =
∑   ) is the normalized core 

band-width based on bandwidth parameter γ ′d , and m denotes 
the number of drugs.

Then, we obtain the chemical structure (CS)-based similarity 
between drugs calculated by RDKit (Landrum, 2014), which is 

A

B

C

FIGURE 1

Workflow of Gaussian kernel similarity bilinear matrix factorization (VDA-GKSBMF). (A) Virus–drug association network and its association matrix. 
(B) Drug–drug similarity matrix and Virus–virus similarity matrix. (C) The model of VDA-GKSBMF.

TABLE 1 The statistics of datasets.

Datasets No. of 
viruses

No. of 
drug

No. of 
VDAS Sparsity

Dataset1 12 78 96 89.7%

Dataset2 69 128 770 91.3%

Dataset3 34 203 407 95.0%

Dataset4 34 210 437 93.9%

Dataset5 34 219 455 93.9%
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denoted as Zd . Finally, we generate the drug–drug similarity 
matrix (DDS) by,

 
S M Zd d d d d= + −( )ω ω1 ,

where ωd ∈[ ]01,  balances the contribution of the CS-based 
and AP-based drug similarity matrices. This forms a drug–drug 
network with edges weighted by the pairwise drug similarity scores.

Virus similarity matrix
Considering that viruses with common associated drugs may 

be similar, in the same way, we denote the Gaussian association 
profile (AP) of virus va  by AP va( ) , i.e., the a -th column of the 
VDA matrix B, which is a binary vector encoding the associations 
between this virus and drugs in the VDA matrix. We calculate the 
AP-based similarity M v vv a b,( )  between two viruses by,

 
( ) ( ) ( )( )2, exp AP AP ,v a b v a bM v v v vγ= − − 

where ( ) 2

1

1/ (
n

v v k
k

AP v
n

γ γ
=

= ′ ∑   ), and n  denotes the 
number of viruses.

Then, we obtain the sequence (SQ)-based similarity matrix 
calculated by MAFFT (Katoh and Toh, 2008), which is denoted as 
Zv . Finally, the virus-virus similarity matrix (VVS) is 
calculated by,

 
S M Zv v v v v= + −( )ω ω1 ,

where ωv ∈[ ]01,  balances the contribution of the SQ-based 
and AP-based virus similarity matrices. This forms a virus-virus 
network with edges weighted by the pairwise virus similarity scores.

Constructing heterogeneous network
To make use of information in the above DDS, VVS, and VDA 

matrices, we integrate them to construct a heterogeneous virus–drug 
network, by connecting the virus–virus network and drug–drug 
network through virus–drug associations. In the heterogeneous 
network, there are a set of m  viruses V v v v vm= …{ }1 2 3, , , ,  and a 
set of n  drugs D d d d dn= …{ }1 2 3, , , , ; the edge  
between drugs d di j,( )  is weighted by the score S d dd i j,( )  in the 
DDS matrix, the edge between viruses v va b,( )  is weighted by the 
score S v vv a b,( )  in the VVS matrix, and the edge between drug di  
and virus va  denotes the existence of association  
between them.

The VDA matrix B is extremely sparse due to the rarity of 
known virus–drug associations, where 1/0 denotes known/
unknown virus–drug associations, respectively. We would like to 
fill out the missing values in the matrix as scores to predict 
unknown VDAs. The integration of information of DDSs, VVSs, 
and known VDAs into the heterogeneous network will benefit the 
discovery of unknown VDAs due to the intrinsic correlation 
among drugs and viruses.

VDA-GKSBMF model to predict virus–drug 
associations

To predict potential virus-drug associations of COVID-19, 
we define the VDA prediction as a problem of completing virus-
drug matrix in a heterogeneous virus-drug network, and explore 
potential VDAs of COVID-19 by Gaussian kernel similarity 
bilinear matrix factorization (Yang M. et  al., 2020; called as 
VDA-GKSBMF).

Matrix factorization is an effective method, which intends to 
calculate an optimal approximation to the target matrix by 
decomposing it into two low-rank matrices. In a word, the 
mathematical model of matrix factorization is formulated as

 

2
,

min ,T
FU V

B UV−
 

(1)

where B n m∈ ×  is the given incomplete matrix with n drugs 
and m viruses, U∈ ×n k  and V∈ ×m k are the indicator 
feature matrices of B and k is the subspace dimensionality 
[k min n,m( ) ], . F   denotes the Frobenius norm. Many 
algorithms have been designed to provide numerical solutions for 
the above model or alternative forms. However, compared with 
other algorithms, the classic ADMM algorithm is superior to 
solving our proposed matrix factorization model.

The elements in the association matrix B are either 0 or 1. 
Thus, the predicted values in the un-known entries are expected 
to be in the interval of [0, 1], where a predicted value closer to 1 
indicates that this is likely to be an indication and vice versa. 
Nevertheless, in the above matrix completion model, the entries 
in the completed matrix can be any real value in (−∞, +∞).

Moreover, based on the assumption that similar drugs share 
similar molecular pathways to treat similar viruses, the underlying 
factors that determine drug-virus associations are highly 
correlated. Since B is extremely rare and low rank, usually less 
than 1% of known associations are present, while the rest of the 
elements are unknown. Therefore, the error term is only computed 
on items with known associations. At the same time, Tikhonov 
regularization terms are often used to avoid overfitting. To achieve 
this, the matrix factorization model can be expressed as,

 

( ) ( )2 221

,

1min ,
2 2

T
F FF

U V

B UV U Vλ
− + +Ω     

 

(2)

where Ω  is a set containing index pairs i j,( )  of all known 
entries in B  and Ω  is the projection operator onto Ω , λ1  is 
regularization parameter. However, the above objective function 
does not involve a large amount of prior information about 
viruses and drugs, such as disease similarity and drug similarity. 
Since U  and V  are matrices containing potential eigenvectors 
of drugs and viruses, given a drug similarity matrix Zd  and a 
virus similarity matrix Zv , UUT  and VVT  are expected to 
match Sd  and Sv , respectively. Therefore, model (2) is described 
as follows:
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( ) ( )

( )

2 22 1

,
2 22

1min
2 2

2

T
FFF

U V

T T
d v

F F

B UV U V

Z UU Z VV

λ

λ

Ω − + +

+ − + −

   













 

(3)

Model (3) deals with a single drug and virus similarity measure. 
Here, in order to integrate the Gaussian kernel similarity measure, 
we propose the VDA-GKSBMF model, which is expressed as follows:

 

( ) ( )

( )
( )

2 2 21

, , , ,
2 22

2 23

1min
2 2

2

2

T
FFF

U V P Q A

T T
d vF F

F F

A UV U V

S UP S VQ

P Q

λ

λ

λ

− + +

+ − + −

+ +

    

 

  









 

(4)

 ( ) ( ).s t A BΩ Ω= 

 U V≥ ≥0 0, ,

where Sd  and Sv  are matrices concatenating Gaussian kernel 
similarity measure of drug and virus, and 1λ , 2λ , and 3λ  are 
balancing parameters. A is an auxiliary matrix for facilitating 
optimization. The approximation of similarity matrix Sd and Sv  
are constructed based on characteristic matrices U and V, where 
P and Q are potential characteristic matrices representing drug 
similarity and virus similarity, respectively. We solve model (4) by 
ADMM framework. Introducing two riving matrices X and Y, 
model (4) is transformed into

 

( ) ( )

( )
( )

2 221

, , , , , ,
222

2 23

1min
2 2

2

2

T
F F F

U V P Q X Y A

T T
d vF F

F F

A UV U V

S UP S VQ

P Q

λ

λ

λ

− + +

+ − + −

+ +

     

   

   

 

(5)

 
s t A B.  © ©( ) = ( )

 U X V Y= =,

 X Y≥ ≥0 0, .

The augmented Lagrangian function becomes

 

( ) ( )
( )
( ) ( )( )

( )( ) ( )

22 21

2 22

2 23

22

L
2

2

2

2

T
F F F
T T

d v FF
T

F F
T

FF

A UV U V

S UP S VQ

P Q Tr W U X

Tr R U X U X V Y

λ

λ

λ

ρ

= − + +

+ − + −

+ + + −

+ − + − + −

     

   

   

   

 
(6)

where W and R are the Lagrange multiplier and ρ >0 is the 
penalty parameter. At the i-th iteration, it requires alternatively 
computing U V P Q X Y Ai i i i i i i+ + + + + + +1 1 1 1 1 1 1, , , , , , .

Molecular docking method
Molecular docking method can be used to study the behavior 

of small molecules at the binding sites of target proteins. It has 
been widely used in drug design, since structures of more and 
more target proteins have been confirmed by experiments. 
AutoDock (Goodsell, 1996) is an open source molecular 
simulation software available to identify the conformation of a 
small molecule binding to a large molecule target. AutoDock has 
an affinity scoring function, which can sort candidate poses 
according to the sum of van der Waals and electrostatic energy. 
We used AutoDock to evaluate the molecular binding activity 
between predicted antiviral drugs and biomolecules.

Evaluation metrics
In this work, we evaluate the predictive performance of our 

method by 5-fold cross-validation. Popular evaluation metrics: 
AUC and AUPR are used to quantify the predictive performance 
of methods. Given a threshold of predictive scores, the candidate 
associations above this threshold are regarded as positives, and 
others are negatives. Then, true positive rate (TPR), false positive 
rate (FPR) and Precision can be calculated by,

 TPR = TP/(TP+FN) (7)

 FPR = FP/(FP+TN) (8)

 Precision = TP/(TP+FP) (9)

where TP, FP, TN, and FN represent true positive, false positive, 
true negative, and false negative, respectively. TPR is also called as 
Recall, which measures the ratio of correctly predicted positive 
samples to all positive samples. Precision measures the ratio of 
correctly predicted positive samples to all predicted positive samples.

With the increases of the threshold, TPR/Recall, FPR, and 
Precision will vary. TPR and FPR can form a TPR- FPR curve, called 
as the receiver-operating characteristic (ROC) curve. The area 
under the ROC curve is generally denoted as AUC. Precision and 
Recall (equivalent to TPR) can form a Precision–Recall (PR) curve. 
The area under the PR curve is generally denoted as AUPR. AUC 
and AUPR are scalar with the evaluation criterion: the larger AUC/
AUPR is, the better the predictive performance is. AUC and AUPR 
can evaluate the overall performance of prediction algorithms.

Results

Parameter setting

In VDA-GKSBMF algorithm, there are tunable 
parameters ′γ ω λ λ λ, , , .1 2 3and  In order to prevent 
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multi-parameter overfitting, we set λ λ1 2, and λ3 to the same 
value and remove two parameters. Because they are used to 
punish the related terms of U and V, P and Q in model (3) and 
model (4). VDA-GKSBMF has three parameters ( ′γ ω λ, , 1 ) 
needed to be determined. We first set ′γ  to 0.5, and then ω λ, 1  
are set in range of {0, 0.1, 0.2,…, 1}, {0.001, 0.01, 0.1, 1} by using 
the fivefold cross-validation on the training dataset. Table  2 
displays the top 3 AUCS values as a function of ′γ ω λ λ λ, , ,1 2 3and  
in five datasets.

Comparison with other methods

By 5-fold cross-validation experiment, we  evaluate the 
performance of VDA-GKSBMF. We  plot its ROC curve in 
Figure 2, and we find that it has a high AUC value in five datasets.

Further, we compare the VDA-GKSBMF method with other 
methods for drug repositioning: VDA-KATZ (Yang et al., 2019), 
IRNMF (Tang et al., 2020), VDA-GBNNR (Wang et al., 2021), 
and SCPMF (Meng et al., 2021). VDA-KATZ (Yang et al., 2019) 
used a KATZ algorithm to infer drug-virus association. The 
Indicator Regularized non-negative Matrix Factorization 
(IRNMF) method (Tang et al., 2020) introduced the indicator 
matrix and Karush-Kuhn-Tucker condition into the 
non-negative matrix factorization algorithm. VDA-GBNNR 
based on kernel similarity to predict anti-SARS-COV-2 drug. 
SCPMF used similarity constrained probabilistic matrix to infer 
drug-virus association. The experiment was carried out 50 times, 
with average performance as the final result. Table  3 shows 
sensitivities, specificities, accuracies, and AUCs of the five 
models on the five datasets. From Table 3, VDA-GBNNR obtains 
the best performance for other methods in dataset 1. However, 
VDA-GKSBMF achieves the best sensitivity, accuracy, specificity, 

and AUC on dataset 2, dataset 3, dataset 4, and dataset 5. 
Figure 2 displays the results of the methods in five datasets. The 
results show that the VDA-GKSBMF method outperforms the 
baseline methods in terms of the ROC curves and the 
corresponding AUC values, meaning that it can better discover 
antiviral drugs.

Case study

After verifying the good performance of VDA-GKSBMF, to 
discover unknown antiviral drugs against SARS-CoV-2, 
we  predict potential associations between SARS-CoV-2 and 
small molecule drugs based on known drug-virus association 
data, and we obtain the top-10 drugs with the highest score (see 
Table 4) in five datasets. Among the top-10 predicted drugs, 
there are 10 drugs that have been reported in the relevant 
literature, but the small molecule drugs were never confirmed 
to be anti-SARS-CoV-2 antiviral drugs. Ribavirin, Remdesivir, 
Oseltamivir, and Zidovudine were existed in at least 
four datasets.

Ribavirin is a road-spectrum antiviral drug that can inhibit 
the replication of respiratory syncytial virus (van Laarhoven and 
Marchiori, 2013). It can prevent respiratory syncytial virus 
infection in lung transplant recipients, and has been used to treat 
SARS-CoV and MERS-CoV. Similar to SARS-CoV and MERS-
CoV, SARS-CoV-2 are a respiratory syndrome beta coronavirus 
that may cause severe respiratory diseases, and a few studies have 
reported that ribavirin may take an inhibitory effect on SARS-
CoV-2 (Peng et al., 2020).

Remdesivir is a nucleoside analog with antiviral activity. 
Remdesivir has broad-spectrum activities against RNA viruses, 
such as SARS and MERS, and has been studied in a clinical trial 
for Ebola.

Oseltamivir is an antiviral neuraminidase inhibitor 
(Oseltamivir, n.d.) and has been used to prevent the infection of 
influenza A virus (for example, A-H1N1; Meijer et  al., 2009, 
A-H5N1; De Jong et al., 2005, and influenza B virus). Oseltamivir 
can prevent the germination, replication, and infectivity of the 
virus in the host cell. More importantly, Oseltamivir combined 
with other drugs has been reported to inhibit the infection of 
SARS-CoV-2 (Huang et al., 2020).

Molecular docking

To further study the effectiveness of predicted drugs against 
SARS-CoV-2, the top  10 predicted small molecules are 
molecularly docked with SARS-CoV-2 spike protein/ACE2. From 
the DrugBank database, the chemical structures of these small 
molecule drugs have been obtained. The structure of spinous 
process protein of SARS-CoV-2 is calculated based on the 
homology model of Zhang lab (Wang et  al., 2020). We  used 
AutoDock, a bioinformatics tool, to conduct molecular docking 
between the predicted antiviral drug and SARS-CoV-2 spike 

TABLE 2 The top three AUCs using different , , , ,and1 2 3γ ω λ λ λ′ values 
in 5-fold cross-validation.

Dataset γ ′ ω 1λ 2λ 3λ AUC

Dataset1 0.5 0.3 1 1 1 0.8851

0.5 0.4 1 1 1 0.8825

0.5 0.5 1 1 1 0.8663

Dataset2 0.5 0.1 0.1 0.1 0.1 0.8594

0.5 0.2 0.1 0.1 0.1 0.8590

0.5 0.3 0.1 0.1 0.1 0.8583

Dataset3 0.5 0.4 1 1 1 0.8807

0.5 0.3 1 1 1 0.8793

0.5 0.2 1 1 1 0.8756

Dataset4 0.5 0.2 0.1 0.1 0.1 0.8824

0.5 0.3 0.1 0.1 0.1 0.8809

0.5 0.4 0.1 0.1 0.1 0.8766

Dataset5 0.5 0.4 1 1 1 0.8804

0.5 0.3 1 1 1 0.8789

0.5 0.5 1 1 1 0.8787

Bold represented the best AUC values of different parameters in the same datasets.
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protein/ACE2. The search algorithm scans the entire protein in 
AutoDock by genetic algorithm and grid box.

We calculate the predicted molecular binding energies of 
ribavirin, remdesivir, oseltamivir, and zidovudine small 
molecules with the spinous process protein and ACE2 of 
SARS-CoV-2  in Table  5. The results show that the binding 
activities of ribavirin with these two proteins are −5.29 and 
−6.39 kcal/mol, followed by remdesivir with −5.22 and 
−7.4 kcal/mol, and oseltamivir with −4.04 and − 4.73 kcal/mol. 
More importantly, ribavirin and remdesivir have been used to 
treat SARS, and their sequence homology with SARS-CoV-2 is 
about 79%.

Zidovudine has molecular binding energies of −6.54 
and − 7.93 kcal/mol. Zidovudine is the drug which is an effective 

HIV replication inhibitor, which can improve immune function 
and partially reverse the neurological dysfunction caused by 
HIV. zidovudine, as an HIV nucleoside/nucleotide analogues 
reverse transcriptase inhibitor, has the potential to be a clue for 
SARS-COV-2 treatment.

Figures  3, 4 represent the docking results of four small 
molecules including ribavirin, remdesivir, oseltamivir, and 
zidovudine with two target proteins. The circles in each subgraph 
indicate the binding sites of the drug to the target protein. For 
example, the amino acids L387, L368, P565, and V209 are inferred 
to be the key residues for ribavirin binding to the SARS-CoV-2 
spike protein/ACE2, while L849, T827, W1212, L144, and P504 
are predicted as the key residues for remdesivir binding to these 
two target proteins.

A B

C

E

D

FIGURE 2

The performance of all methods in predicting virus–drug associations on five datasets: (A) Dataset1, (B) Dataset2, (C) Dataset3, (D) Dataset4, and 
(E) Dataset5.
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TABLE 5 The molecular binding energies between the predicted 4 
antiviral drugs and two target proteins at least four datasets.

Drugs
Binding energies of target proteins

Spike protein ACE2

Ribavirin −5.29 −6.39

Remdesivir −5.22 −7.40

Oseltamivir −4.04 −4.73

Zidovudine −6.54 −7.93

Discussion

Severe acute respiratory syndrome coronavirus 2 is quickly 
diffusing throughout the world, and it is urgent to find 
effective treatments against this virus. Drug repositioning, 
seeking to find new uses, offers a new strategy for the 
treatment of SARS-COV-2. However, to date, only a few 
databases have collated relevant drugs that may be used to 
treat SARS-COV-2. Thus, we developed a drug-virus as well 

TABLE 3 Performance indicators for different models.

Datasets Methods Accuracy Sensitivity Specificity AUC

Dataset1 VDA-GKSBMF 0.5172 0.8757 0.5091 0.8851

VDA-GBNNR 0.5181 0.8957 0.5095 0.9056

VDA-KATZ 0.5171 0.8735 0.5090 0.8829

SCPMF 0.5126 0.7708 0.5067 0.7778

IRNMF 0.5098 0.7088 0.5052 0.7142

Dataset2 VDA-GKSBMF 0.5136 0.8515 0.5072 0.8594

VDA-GBNNR 0.5134 0.8466 0.5071 0.8544

VDA-KATZ 0.5125 0.8211 0.5066 0.8284

SCPMF 0.5124 0.8187 0.5065 0.8259

IRNMF 0.5120 0.8077 0.5063 0.8146

Dataset3 VDA-GKSBMF 0.5097 0.8748 0.5052 0.8807

VDA-GBNNR 0.5097 0.8731 0.5051 0.8790

VDA-KATZ 0.5089 0.8416 0.5047 0.8471

SCPMF 0.5093 0.8557 0.5049 0.8613

IRNMF 0.5079 0.8015 0.5042 0.8063

Dataset4 VDA-GKSBMF 0.5102 0.8763 0.5054 0.8824

VDA-GBNNR 0.5098 0.8631 0.5052 0.8691

VDA-KATZ 0.5091 0.8345 0.5048 0.8400

SCPMF 0.5097 0.8581 0.5051 0.8639

IRNMF 0.5081 0.7990 0.5044 0.8040

Dataset5 VDA-GKSBMF 0.5101 0.8743 0.5054 0.8804

VDA-GBNNR 0.5096 0.8572 0.5051 0.8630

VDA-KATZ 0.5090 0.8322 0.5048 0.8376

SCPMF 0.5095 0.8532 0.5051 0.8590

IRNMF 0.5081 0.7966 0.5043 0.8015

Bold represented the best value of different methods under the same evaluation condition.

TABLE 4 The predicted top-10 antiviral drugs against SARS-CoV-2 in five datasets.

Dataset1-drug Dataset2-drug Dataset3-drug Dataset4-drug Dataset5-drug

Remdesivir Favipiravir Ribavirin Nitazoxanide Ribavirin

Oseltamivir Remdesivir Nitazoxanide Ribavirin Chloroquine

Zanamivir Cidofovir Chloroquine Oseltamivir Zidovudine

ribavirin ribavirin Camostat Camostat Camostat

Laninamivir Mycophenolic acid Umifenovir Zidovudine Umifenovir

Peramivir Navitoclax Remdesivir Favipiravir Favipiravir

Presatovir Itraconazole Zidovudine Hexachlorophene Rifamycin

zidovudine BCX4430 (Galidesivir) Berberine Remdesivir Oseltamivir

Mycophenolic acid Pleconaril Amantadine Sirolimus Berberine

Mizoribine Cyclosporine Oseltamivir Suramin Niclosamide

Bold indicated that the drug existed in at least four datasets.
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as a method VDA-GKSBMF to prioritize drugs against 
SARS-COV-2.

Specifically, VDA-GKSBMF has a high AUC in cross-
validation, which is better than other state-of-art methods in four 
datasets. We measured the molecular binding activity between 
predicted antiviral drugs and SARS-CoV-2 spike protein/human 
ACE2 (Zhao et al., 2020). Among them, the molecular binding 
energies between ACE2 and the four drugs were: Ribavirin 
(−6.39 kcal/mol), Remdesivir (−7.4 kcal/mol), Oseltamivir 
(−4.73 kcal/mol), zidovudine (−7.93 kcal/mol), and the four 
drugs have been in clinical trials or supported in recent 
publications. The results suggest that the VDA-GKSBMF 
algorithm can effectively infer unknown drugs of SARS-COV-2.

However, there a few limitations of this study. First, due to the 
limited size of the current virus-drug dataset and the complexity 
of intrinsic relationship in biomedical data, VDA-GKSBMF still 
has room for further improvement. On the one hand, we would 
like to expand the virus-drug dataset by including more virus-
related and drug-related information, so as to further improve the 

predictive power of mining hidden virus-drug associations. On 
the other hand, it is also possible to enhance the ability of 
discovering potential drugs against SARS-COV-2 by more 
advanced and methods in related fields (Xu et al., 2020b; Xiang 
et  al., 2021b, 2022a; Meng et  al., 2022). Second, though 
we  performed literature mining and molecular docking to 
validate our results, they are all in-silico methods. The prioritized 
drugs should be validated using wet-lab experiments. However, 
it is out of the scope of this study.

Conclusion

In this study, we collected five virus-drug datasets including 
VDAs matrix, virus genomic sequence similarity matrix, and 
drug chemical structure similarity matrix and explored drug 
repositioning of SARS-COV-2 by a novel method called 
VDA-GKSBMF.VDA-GKSBMF combined Gaussian similarity 
and extracted useful features to deduce potential virus-drug 

A B

C D

FIGURE 3

Molecular docking between the spike protein and four drugs: (A) ribavirin, (B) remdesivir, (C) oseltamivir, and (D) zidovudine.
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associations. It combined Gaussian similarity and virus-drug 
association into the target function. The non-negative constraint 
was used in VDA-GKSBMF, ensuring that the predicted scores of 
association matrix were non-negative for the biological 
interpretability. Our results showed that VDA-GKSBMF is an 
effective approach for discovering new drugs of SARS-COV-2. In 
the future, we will combine different data resources to create 
larger dataset and design integrated algorithm, integrating 
multiple heterogeneous network and multiple similarities for 
predicting potential virus-drug associations.
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