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Microorganisms play as fundamental contributors to maintain hosts’ fitness, 

which can be shaped by external environment. Moreover, symbiotic microbiome 

also varied within species (e.g., between sexes and developmental stages). 

However, we  still need more studies to quantify whether the intraspecific 

variation patterns of symbiotic microbes can be modified with the change of 

environment. The Chinese giant salamander (CGS; Andrias davidianus) is a 

Critically Endangered species. Despite quantitative captive bred individuals 

were released to rebuild wild populations, the effectiveness is limited. More 

importantly, no studies have revealed the adaptation of released CGSs to 

the complex field conditions. In the present study, we  explored whether 

reintroduction can reshape the intraspecific variations of symbiotic microbiota in 

captive bred CGSs using high-throughput amplicon sequencing of the16S rRNA 

gene. We found no significant difference of symbiotic microbiome in captive 

bred males and females, but released males and females differed significantly 

in skin microbiome. Juveniles had higher diversity of microbial symbiont than 

adults in hatchery, but lower diversity in field. Moreover, dominant bacterial taxa 

differed between juveniles and adults in both hatchery and field. Importantly, 

this symbiotic microbiome variations within species can be modified (alpha and 

beta diversity, and community composition) when captive bred individuals were 

released to the field. Overall, we observed a lower alpha diversity and higher 

relative abundance of Chryseobacterium, Plesiomonas, and Acinetobacter 

in the bacterial community of captive bred individuals. Instead, higher alpha 

diversity of symbiotic microbiota and higher relative abundance of S24-7 and 

Lactobacillus was detected in released individuals. These modifications may 

associate with the change of living environment, as well as the specific behavior 

within CGSs (e.g., movement patterns and foraging activities). Future studies 

can incorporate other approaches (e.g., blood physiology) to better evaluate the 

growth and health of reintroduced CGSs.
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Introduction

Microorganisms widely exist throughout the whole body sites of 
animals. They co-evolve with hosts over time, and play as 
fundamental contributors to maintain hosts’ fitness (Suzuki, 2017; 
Gould et  al., 2018). Specifically, oral cavity acts as a channel 
connecting the living environment and the digestive tract of host. 
Accordingly, oral microbial symbionts can protect host against the 
disturbance of external pathogenic bacteria when feeding 
(Takahashi, 2015; Gao et al., 2018). Moreover, skin microbiome is 
considered to be an integral component of hosts immune system, 
acting as a barrier to improve the disease resistance (Naik et al., 2012; 
Rebollar et al., 2016). Gut microbes display key functional roles, 
regulating hosts important physiological processes such as digestion, 
energy metabolism, pathogen defense, and immunomodulation 
(Chung et al., 2012; Hu et al., 2018; Raymann and Moran, 2018; 
Levin et  al., 2021; Xia et al., 2022). Therefore, investigating the 
dynamics of symbiotic bacterial diversity and composition can help 
us better understand hosts immunity and health.

The composition of host-associated microbial symbiont can 
be shaped by external environmental conditions (Bletz et al., 2016; 
Muletz Wolz et al., 2018; Moeller et al., 2020). Therefore, one can 
expect that the host-associated microbiota should be distinct when 
organisms occupy different habitats. Accordingly, the symbiotic 
microbes of captive bred animals should be changed when they were 
released to the field. For instance, the captive and wild Beal’s eyed 
turtle (Sacalia bealei) displayed different alpha diversity, beta diversity, 
and community composition of gut microbiota due to different diets 
and habitat conditions (Fong et al., 2020). Moreover, hosts symbiotic 
bacteria can be also different between developmental stages and sexes 
within species (Kueneman et al., 2014; Bennett et  al., 2016; 
Hernandez-Gomez et al., 2018). For instance, the alpha and beta 
diversity of brown frogs (Rana dybowskii) gut bacterial varied 
significantly between tadpoles and adults, which can be attributed to 
the shift of diet from plants to arthropod species during 
metamorphosis (Tong et al., 2020). Similar situation can be detected 
between male and female Chinese concave-eared frogs (Odorrana 
tormota), which exhibited distinct community composition of gut 
microbiota. This may be because females have a wider trophic niche 
size than males (Shu et al., 2019). However, few studies have been 
conducted to test whether the transition of captive bred individuals 
from hatchery to the wild will induce the change of intraspecific 
variations of their symbiotic microbes. Captive bred individuals live 
in the similar external environment, thus there should be  no 
significant difference of symbiotic microbes between juveniles, males, 
and females in the hatchery. In contrast, since the field condition is 
more complex, and released juveniles, males, and females can move 
freely to select the preferred habitat, their symbiotic microbes should 
be significantly different.

Chinese giant salamander (CGS; Andrias davidianus) is the 
largest extant amphibian species in the world (Murphy et al., 
2000), attracting quantitative attentions of ecologists and 
biologists for decades (Hou et al., 2004). However, the natural 
populations of CGS have dramatically declined since 1950s due 
to habitat loss, environmental contamination, and 

overexploitation (Wang et  al., 2004; Zhao et  al., 2020). 
Accordingly, this species has been listed as a protected species in 
China since 1988 (Cunningham et al., 2015), as well as Critically 
Endangered in China (Jiang et al., 2021) and in the International 
Union for Conservation of Nature and Natural Resources (IUCN) 
Red List of Threatened Species (IUCN, 2022). To rebuild wild 
populations, a total of 287,840 captive bred CGS individuals have 
been released to the wild by the end of October 2019 in China 
(Shu et al., 2021). However, it is still hard to detect CGS in the 
wild (except several natural researves; Shu et al., 2021). Therefore, 
it is urgent to evaluate the health of released CGS, and their 
microbiota was considered to be a good predictor because of its 
important functional contribution to host (Gould et al., 2018; 
Raymann and Moran, 2018). Previous studies have shown that 
the gastrointestinal microbiota of captive bred CGS can 
be significantly different in terms of composition and diversity 
between age groups (Zhang et  al., 2018), as well as between 
groups under different acclimation temperatures (Zhu et  al., 
2021). However, we still need empirical evidences to evaluate the 
reorganization of captive bred CGS’s symbiotic bacterial 
communities when they were released to the wild.

In the present study, the captive bred and the released CGS 
individuals with different developmental stages and sexes were 
selected to explore: 1) the sex bias in symbiotic microbiota (skin, 
oral, stomach, small intestine, and rectum microbiome), 2) the stages 
bias in symbiotic microbiota, and 3) the differences in symbiotic 
microbiota between captive bred and released individuals.

Materials and methods

Study area

A montane stream located at Dujiangyan, Sichuan Province, 
China (103°38′22′′–103°39′03′′E, 31°02′18′′–31°02′32′′N) was 
selected as the study site to conduct the reintroduction activity. 
This stream has been proved to be suitable for the living of released 
CGS (Liu, 2021; Zhao et al., 2022). Specifically, this area belongs 
to a subtropical climate, with the annual precipitation of 1,244 mm, 
and the average annual temperature of 15.2°C (Liang et al., 2004). 
The altitude of this stream is approximately 950 m, with deciduous 
broad-leaved forests and bamboo forests distributing along the 
riverbank. Chemical oxygen demand and biochemical oxygen 
demand in the water are extremely low, with little pollution and 
weak alkaline pH (Liu, 2021). Deep pools with quantitative fish, 
crabs, and shrimp can be  observed in this stream, providing 
sufficient food resources for reintroduced CGS individuals. More 
importantly, this area belongs to a private bamboo planting 
company, ensuring no fishing pressure.

Study animals

A total of 42 captive bred CGSs belonging to different 
developmental stages (ages) and sex groups were collected from a 
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hatchery in Hongya County of Sichuan Province, China 
(103°09′15′′E, 29°52′23′′N). Based on the molecular analyses, they 
belonged to the Shaanxi clade. These individuals were the offspring 
of the same parents and were bred in hatchery in 2016 and 2018, 
respectively. Specifically, 12 individuals including 4 males (age 4), 4 
females (age 4), and 4 juveniles (age 2) were considered as the captive 
bred group. The rest 10 males (age 4), 10 females (age 4), and 10 
juveniles (age 2) were used for reintroduction, which were 
considered as the released group. Before release, these individuals 
were injected with passive integrated transponder devices 
(HONGTENG, GuangZhou, China) for individual identification 
following Gibbons and Andrews (2004). Finally, these individuals 
were released at six sites (i.e., two sites for upstream, midstream, and 
downstream, respectively) of the study stream on 22th May, 2020, 
with each site containing several males, females, and juveniles 
(Supplementary Figure S1). The released individuals can move freely 
in this stream to look for their preferred habitats.

Salamanders recapture and sample 
collection

We used a combination of visual encounter approach and wire-
mesh baited traps (length × width × height = 110 × 60 × 30 cm, mesh 
size = 8 mm) to recapture the released individuals from 24th June to 
19th July, 2020. The visual encounter approach consisted of wading, 
nocturnal spotlighting, turning substrate, and netting in the stream 
(Liu et al., 2021). We searched for CGSs in the whole stream after 
sunset (from 20:00 to 24:00), and individuals encountered were 
captured by hand nets. Wire-mesh baited traps have been proved to 
be effective for surveying Cryptobranchids species (Browne et al., 
2011). Fresh chicken giblets or frozen hairtail were selected as the 
baits in a hanging net bag, ensuring CGSs cannot swallow the baits. 
Traps were placed at the deep pools of the stream at 18:00 every day, 
and were checked at 6:30 am the next morning. The captured CGSs 
were carefully transferred on a piece of white nylon cloth one by one 
by hands wearing sterile gloves. Before microbiota sampling, each 
individual was rinsed three times by ultra-pure water to remove the 
potential environmental transient bacteria (Lauer et al., 2007). After 
that, sterile swabs were immediately used to collect the skin microbes 
by wiping the dorsal, ventral, and lateral sides of the salamanders (Xu 
et al., 2020). New sterile swabs were used to gently swab salamanders 
oral cavity for sampling oral microbiota. The above swabs were 
preserved into 2  ml sterile centrifuge tubes with 95% alcohol, 
separately. After that, individuals were euthanized with MS-222 
(Webb et al., 2005). They were subsequently dissected to collect the 
stomach, small intestine, and rectum contents, which were preserved 
into 2 ml sterile centrifuge tubes, respectively (Zhang et al., 2018). 
We recaptured 8 juveniles, 6 females and 5 males in total, and all of 
their microbe samples were used for further analyses. Environmental 
microbiota were sampled as follows: 5 L of the water in each release 
site was collected and filtered through 0.45-um micropore 
membrane (Shi et al., 2013), which were preserved into 2 ml sterile 
centrifuge tubes with 95% alcohol. Three repetitions were conducted 

in each release site. All the above samples were preserved into liquid 
nitrogen in the field, and were then transferred to the laboratory 
immediately for further analyses. The same sampling processes were 
conducted for captive bred individuals in the hatchery directly.

DNA extraction and 16SrRNA amplicon 
sequencing

All microbiota samples were thawed on ice, and genomic 
DNA was extracted using a QIAamp Fast DNA Stool Mini Kit 
(QIAGEN, Hilden, Germany) according to the manufacturer’s 
protocol, and included a negative extraction control. The quality 
and quantity of the DNA was verified using 1.0% agarose gel 
electrophoresis and a NanoDrop spectrophotometer, separately. 
The V4-V5 region of the 16S rRNA gene was amplified from 
genomic DNA using 515F (5’-GTGCCAGCMGCCGCGGTAA-3′) 
and 907R (5’-CCGTCAATTCMTTTGAGTTT-3′) primers 
(Biddle et al., 2008). The PCR amplification conditions were as 
follows: initial denaturation 95°C for 5 min, followed by 35 cycles 
of 95°C for 30 s, 55°C for 30 s, and 72°C for 45 s, with a final 
extension step at 72°C for 10 min. High-throughput sequencing 
of barcoded amplicons was performed using the Illumina MiSeq 
platform by Mingke Biotechnology Co., Ltd. (Hangzhou, China).

Microbiota sequence analyses

We used QIIME 1.9 to process the raw reads and to obtain 
clean sequences (Caporaso et al., 2010). The search, flash, and 
trimmomatic function were used for removing low-quality 
sequences, splicing and quality control, respectively (Edgar, 2010). 
Operational taxonomic units (OTUs) were defined as the identity 
sharing >97% sequences, and representative sequences (the largest 
number of sequences in each OTU) were classified against the 
SILVA132 database (Quast et al., 2013). Finally, we obtained OTU 
abundance tables containing taxon information. To standardize 
the number of reads across samples for our main analyses, all 
samples were rarefied to 26,484 sequences (the lowest number of 
sequences of all samples in this study).

Statistical analyses

Alpha diversity (i.e., observed OTUs and Shannon index) was 
calculated for each sample in QIIME 1.9 according to the relative 
abundance-based OTU table (Caporaso et  al., 2010). All alpha 
diversity values were assessed for normality using Shapiro–Wilk 
tests (Varona et  al., 2005). Alpha diversity indices with normal 
distribution were compared using Student’s t-test, while Mann–
Whitney U test was conducted to compare indices with non-normal 
distribution. Beta diversity was calculated with Bray-Curtis, 
unweighted UniFrac, and weighted UniFrac dissimilarity metrics by 
QIIME pipeline, respectively. PERMANOVA was performed to 
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determine the difference of microbiome composition between 
groups at OTU level, and principal coordinates analysis (PCoA, 
based on dissimilarity matrices) was used to visualize the 
dissimilarity of beta diversity. Benjamini–Hochberg (BH) correction 
was used to obtain the corrected p-values. We  evaluated the 
variation of symbiotic microbial composition between captive bred 
and released individuals using the top 10 families and genera based 
on the Mann–Whitney U analysis. The linear discriminant analysis 
effect size (LEfSe) was performed to explore the differentially-
abundant bacterial taxa between groups (Segata et  al., 2011). 
Source-Tracker 0.9.5 was used to calculate the relative contribution 
of habitat and original symbiotic microbiota to the reorganization 
of released individuals microbiome (Knights et al., 2011). LEfSe 
analyses were performed on the Galaxy web-based platform.1 Other 
analyses were conducted in R (R Core Team, 2020). Specifically, the 
Shapiro–Wilk test was performed using the stats package (R Core 
Team, 2020). Student’s t-test and Mann–Whitney U test were 
conducted using ggpubr package (Whitehead et  al., 2019). 
PERMANOVA was performed using the vegan package (Dixon, 
2003). PCoA was conducted using ape package (Paradis et al., 2004). 
And figures were created using ggplot2 package (Ginestet, 2011).

Result

Sex bias in symbiotic microbiota

No significant differences of alpha (p > 0.05, 
Supplementary Table S1) and beta diversity (p > 0.05, 
PERMANOVA and BH correction) were detected in skin, oral, 
stomach, small intestine, and rectum microbiome between captive 
bred males and females. However, released males exhibited higher 
Shannon diversity (t test, p = 0.019, Figure 1B) than females in skin 
bacterial communities. Additionally, beta diversity of the skin 
bacterial communities differed between released males and females 
(PERMANOVA and BH correction: R2 = 0.18, p = 0.048 for Bray-
Curtis; R2 = 0.15, p = 0.039 for unweighted Unifrac; R2 = 0.19, 
p = 0.048 for weighted Unifrac metrics; Figure  1C). A LEfSe 
analysis revealed 19 divergent taxa of skin bacterial communities 
between sexes (5 for females and 14 for males; α = 0.05，LDA = 3.2, 
Supplementary Figure S2A). Specifically, released females had 
higher relative abundance of Bacilli (Females: 45.7%, Males: 
34.4%), Lactobacillales (females: 45.4%, males: 33.2%), 
Lactobacillaceae (females: 44.8%, males: 32.3%) and Lactobacillus 
(females: 44.8%, males: 32.3%) than released males at class, order, 
family, and genus levels, respectively (Supplementary Figure S2B).

Stage bias in symbiotic microbes

Captive bred juveniles had higher OTU richness (observed 
OTU: Mann–Whitney U test, p = 0.004) and Shannon diversity (t 

1 http://huttenhower.sph.harvard.edu/galaxy/

test, p = 0.010) in the rectum microbiome, and higher OTU 
richness (observed OTU: Mann–Whitney U test, p = 0.008) in the 
skin microbiome compared to captive bred adults 
(Supplementary Figures S3A,B). Moreover, the captive bred 
juveniles and adults differed in beta diversity of skin and rectum 
microbiome (rectum: R2 = 0.62, p = 0.002 for Bray-Curtis; R2 = 0.29, 
p = 0.002 for unweighted Unifrac; R2 = 0.58, p = 0.002 for weighted 
Unifrac metrics; PERMANOVA and BH correction; skin: R2 = 0.74, 
p = 0.002 for Bray-Curtis; R2 = 0.39, p = 0.002 for unweighted 
Unifrac; R2 = 0.79, p = 0.002 for weighted Unifrac metrics; 
PERMANOVA and BH correction; Supplementary Figure S3C). 
In contrast, released adults have higher Shannon diversity (t test, 
p = 0.002) in the small intestine microbiota compared to released 
juveniles (Figures 2A,B). In addition, released adults and juveniles 
also differed significantly in beta diversity of the small intestine 
microbiota (R2 = 0.11, p < 0.001 for Bray-Curtis; R2 = 0.04, p = 0.009 
for unweighted Unifrac; R2 = 0.10, p < 0.001 for weighted Unifrac 
metrics; PERMANOVA and BH correction). The bacterial 
communities of small intestine can be clustered into two groups 
by the PCoA plot according to the developmental stages (i.e., 
juveniles and adults; Figure 2C). Based on the LEfSe analyses, 
released juveniles had higher relative abundance of Firmicutes at 
phylum level, while Bacteroidetes, Bacteroidia, Bacteroidales, 
S24-7, and unclassified genus of S24-7 were more abundant in 
released adults at phylum, class, order, family, and genus levels, 
respectively (Supplementary Figures S4A,B).

Differences of microbial symbionts 
between captive bred and released 
individuals

No significant difference of alpha diversity and beta 
diversity was detected in skin, oral, stomach, small intestine, 
and rectum microbiome between captive bred males and 
females (p > 0.050). And marginal difference was only observed 
in skin microbiota composition between released females and 
males (p = 0.048 for Bray-Curtis and weighted Unifrac, p = 0.039 
for unweighted Unifrac metrics). Therefore, females and males 
were pooled together (i.e., released adults) to explore the 
differences in microbial symbionts between captive bred and 
released adults.

Released adults had significant higher alpha diversity 
(observed OTU: Mann–Whitney U test, p = 0.021; Shannon: t test, 
p = 0.002) in the skin microbiome and more diverse OTU richness 
(observed OTU: Mann–Whitney U test, p = 0.048) in the small 
intestine bacterial community than captive bred adults 
(Figures 3A,B). And released juveniles had significant higher oral 
bacteria OTU richness (observed OTU: Mann–Whitney U test, 
p = 0.048, Figure 3A) compared to captive bred juveniles. There 
was a significant difference in the skin, small intestine, and rectum 
bacterial composition between captive bred and released juveniles, 
as well as that between captive bred and released adults (p < 0.050, 
PEMANOVA and BH correction). These microbiota samples 
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could be divided into captive bred and released groups by PCoA 
plots (Figure 3C).

The community composition of symbiotic microbiome was 
showed in Figures  4A–C at phylum, family, and genus level, 
respectively. Seven known taxa of the top  10 families and six 
known taxa of the top  10 genera in skin microbiome showed 
significant variation between captive bred and released juveniles 
(Mann–Whitney U test, p < 0.05; Figures 5A,B). Specifically, the 
predominant family S24-7 and unclassified genus of S24-7 were 
more abundant in released juveniles, whereas the predominant 
family Flavobacteriaceae and genus Chryseobacterium were more 
abundant in captive bred juveniles. Nine known taxa of the top 10 
families and 10 known taxa of the top 10 genera were significantly 
different between captive bred and released adults (Mann–
Whitney U test, p < 0.05; Supplementary Tables S2 and S3). 
Specifically, the predominant family Lactobacillaceae and genus 
Lactobacillus were more abundant in released adults, whereas the 
predominant family Moraxellaceae and genus Acinetobacter were 
more abundant in captive bred adults.

In the small intestine microbiome, we found that four known 
taxa of the top 10 families and seven known taxa of the top 10 
genera showed significant variation between captive bred and 
released juveniles (Mann–Whitney U test, p < 0.05; 
Supplementary Tables S4 and S5). Specifically, the predominant 

family Lactobacillaceae and genus Lactobacillus were more 
abundant in released juveniles, whereas the predominant genus 
Plesiomonas were more abundant in captive bred juveniles. Six 
known taxa of the top 10 families and seven known taxa of the 
top 10 genera were significantly different between captive bred 
and released adults (Mann–Whitney U test, p < 0.05; 
Supplementary Tables S6 and S7). Specifically, the predominant 
family S24-7 and unclassified genus of S24-7, genus Bacteroides 
were more abundant in released adults.

In the rectum microbiome, we found that four known taxa of 
the top 10 families and three known taxa of the top 10 genera 
showed significant variation between captive bred and released 
juveniles (Mann–Whitney U test, p < 0.05; Supplementary Tables S8 
and S9). Specifically, the predominant family Lactobacillaceae and 
genus Lactobacillus were more abundant in captive bred juveniles. 
Only one known taxa of the top 10 families and one known taxa 
of the top 10genera were significantly different between captive 
bred and released adults (Mann–Whitney U test, p < 0.05; 
Supplementary Tables S10 and S11). Specifically, the predominant 
family Fusobacteriaceae and genus Cetobacterium were more 
abundant in captive bred adults.

In terms of the skin microbiome, LEfSe analysis indicated 
that Bacteroidia, Bacteroidales, S24-7, and unclassified genus 
of S24-7 were more abundant in released juveniles, whereas 

A

C

B

FIGURE 1

The comparison of alpha and beta diversity of symbiotic microbiota between released female and male CGSs. (A) Boxplot of observed OTU 
values; (B) Boxplot of Shannon diversity values. Data are presented as means ± SE, and significant differences are marked with an asterisk; (C) PCoA 
scatter plots present the dissimilarity of microbiomes at the OTU level based on Bray-Curtis distance.
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Flavobacteriia, Flavobacteriales, Flavobacteriaceae, and 
Chryseobacterium were more abundant in captive bred 
juveniles at class, order, family, and genus levels, respectively 
(Figures 6A,B). Released adults had higher relative abundance 
of Firmicutes, Bacilli, Lactobacillales, Lactobacillaceae, and 
Lactobacillus, while captive bred adults had higher relative 
abundance of Proteobacteria, Gammaproteobacteria, 
Pseudomonadales, Moraxellaceae, and Acinetobacter at 
phylum, class, order, family, and genus levels, respectively 
(Supplementary Figures S5A,B). In the small intestine 
microbiome, released juveniles had higher relative abundance 
of Firmicutes, Bacilli, Lactobacillales, Lactobacillaceae, and 
Lactobacillus, while captive bred juveniles had higher relative 
abundance of Proteobacteria, Gammaproteobacteria, 
Enterobacteriales, Enterobacteriaceae, and Plesiomonas at 
phylum, class, order, family, and genus levels, respectively 
(Supplementary Figures S6A,B). Bacteroidetes, Bacteroidia, 
Bacteroidales, S24-7, and unclassified genus of S24-7 were 
more abundant in released adults compared to captive bred 
adults at phylum, class, order, family, and genus levels, 
respectively (Supplementary Figures S7A,B). In the rectum 
microbiome, Clostridia, Clostridiales, Clostridiaceae_1, and 
Clostridium_sensu_stricto_1 were more abundant in released 

juveniles, whereas Bacilli, Lactobacillales, Lactobacillaceae, 
and Lactobacillus were more abundant in captive bred juveniles 
at class, order, family, and genus levels, respectively 
(Supplementary Figures S8A,B). In addition, released adults 
had higher relative abundance of Firmicutes at phylum level, 
while captive bred adults had higher relative abundance of 
Fusobacteriia, Fusobacteriales, Fusobacteriaceae, and 
Cetobacterium at class, order, family, and genus levels, 
respectively (Supplementary Figures S9A,B).

Differences of water environment microbiome were 
also observed between hatchery and the released sites 
(Supplementary Figures S10A,B). At the phylum level, 
Proteobacteria were more abundant in captive bred environment, 
whereas Firmicutes were more abundant in released 
environment (Supplementary Figure S10A). At the genus level, 
Chryseobacterium and unclassified genus of Comamonadaceae 
were more abundant in captive bred environment, while 
Lactobacillus and unclassified genus of S24-7 were more 
abundant in released environment (Supplementary Figure S10B). 
In addition, source-track analyses indicated that environmental 
microbiome were the major sources of skin microbiome 
for both released females (67.69%) and males (57.84%; 
Supplementary Figure S11).
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FIGURE 2

The comparison of alpha and beta diversity of symbiotic microbiota between released juvenile and adult CGSs. (A) Boxplot of observed OTU 
values; (B) Boxplot of Shannon diversity values. Data are presented as means ± SE, and significant differences are marked with an asterisk; (C) PCoA 
scatter plots present the dissimilarity of microbiomes at the OTU level based on Bray-Curtis distance.
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Discussion

Sex bias in symbiotic microbiota

No significant differences of alpha and beta diversity were 
observed in all the symbiotic microbiome between captive bred 
males and females. This probably because all captive bred adults 
were raised under similar external environmental conditions 
(e.g., the water supply, food, and temperature) in the hatchery. 
However, this situation has been strongly changed in the skin 
microbial community between released females and males, as 
they exhibited significant difference in alpha and beta diversity. 
A previous study demonstrated that the linear home range and 
daily movement of released male CGSs were significantly higher 
(i.e., more diverse habitat utilization) than those of released 

females (Zhao et  al., 2022). Therefore, such skin microbial 
community differences between sexes should be attributed to 
males and females different microhabitat utilization in the field, 
as amphibian skin microorganisms are susceptible to 
environmental factors (Loudon et al., 2014; Muletz Wolz et al., 
2018; Varela et al., 2018; Hernandez-Gomez et al., 2019). This 
can be  also supported by our results from the source-track 
analyses showing that environmental microbiota was the main 
sources of released individuals skin microbiome. More 
importantly, amphibian skin is an important immune organ 
(Varga et  al., 2018), the higher diversity of skin bacterial 
communities may better protect amphibians against pathogens 
(Piovia-Scott et al., 2017). Therefore, this could be one of the 
reasons that the survival rate of released male CGSs was higher 
than released females in the studied stream (Liu, 2021).

A

C

B

FIGURE 3

The comparison of alpha and beta diversity between captive bred and released CGSs symbiotic microbiota. (A) Boxplot of observed OTU values; 
(B) Boxplot of Shannon diversity values. Data are presented as means ± SE, and significant differences are marked with an asterisk; (C) PCoA scatter 
plots present the dissimilarity of microbiome at the OTU level, based on weighted Unifrac distance.

https://doi.org/10.3389/fmicb.2022.1062604
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Feng et al. 10.3389/fmicb.2022.1062604

Frontiers in Microbiology 08 frontiersin.org

Stage bias in symbiotic microbes

The skin and rectum bacterial community between captive 
bred juveniles and adults were strongly divergent. Specifically, 
captive bred juveniles had higher alpha diversity in the rectum 
microbiome, and higher OTU richness in the skin microbiome 
compared to captive bred adults. This is in contrast with a previous 
study that indicated the alpha diversity of gastrointestinal 
microbial community in captive bred adults was higher than 
captive bred juveniles (Zhang et al., 2018). This is because CGSs 
were raised under different environment in different hatcheries 
(e.g., temperature, water condition, and food resources). In the 
present study, captive bred juveniles and adults are raised under 
similar environmental conditions except food supply (red worms 
Chironomus sp. and frozen fish Hemiculter leucisculus for juveniles 

while only frozen fish for adults). Previous studies indicated that 
more diverse food resources can induce higher diversity of skin 
and gut microbiome in the same amphibian species, such as the 
red-eyed tree frog (Agalychnis callidryas) in Belize (Antwis et al., 
2014). Therefore, more diverse diet may contribute to a higher 
alpha diversity of skin and rectum microbiome in captive bred 
juveniles than adults. Furthermore, captive bred juveniles had 
higher relative abundance of Lactobacillus in the skin and rectum 
microbiome than adults. Since their living environment is similar, 
food items could be the potential important contributors to the 
colonization of Lactobacillus. Source-tracking analyses can 
be used in future studies to verify this inference.

In terms of the released group, adults and juveniles differed in 
Shannon and beta diversity of small intestine microbiome. 
Released adults should be  the top predators in the stream 
ecosystem, consuming a wide range of food items such as fish, 
craps, and shrimps (Fei et al., 2006). In contrast, released juveniles 
may concentrated in preying limited food resources as they 
occupied smaller habitat niche in the stream (Zhao et al., 2022). 
Accordingly, higher Shannon diversity of small intestine 
microbiome in released adults may contribute to digest more 
kinds of food than released juveniles. This can be also supported 
by the higher relative abundance of S24-7 in released adults, as 
S24-7 microbes were associated with diverse complex 
carbohydrate degradation and the breakdown of proteins 
(Ormerod et al., 2016; Lagkouvardos et al., 2019).

Differences in microbial symbionts 
between captive bred and released 
individuals

Overall, released juveniles and adults had higher alpha 
diversity in microbiome than captive bred juveniles and adults, 
respectively. This pattern was consistent with previous studies 
showing that wild individuals of Lissotriton vulgaris, Triturus 
cristatus, and Cynops pyrrhogaster exhibited higher alpha diversity 
of cutaneous bacteria than captive bred individuals (Sabino-Pinto 
et al., 2016; Bates et al., 2019). Because lower diversity of symbiotic 
microbiome may lead to a higher susceptibility of hosts to diseases 
(Becker and Harris, 2010), our results may explain why captive 
bred CGSs were easily infected by bacteria, fungi, and parasites 
(Zhou et al., 2012). Accordingly, increasing the alpha diversity of 
symbiotic microbiome (e.g., the application of microbial 
inoculum) may be  helpful to promote the survival of CGSs. 
Moreover, the increase of diversity of symbiotic microbiome in 
released individuals can be attributed to a shift of a simple to 
complex living environment, which promote their ability to 
defense against pathogenic bacteria (Antwis et al., 2014; Bataille 
et al., 2016). This can explain the observations that few infected 
CGSs were detected in the field (Liu et al., 2021). Accordingly, 
pre-exposure to the field water conditions of CGSs before 
reintroduction can be  an effective approach to help the 
colonization of diverse microbes, and thus enhance the survival of 
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FIGURE 4

Bar plots show the symbiotic microbiota composition between 
captive bred and released individuals at phylum (A), family (B), 
and genus (C) level.
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released individuals (Zhu et al., 2022). This is especially true for 
the juveniles, as we found that released juveniles exhibited lower 
alpha diversity of microbiome than adults. However, more 
evidences are still needed in future studies.

Microbiome composition was also significantly changed 
when comparing captive bred individuals with released 
individuals. Genus Chryseobacterium and Plesiomonas were 
more abundant in captive bred juveniles, while genus 
Acinetobacter were more abundant in captive bred adults. 
Since Chryseobacterium was the abundant genus in captive 

bred environment, our results supported the previous findings 
that hosts symbiotic microbes were associated with 
environmental microbes (Muletz Wolz et al., 2018; Moeller 
et al., 2020). However, symbiotic microbes were also affected 
by food resources (Antwis et  al., 2014; Chang et  al., 2016; 
Edwards et al., 2017). This may be the reason that abundant 
genus were different between captive bred juveniles and 
adults, which were provided different food in the hatchery. In 
contrast, the abundant genera were changed into Lactobacillus 
and unclassified genus of S24-7 in both released juveniles and 

A

B

FIGURE 5

Variations of top 10 families (A), and genera (B), of skin microbiome between captive bred and released juveniles. A Mann–Whitney U test was 
used to evaluate the variation across two groups. Significance was set at the 0.05 level.
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adults. These genera contributed a lot to the released 
environmental microbes, which play more important roles to 
determine released individuals symbiotic microbes. Future 
studies can investigate using environmental microbes to infer 
hosts health in the field.

Conclusion

Our results indicated no sex but stage bias of symbiotic 
microbiome in captive bred CGSs. However, this intraspecific 
variation patterns of symbiotic microbiome can be modified when 

A

B

FIGURE 6

Difference of the skin microbiota between captive bred and released juveniles. (A) A LEfSe analysis identifies the different abundant skin bacterial 
taxa between captive bred and released juveniles. (B) Side-by-side comparison of the mean relative abundance of different abundant skin bacterial 
taxa between captive bred and released juveniles at class, order, family, and genus levels. Data are presented as means ± SE in bar graphs.
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captive bred individuals were released to the field. Overall, 
we observed a lower alpha diversity and higher relative abundance 
of Chryseobacterium, Plesiomonas, and Acinetobacter in the 
bacterial community of captive bred individuals. Instead, higher 
alpha diversity of symbiotic microbiota and higher relative 
abundance of S24-7 and Lactobacillus was detected in released 
individuals. Whether these modifications are related to specific 
functions for the adaptation of released CGSs could be tested. 
Moreover, since the effectiveness of CGS reintroduction is limited 
in most of the freshwater ecosystems, future studies can 
incorporate other approaches (e.g., blood physiology) to better 
evaluate the growth and health of reintroduced CGSs.
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