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Influenza viruses pose a serious threat to human health, infecting hundreds of

millions of people worldwide each year, resulting in a significant increase in

global morbidity and mortality. Influenza activity has declined at the onset of

the COVID-19 pandemic, but the genetic diversity of B/Victoria lineage viruses

has increased significantly during this period. Therefore, the prevention and

treatment of the influenza B Victoria strain virus should continue to attract

research attention. In this study, we found that Atractyloside A (AA), one of

the e�ective components in Atractylodes lancea (Thunb.) DC shows potential

antiviral properties. This study shows that AA not only possesses anti-influenza

B virus infection e�ects in vivo and in vitro but also can regulate macrophage

polarization to theM2 type, which can e�ectively attenuate the damage caused

by influenza B virus infection. Therefore, Atractyloside A may be an e�ective

natural drug against B/Victoria influenza infection.

KEYWORDS

Atractyloside A, antiviral drugs, macrophage polarization, influenza virus, influenza B

virus (IBV)

Introduction

Influenza is an acute respiratory infection caused by the influenza virus (Huang

et al., 2022). There are four types of influenza viruses: A, B, C, and D (Yamayoshi and

Kawaoka, 2019); of these, A and B tend to cause seasonal epidemics (Petrova and Russell,

2018). Influenza B viruses are currently divided into two antigenically distinct lineages,

Victoria and Yamagata. Unlike influenza A virus subtypes that have periodically emerged

from animals caused pandemics and circulated as single major antigenic variants, the

Victoria and Yamagata lineages emerged as antigenic variants after the differentiation of

influenza B viruses in the early 1980s. Since 2001, influenza B began to circulate globally

(Shaw et al., 2002). Currently, the emergence of a large number of mutant influenza

B viruses has been reported worldwide, indicating significant changes in the evolution

and epidemiology of the influenza B viruses (Huang et al., 2022). Therefore, influenza B
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should be prominently monitored on the global health radar.

Influenza activity declined sharply at the onset of the COVID-

19 pandemic and gradually increased in 2021, but the intensity

of activity remained lower than before the COVID-19 pandemic

(Huang et al., 2022). Since the emergence of COVID-19, the

diversity of circulating influenza virus (sub)types has decreased

compared to previous seasons and almost exclusively involves

the B/Victoria lineage viruses, while the genetic diversity of

B/Victoria lineage viruses has increased significantly during this

period (Huang et al., 2022).

Safe and effective vaccines and antiviral drugs are available

for influenza prevention and treatment. Increasing influenza

vaccination rates can significantly reduce influenza-related

morbidity and mortality (Paules and Subbarao, 2017; Feng

et al., 2018). In 2012, the World Health Organization (WHO)

began recommending a quadrivalent influenza vaccine, which

contains two lineages of influenza B viruses; however, influenza

vaccines have so far failed to fundamentally successfully block

or eliminate the spread of influenza viruses in the human

population. On the one hand, this stems from the suboptimal

immunogenicity of the vaccine itself (Jackson et al., 2017;

Uyeki, 2017; Paules et al., 2018). On the other hand, other

factors are involved, such as the mismatch between the vaccine

and circulating strains (Belongia et al., 2016), and vaccination

timing (Ferdinands et al., 2017). Therefore, the development of

effective antiviral drugs against the influenza virus is necessary.

Currently, there are three classes of antiviral drugs used to treat

influenza: transmembrane ion channel (M2 protein) blockers,

neuraminidase inhibitors, and a cap-dependent endonuclease

inhibitor that interferes with viral RNA transcription and blocks

viral replication (Han et al., 2018). The WHO recommends the

prompt administration of oseltamivir as a first-line treatment

for those with suspected or confirmed influenza virus infection

or those at risk of severe illness. However, during the 2017–

2018 influenza epidemic, the proportion of patients aged 14

years or older treated with oseltamivir was significantly reduced

and the clinical manifestations of the disease were more severe.

Therefore, it is necessary to develop high-yield and effective

anti-seasonal influenza drugs.

Drug repurposing is a common strategy used in antiviral

drug research to achieve rapid applications during times

of public emergency (Al-Karmalawy et al., 2021). AA is an

important natural compound present in Atractylodes lancea

(Thunb.) DC (AL). Studies have shown that AA exhibits

various pharmacological effects including antihypertensive,

antiglycemic, anti-tumor, and intestinal mucosal barrier

protection (Tu et al., 2020). The effects of AA on the influenza

virus have not yet been reported. In this study, AA was tested for

its anti-influenza properties against infection with the B Victoria

strain and to examine its in vivo effects on influenza B virus-

related pneumonia. We found that AA exhibits anti-influenza

virus activity in vitro and in vivo and activates macrophages

in vivo, thereby effectively improving the potential damage

of influenza virus pneumonia on the body. As such, AA is a

potential anti-influenza B virus drug.

Materials and methods

Cells and animals

The human lung cancer cell line A549 and the canine

kidney cell line MDCK were purchased from BeNa Culture

Collection. A549 and MDCK cells were cultured in RPMI

1640 and DMEM medium containing 10% FBS, respectively.

Influenza B virus (IBV) was stored in the Changchun Veterinary

Research Institute, Chinese Academy of Agricultural Sciences.

Atractyloside A (AA) was purchased from MedChemExpress

(Cat#HY-N0237). The C57BL/6 mice used in this study were

purchased from Beijing Wei Tong Li Hua Laboratory Animal

Technology Co., Ltd.

Cell viability assay

A549 or MDCK cells were cultured in a 96-well plate (1 ×

104 cells/well) in an incubator at 37◦C and 5% CO2 for 12 h

and then treated with different concentrations of Atractyloside

A (AA); four replicate wells were used for each test group. After

treatment for 24 h and 48 h, CCK-8 was added and cells were

further cultured for 2 h; the OD450 value was detected, and cell

viability was calculated.

Half maximal inhibitory concentration
assay

MDCK cells were plated in 96-well plates and assigned to

an IBV group, IBV+ different concentrations of AA (50, 75,

100, 125, and 150µM) group, or a control group. Seventy-two

hours after infection of the MDCK cells with 0.05 MOI IBV, half

maximal inhibitory concentration assay (IC50) was obtained

by colorimetric CCK-8 assay and calculated using non-linear

regression analysis in GraphPad Prism 9 software.

Immunofluorescence analysis

A549 or MDCK cells were plated in 12-well plates

and assigned to an IBV group, an IBV+AA group, or a

control group. Each experimental group was treated with the

corresponding solution and placed in a cell incubator for

24 h. Immunofluorescence assays were then performed. After

incubation, the culture mixture was discarded and cells were

fixed with 4% paraformaldehyde for 30min, treated with 0.1%

Triton X-100, and blocked with 5% bovine serum albumin
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(BSA). After blocking, the cells were stained with primary

antibody for 2 h at room temperature and then stained with

fluorescent secondary antibody for 1 h in the dark. Finally, the

samples were stained with DAPI solution for 10min before

observation. The antibody used in this study was the Anti-

Influenza B Virus Nucleoprotein from Abcam (Cat#ab20711).

Virus yield reduction assay

After the A549 or MDCK cells were plated in 12-well plates

and incubated for 12 h, 0.1 MOI of IBV was added with different

concentrations of AA. Twenty-four hours after IBV infection

+ treatment, cellular RNA was extracted and subjected to the

quantitative real-time PCR (qPCR) utilizing a quantitative PCR

instrument (ABI7500). The plasmid pUC57-HA (2896bp) was

constructed based on the HA gene of IBV, and the plasmid

was diluted to 102-109 copies as a standard to calculate the

viral copy number after IBV infection. The primers used

in this study were 5′-ATTTTGCAAAYCTCAAAGGAACA-

3′ (Forward) and 5′-TTGTTCTRTCGTGCATTATAGG-3′

(Reverse). The IBV-Victoria probe used in this study

was 5′-VIC-TGGGYAGACCAAAATGCACRG-BHQ1-3′.

Hemagglutination assay (HA)

After the A549 or MDCK cells were plated in 12-well

plates and incubated for 12 h, 0.1 MOI of IBV was added with

different concentrations of AA. Twenty-four hours after IBV

infection + treatment, the culture supernatant was collected for

a hemagglutination assay (HA). In 12 wells of a 96-well V-shaped

microplate, 25 µl of PBS was added to each well. Twenty-five

microliters of cell culture solution were added to the first well

and then serially diluted 10 times. After serial multiple dilutions,

25 µl of 1% chicken red cell suspension was added to each well,

mixed well, and incubated for 40min at room temperature for

result determination.

Western blot

A549 cells were inoculated with 0.1 MOI of IBV, and

the IBV+AA treatment group and control group were started

simultaneously. Twenty-four hours after infection of the A549

cells with IBV, the cells were collected, and total proteins were

extracted from the cells. Each group sample was loaded at 25 µg

of total protein for detection. After SDS-PAGE was transferred

to a PVDVmembrane and blocked at room temperature for 2 h,

the corresponding primary antibody was added for incubation

at 4◦C overnight. Then, the membrane was incubated with

goat anti-rabbit or goat anti-mouse secondary antibody for

50min. The primary antibodies used in this study were the Anti-

Influenza B Virus Nucleoprotein from Abcam (Cat#ab20711)

and the Rig-I Pathway Antibody Sampler kit from Cell Signaling

Technology (Cat#8348).

Luciferase assay

A total of 293 cells were transfected together with pIFN-

β-Luc plasmids and Renilla plasmids (pRL-TK). Two hundred

ninety-three cells were infected with 0.05 MOI of IBV before

harvesting, together with the addition of AA (40µM) as

the intervention. The luciferase activity was tested using the

Dual-LumiTM Luciferase Assay kit (Beyotime, RG088M) after

IBV infection for 24 h. pIFN-β-Luc (Cat#ZT206) and pRL-

TK (Cat#BR018) plasmids were from the Hunan Fenghui

Biotechnology Co., Ltd.

In vivo challenge

Six-week-old female C57BL/6 SPF-grade mice were used

for intranasal inoculation with 50 µl of PBS containing 1 ×

104.5 TCID50 of IBV. Animals were divided into four groups

(six mice for each group): an IBV infection group, an IBV

infection + AA treatment group (10 mg/kg and 30 mg/kg),

and a control group. AA was administered orally over 14

consecutive days, starting 1 day before IBV inoculation. IBV

infection and control groups were orally treated with a placebo

solution (0.2ml saline) over 14 consecutive days. Body weight,

food intake, and mortality were then monitored; death was

defined at ≥35% weight loss. Fourteen days after the IBV

infection, the animals were euthanized, and the lung tissue

was collected and placed in tissue fixative for histopathological

analysis. The fixed lung tissue was utilized for HE staining,

immunohistochemical analysis using the nucleoprotein of the

IBV antibody, and immunofluorescence analysis using the F4/80

and the nucleoprotein of the IBV antibodies. Analysis software

(Image-Pro Plus 6.0, Media Cybernetics) was used to analyze the

average signal density of stained samples. The analysis software

analyzes each image to derive the IOD (integrated optical

density) value for each area (pixel area of tissue). The average

optical density value IOD/area (Mean Density) was also derived.

The antibodies used in this study were the Anti-Influenza

B Virus Nucleoprotein antibody from Abcam (Cat#ab20711)

and the Anti-F4/80 antibody from Cell Signaling Technology

(Cat# 70076S).

Macrophage activation and polarization

To test the ability of AA to activate macrophages, we used 6-

week-old SPF-grade C57BL/6 mice to isolate and obtain primary
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bone marrow-derived cells. For the specific experimental

methods, we refer to previous studies (Han et al., 2021). The

obtained primary macrophages were plated and incubated in

a 6-well plate for 8 h and then separated into three groups:

Atractyloside A, LPS, and the mock control. After adding the

corresponding treatment solution, each experimental group was

placed in a 37◦C cell incubator for 48 h. After incubation, the

cells were collected and stained with APC-F4/80 (BioLegend,

Cat#157306), FITC-MHCII (BioLegend, Cat#107696), FITC-

CD40, PE-CD80 (BioLegend, Cat#104708), and FITC-CD86

(BioLegend, Cat#105006) flow antibodies for flow cytometry

analysis to identify macrophage phenotypes.

To further analyze the effect of AA on macrophage

polarization in vivo, IBV-infected mice were euthanized after

7 days and mononuclear cells in the lungs were isolated

and analyzed by flow cytometry. Mononuclear cells were

obtained from lung tissue isolated from three mice for

flow-through antibody staining. Then, the isolated cells

were stained with APC-F4/80 (BioLegend, Cat#157306),

Percp-CD11c (BioLegend, Cat#117326), and FITC-CD206

(BioLegend, Cat#141704) flow antibodies for the flow

cytometry analysis.

Statistical analysis

All experiments were performed at least three times

independently. Data are presented asmean± standard deviation

(SD) and compared between groups using t-tests. Univariate

andmultivariate ANOVAswere used to calculate between-group

differences. A p < 0.05 was used to determine significance;

significance levels are presented as ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p

< 0.001, and ∗∗∗∗p < 0.0001.

Results

Atractyloside A shows antiviral e�ects
against IBV infection in vitro

MDCK and A549 cells were plated on 96-well plates with

various concentrations of AA (Figure 1A) and incubated in

a cell culture incubator at 37◦C. Cell viability assays were

conducted by a colorimetric CCK-8 assay after 24 h and 48 h.

We found that A549 cells treated with 30 uM AA had over

90% cell viability at 24 h (Figure 1B) and MDCK cells treated

with 100 uM AA had over 90% cell viability at 24 h and 48 h

(Figure 1C). Cytotoxic concentration 50 (CC50) and cytotoxic

concentration 90 (CC90) for each group were calculated using

GraphPad Prism 9 software. At 24 h, the CC90 of A549 and

MDCK cells were 829.9µM and 265.9µM, respectively. The

CC50 of A549 and MDCK cells were 184.1µM and 180.7µM,

respectively. MDCK and A549 cells were then plated on 12-well

plates, infected with 0.1 MOI of IBV, and incubated with AA

for 48 h. After incubation, crystal violet staining was performed

(Figure 1D). MDCK cells were then plated on 96-well plates,

infected with 0.05 MOI of IBV, and incubated with AA for 72 h.

After incubation, half maximal inhibitory concentration assay

was obtained by colorimetric CCK-8 assay, showing that the

IC50 for A549 and MDCK cells were 22.4µM and 81.34µM

(Figure 1E).

To further explore the ability of AA to inhibit viral infection

in vitro, we performed immunofluorescent staining, HA

assay, and viral copy number analysis after IBV infection

for 24 h in vitro. MDCK and A549 cells were infected with

0.1 MOI of IBV and treated with various concentrations of

AA. Immunofluorescence was observed by a fluorescence

microscope (Olympus BX53). We found that after IBV

infection, with increasing AA concentration, nucleoprotein

immunofluorescence decreased significantly (Figure 2A).

Immunofluorescence analysis of A549 cells infected with

IBV+AA for 24 h after treatment showed positive rates of

43.11%, 9.89%, 6.99%, and 4.68% for the IBV, IBV+AA

(20µM), IBV+AA (30µM), and IBV+AA (40µM) groups,

respectively. Immunofluorescence analysis of MDCK cells

showed positive rates of 98.03%, 10.54%, 7.28%, and 6.70% for

the IBV, IBV+AA (75µM), IBV+AA (100µM), and IBV+AA

(150µM) groups, respectively.

The results of HA detection and virus copy number

detection are shown in Figures 2B, C. With increasing

AA concentration, HA and virus copy numbers decreased

significantly. Compared with the IBV group, virus copy numbers

in A549 cells decreased by 1.23× (20µM), 10.99× (30µM), and

4.17 × 106× (40µM) with increasing AA concentrations. With

increased AA concentrations, virus copy numbers in MDCK

cells decreased by 1.88×, 885.9×, and 2.59 × 103× compared

with the IBV group. Compared with the IBV group, HA in

A549 cells decreased by 1.28×, 1.5×, and 2× with increased

AA concentrations. With increasing AA concentrations, HA in

MDCK cells decreased by 1.31×, 1.89×, and 2.12× compared

with the IBV group. Combined with the above results, AA could

attenuate IBV infection in vitro.

Atractyloside A can increase levels of
phosphorylation of IRF3 to inhibit IBV
replication

A549 cells were infected with IBV at 0.1 MOI, and

various AA concentrations were added. After incubation for

24 h, A549 cells from each group were collected for protein

extraction, and the extracted proteins were used to analyze

changes in type I interferon pathway proteins. We found

that increasing concentrations of AA reduced the expression

of the IBV nucleoprotein (Figure 3A). This indicated that
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FIGURE 1

Cell viability of Atractyloside A on MDCK and A549 cells. (A) Chemical structure of Atractyloside A. Cell viability of Atractyloside A on A549 (B)

and MDCK (C) cells. (D) Crystal violet staining of MDCK and A549 cells infected with IBV, or with Atractyloside A +IBV, or mock control. (E) Half

maximal inhibitory concentration assay (IC50).

AA could attenuate IBV infection. To analyze the underlying

mechanism, we quantified type I interferon pathway-related

proteins. We found that A549 infected IBV, and with increasing

AA concentrations, the levels of p-IRF3 were increased

(Figure 3B). At the same time, we also found that AA could

also increase the levels of p-IRF3 in the absence of IBV

infection (Supplementary Figure S1). These results showed that

AA can activate the production of type I interferon. For further

analysis, we performed immunofluorescence analysis with

images captured by confocal microscopy (Zeiss Axio observer

7). We found that AA could increase the phosphorylation

of IRF3 and its nuclear translocation to activate type I

interferon after IBV infection (Figure 3C). IFN-β-Luc showed

that the expression of IFN-β-Luc was enhanced after adding

AA (Figure 3D). We then further explored the ability of AA

to activate interferon in vivo. We found that the IBV+AA-

treated mouse group showed higher expression of IFN-β in

the serum compared to the IBV-infected group (p < 0.05) and

the control group (p < 0.001) (Figure 3E). This finding further

validated that AA can increase IRF3 phosphorylation to inhibit

IBV replication.

Atractyloside A exhibits favorable antiviral
e�ects against IBV infection in vivo

To explore the anti-IBV effects of AA in vivo, challenge

experiments were performed as shown in Figure 4A. Food

intake and body weight in the IBV and AA treatment groups

trended down and then up again, but the recovery in body

weight was significantly faster in the 30 mg/kg AA treatment

group compared to the IBV group (Figures 4B, C). Survival

was 100% in the high-dose AA group, compared with 87.5% in

the low-dose group and 62.5% in the IBV group (Figure 4D).

The above results show that AA can effectively improve

survival following influenza virus infection. To further analyze

the anti-influenza virus effects of AA in vivo, conducted

pathological analyses of the lung tissue of experimental animals.

H&E staining results showed that the AA treatment group

showed less tissue damage (Figure 4F). Immunohistochemical

analyses of IBV nucleoprotein showed that AA could effectively

reduce the replication of IBV in the lungs (Figure 4G). The

aforementioned results suggest that AA can resist IBV infection

in vivo.
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FIGURE 2

Antiviral e�ects of Atractyloside A against IBV infection in vitro. MDCK and A549 cells were infected with 0.1 MOI of IBV and treated with various

concentrations of AA for 24h. (A) Immunofluorescence analysis of the expression of IBV nucleoprotein after infection. Hemagglutination test (B)

and virus copy number detection (C) after IBV infection. The results are presented as mean ± standard deviation (*p < 0.05, **p < 0.01, ***p <

0.001, and ****p < 0.0001).

Atractyloside A can activate macrophages

To explore the effect of AA against IBV infection, lung tissue

was analyzed using immunofluorescence. We found that more

macrophages (green fluorescence, F4/80 protein) were present in

the lung tissue of the AA treatment group and this was associated

with significant inhibition of IBV replication (red fluorescence,

nucleoprotein of IBV) (Figure 5A).

To further analyze the ability of AA to activate macrophages,

we performed in vitro assays. The isolated bone marrow-

derived macrophages (BMMs) were plated on 6-well plates

in three groups: AA group, LPS group, and mock control

group. Each experimental group was treated with the respective

solution and incubated for 48 h. Cells were then collected and

stained with F4/80, MHCII, CD40, CD80, and CD86 flow

antibodies for flow analysis. Flow cytometry results are shown

in Figure 5B. BMMs in the AA-induced group showed greater

expression of MHCII compared to the control group (p <

0.001). BMMs in the AA-induced group showed increased

expression of CD40 (p < 0.0001), CD80 (p < 0.01), and

CD86 (p < 0.0001) compared to the mock control group

(Figure 5B), indicating that AA-activated macrophages. The

above results indicate that Atractyloside A can effectively

activate macrophages.

Atractyloside A can alter macrophage
polarization

To analyze the effect of AA on macrophages in vivo, IBV-

infected mice were euthanized after 7 days and mononuclear

cells in the lungs were isolated and analyzed by flow cytometry.

We found that the AA treatment group had a reduced

proportion of M1 macrophages (F4/80+CD11c+CD206-)

compared to the IBV group (p < 0.001). The proportion

of M2 macrophages (F4/80+CD11c-CD206+) was higher in

AA compared to the IBV (p < 0.01) and mock groups (p

< 0.001). We also analyzed the effect of AA on macrophage

polarization in vitro (Figure 5C), and the results were similar

to those in vivo (Figure 5D). The above results suggest that

AA can regulate macrophage polarization, thereby affecting

IBV infection.

Discussion

Influenza viruses pose a serious threat to human health,

infecting hundreds of millions of people worldwide each year

with marked impacts on global morbidity and mortality.

According to the World Health Organization, the annual
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FIGURE 3

Atractyloside A can increase levels of phosphorylation of IRF3 to inhibit IBV replication. (A) Western blot analysis of nucleoprotein expression

after IBV infection in Atractyloside A treatment groups with di�erent drug concentrations. (B) Western blot analysis of RIG-I pathway proteins

after IBV infection in Atractyloside A treatment groups with di�erent drug concentrations. (C) Laser confocal observation of p-IRF3 expression

after IBV infection in the di�erent groups. (D) IFNβ luciferase activity was analyzed after IBV infection in the di�erent groups. (E) Levels of IFN-β

in the serum. The results are presented as mean ± standard deviation (*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001).
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FIGURE 4

Antiviral e�ects of Atractyloside A against IBV infection in vivo. (A) E�cacy evaluation of Atractyloside A and infection procedure in mice.

Changes in body weight (B) and feed intake (C) after infection in mice. (D) The survival rate of mice after infection. (E) Lung tissue of mice

infected with IBV in the di�erent groups. H&E (F) and immunohistochemical (G) analysis of lung tissue after infection. The results are presented

as mean ± standard deviation (*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001).

seasonal influenza can infect 5–10% of adults and 20–30% of

children worldwide, among which 3–5 million are considered

to be severe cases (Keech and Beardsworth, 2008; Reed et al.,

2015). The related respiratory deaths seriously affect the

health of the population and cause huge damage to human

health and socioeconomic development every year (Keech and

Beardsworth, 2008; Reed et al., 2015). Although vaccination

against the influenza virus is one of the most effective preventive
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FIGURE 5

Levels of activation and polarization of macrophages. (A) Immunofluorescence analysis of lung tissue after infection. The intensity of green

(FITC) fluorescence represents the expression of F4/80 protein, while the intensity of red (APC) fluorescence represents the expression of IBV

nucleoprotein. (B) The analysis of Atractyloside A induced macrophage activation. Flow cytometry was performed to analyze the proportions of

(Continued)

Frontiers inMicrobiology 09 frontiersin.org

https://doi.org/10.3389/fmicb.2022.1067725
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Han et al. 10.3389/fmicb.2022.1067725

FIGURE 5 (Continued)

F4/80+MHC-II+, F4/80+CD80+, F4/80+CD40+, and F4/80+CD86+ expressing macrophages. (C) E�ect of Atractyloside A treatment on the

polarization levels of macrophages in vitro. Flow cytometry was performed to analyze the proportions of bone marrow-derived macrophages

(BMMs). (D) E�ect of Atractyloside A treatment on the polarization levels of macrophages in lung tissue after IBV infection in vivo. Flow

cytometry was performed to analyze the proportions of F4/80+CD11c+CD206- (M1 macrophages) and F4/80+CD11c-CD206+ (M2

macrophages) macrophages. The results are presented as mean ± standard deviation (*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001).

strategies against seasonal influenza infections, these vaccines

may not adequately protect against new strains due to the

high variability and recombination of influenza viruses (Webster

et al., 1992; Yoon et al., 2014; Wille and Holmes, 2020).

Antiviral drugs play a critical role in stopping the progression

and spread of influenza, especially in children, the elderly, and

immunocompromised individuals (Han et al., 2018). However,

the development of effective vaccines and drugs is challenged by

the emergence of new virus subtypes due to constant mutation

and genome segment rearrangements (Lyons and Lauring, 2018;

Jiang et al., 2020).

At present, the main types of drugs used in the clinical

treatment of influenza are NA inhibitors and M2 channel

ion blockers (Shen et al., 2015; Yen, 2016; Yin et al., 2021).

Among these, oseltamivir, peramivir, and zanamivir are

the most commonly utilized NA inhibitors, while the M2

channel ion blockers include drugs such as amantadine

and rimantadine (Yin et al., 2021). Recent studies on

amantadine treatment effects have shown a significant

increase in drug resistance between 2005 and 2007 (Mozhgani

et al., 2018); as such, its efficacy against influenza B is

inadequate. At present, natural anti-influenza virus drugs

remain in the exploratory stages of development. In clinical

use, traditional Chinese medicines have shown antiviral

activity against the influenza virus without signs of drug

resistance (Yin et al., 2021). Studies have provided support

for effective antiviral activity in honeysuckle, Radix isatidis,

T Terminalia chebula, puerarin, Yin qiao power, and other

herbals (Yin et al., 2021).

In this study, the anti-IBV in vitro effects of AA were first

tested on MDCK and A549 cell lines. Following infection with

IBV at 0.1 MOI, we found that the IBV nucleoprotein expression

decreased significantly with increased AA concentration

(Figures 2A, 3A), indicating that AA can effectively resist

IBV infection. To further test whether AA helps to resist IBV

infection, we detected HA and the virus copy number. Our

results paralleled those from our immunofluorescence and

WB analyses; the infectivity of IBV was decreased with an

increase in the concentration of AA (Figures 2B, C). Taken

together, the above results indicate that AA can help resist IBV

infection in vitro.

IRF3 is normally present in the cytoplasm in an

inactive state. However, in response to viral infection, it is

phosphorylated to translocate to the nucleus and activate

the transcription of IFNα and IFNβ to mount antiviral

infection defenses (Banete et al., 2021). To further analyze

the antiviral effects of AA, we analyzed type I interferon-

related pathway proteins. We found that after IBV infection

of cells, the addition of AA increased the levels of p-IRF3

protein (Figure 3B). At the same time, we also found that

AA could also increase the levels of p-IRF3 in the absence

of IBV infection (Supplementary Figure S1). Thus, we used

immunofluorescence to test whether p-IRF3 could translocate

into the nucleus to activate the type I interferon pathway.

We found greater p-IRF3 in the nucleus after AA was added

(Figure 3C). IFN-β-Luc in cells in vitro (Figure 3D) and

serum INF-β in vivo (Figure 3E) both indicated that AA

can effectively induce the production of type I interferon.

Currently, a large number of studies have shown that

type 1 interferon is an effective viral inhibitor. Our work

suggests that AA can increase the phosphorylation of IRF3

to induce the expression of IFN-β to resist IBV infection.

To further demonstrate this, it is necessary to block the

IFN receptor or IFN production to observe whether the AA

effects are eliminated. Unfortunately, we did not conduct

this experiment in the present study. Therefore, we can only

speculate that AA activates the type I interferon pathway to

inhibit the replication of IBV. We will further analyze the

relationship between AA and type I interferon antiviral in

subsequent experiments.

Our in vivo study of the anti-IBV effects of oral AA

administration showed that drug administration was associated

with improvements in body weight and food intake and

other signs of IBV infection. The IBV-infected group had

a protection rate of 62.5% after infection, and survival

was significantly improved (to 100%) with AA treatment

(Figure 4D). Our post-viral lung pathology analyses showed

that AA can effectively attenuate the lung damage caused

by the influenza virus and reduce the potential damage

of viral pneumonia (Figures 4E, F). At the same time, we

also performed an immunohistochemical analysis of IBV

nucleoprotein and found that AA can effectively inhibit IBV

in the lungs. The above results showed that AA can resist

IBV infection.

Macrophages are important immunoregulatory cells that

play a critical role in the development of inflammation and

responses to viral infection including the development of

pneumonia. Therefore, we tested AA’s effects on macrophage
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activation and polarization. We isolated primary bone

marrow-derived BMMs and performed flow cytometry

analysis to assess macrophage responses to AA administration.

We found that AA effectively induced the expression of

MHCII and the costimulatory molecules CD40, CD80, and

CD86 on BMMs (Figure 5B). Activation of macrophages

can facilitate virus recognition and immunomodulation

that then facilitates T-cell responses to the pathogen

(Banete et al., 2021). These results indicate that AA can

effectively activate macrophages to phagocytose and deal

with pathogens.

Macrophage polarization changes occur in response to

environmental stimuli; M1-type polarization of activated

macrophages is associated with Th1 cytokines, and M2-type

macrophage polarization is associated with Th2 cytokines

(Yunna et al., 2020; Banete et al., 2021). Therefore, we

analyzed the effect of AA on macrophage polarization in

lung tissue. We found that after infection with IBV, the

proportion of M1-type macrophages in the AA-treated group

was significantly reduced, while the proportion of M2-type

macrophages was increased (Figure 5C). Previous studies

have shown that M1-type macrophages can facilitate the

ability of influenza viruses to use the inflammatory response

to support their replication, while M2-type macrophages

can have anti-inflammatory and tissue repair-promoting

effects (Banete et al., 2021). Therefore, we infer that AA can

reduce the M1-type polarization of macrophages, reduce the

inflammatory response, and inhibit the replication of the

influenza virus in the lung. By increasing M2 polarization,

AA may promote anti-inflammatory and lung tissue

repair mechanisms.

In conclusion, in this study, the inhibitory effects of

AA on IBV were explored by utilizing in vivo and in

vitro models. We found that AA has anti-IBV effects. In

addition, we identified novel AA effects on macrophage

function in the context of IBV infection. This study

provides a new theoretical basis for the development of

anti-IBV drugs.
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