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The biological treatment of source-separated human urine to produce biofuel, 

nutraceutical, and high-value chemicals is getting increasing attention. 

Especially, photoautotrophic microalgae can use human urine as media to 

achieve environmentally and economically viable large-scale cultivation. This 

review presents a comprehensive overview of the up-to-date advancements 

in microalgae cultivation employing urine in photobioreactors (PBRs). The 

standard matrices describing algal growth and nutrient removal/recovery have 

been summarized to provide a platform for fair comparison among different 

studies. Specific consideration has been given to the critical operating factors 

to understand how the PBRs should be maintained to achieve high efficiencies. 

Finally, we discuss the perspectives that emphasize the impacts of co-existing 

bacteria, contamination by human metabolites, and genetic engineering on 

the practical microalgal biomass production in urine.
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Introduction

Urine contains a large amount of nitrogen, phosphorus, potassium and other nutrients. 
While contributing to only 1% of the total volume of sewage, human urine accounts for 
80% and 40%–50% of the total nitrogen and phosphate loads, respectively (Wilsenach et al., 
2007). Conventional management of urine in wastewater treatment is not only energy-
intensive (e.g., at an energy cost of 45 MJ kg-N−1 and 49 MJ kg-P−1) but also leads to the loss 
of nitrogen and phosphorus resources through waste discharge (Maurer et al., 2003; Liu 
Z. et al., 2008). As a result, a separate collection of urine has presented an exciting alternative 
to sewage management (Nazari et al., 2020). For example, no-mix technology can produce 
source-separated urine that only contains water, urea and inorganic salts (e.g., Ca2+ and 
Mg2+; Wilsenach and van Loosdrecht, 2006), which has been considered a promising but 
unexploited stock for N and P fertilizers for agriculture (Larsen et al., 2021). Therefore, 
we envision that source separation and utilization of urine can not only improve the 
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sustainability of sewage management but also add the potential to 
achieve the minimum environmental impacts over a fertilizer 
life cycle.

Conventional treatment processes, including stripping, 
physical adsorption, and chemical precipitation, have been 
deployed to manage urine and separate nutrients; however, they 
suffer from the process limitations such as high energy 
consumption, significant chemical dose, and ammonia loss 
(Zhang et  al., 2018). Alternatively, the biological treatment of 
urine, mainly to produce biofuel, nutraceutical and high-value 
chemicals is getting increasing attention (Soares et  al., 2013). 
Microalgae are photoautotrophic microorganisms that take up 
and accumulate nutrients using light as an energy source and 
carbon dioxide as an inorganic carbon source (Tuantet, 2015). The 
cultivation of microalgae requires nutrients, primarily N and P. In 
addition, the urine also comprises trace elements (e.g., B, Cu, Zn, 
Mo, Fe, Co and Mn) that are necessary for algal growth. 
Furthermore, human urine typically contains no hazardous 
chemical compounds or heavy metals (Rodushkin and Ödman, 
2001; Gòdia et al., 2002). To this end, using source-separated urine 
as media has been a practice for environmentally and economically 
viable large-scale microalgae cultivation for biofuel production.

According to the literature available, Tuantet et  al. (2013) 
pioneered the cultivation of microalgae in non-diluted human 
urine, in which fresh and synthetic urine was first demonstrated 
to support the rapid growth of Chlorella sorokiniana, highlighting 
the significance of economically large-scale microalgae production 
in human urine (Tuantet et al., 2013). Jaatinen et al. (2016) also 
successfully cultivated Chlorella vulgaris in 100-times diluted 
urine at the highest biomass density of 0.60 g L−1. Following 
attempts have been carried out employing various species such as 
Spirulina and Scenedesmus acuminatus. Moreover, microalgae 
production in human urine also achieves the removal and 
recovery of nutrients (i.e., N and P). In the study by Chang et al. 
(2013), 97% of ammonium nitrogen, 96.5% of the total 
phosphorus (TP) and 85%–98% of urea in diluted urine could 
be removed by microalgae, the practice of which has closed the 
gap between waste management and sustainable resource 
exploitation (Behera et al., 2020). With regard to the challenges in 
biomass separation from the dilute media, a membrane 
photobioreactor (MPBR) has been proposed and deployed for the 
continuous cultivation of microalgae (Nguyen et al., 2021). An 
unofficial Scopus search of the literature on “(Micro)algae” and 
“Urine” was carried out for the timeline from 2000 to 2022 
(Figure 1), with the results demonstrating a quick increase in the 
publication number in the past decade. While recent progress in 
microalgae breeding and reactor design has improved the 
economic and process efficiencies of biomass production on 
human urine (Yang et al., 2011; Chatterjee et al., 2019), there are 
still challenges in bringing this idea into fruition, including 
low-cost recovery of microalgae cells, high-efficient extraction of 
the biofuel, and scale-up of the photobioreactors.

To this end, a comprehensive understanding of the 
fundamentals, opportunities and perspectives of microalgae 

production in urine is of great significance. This Review sheds 
light on the advancements in microalgae cultivation on synthetic 
and human urine in photobioreactors. We  systematically 
summarized the matrices that describe the algal growth and 
nutrient removal/recovery. Specific consideration has been given 
to the critical operating parameters influencing the process 
performance. Finally, we discuss the perspectives that emphasize 
the future research interest in the field.

Urine, microalgae and 
photobioreactors

Compositions of synthetic and natural 
urine

Human urine is composed of eight main ionic/non-ionic 
species (i.e., Na+, K+, Ca2+, Cl−, SO4

2−, H2PO4
−/HPO4

2−, HCO3
− and 

urea; Golder et al., 2007). Most nitrogen in fresh urine originates 
from urea, which can be hydrolyzed into free ammonia (NH3), 
ammonium (NH4

+) and bicarbonate (HCO3
−) during storage. 

Both urea and ammonium are known to support the growth of 
microalgae (Tuantet, 2015). However, the free ammonia in urine 
can inhibit the growth of microalgae (Tuantet et al., 2013), and cell 
death may occur in the presence of high ammonia concentrations 
(Belkin and Boussiba, 1991). Piltz and Melkonian (2017) found 
satisfactory algal growth for all dilutions but not for undiluted 
urine. Thus, diluting synthetic or natural urine is essential to 
reduce ammonia’s toxic effect (Azov and Goldman, 1982). 
Cultivating microalgae in urine has two scenarios. The first 
scenario is a continuous culture by adding fresh urine as a daily 
nutrient stock (Tuantet et al., 2013). A process parameter, dilution 
rate (D, h−1), is introduced to express the relationship between the 
flow of the raw urine (q, L h−1) and the volume of the bioreactor 
(V, L). The other is a batch cultivation by employing diluted urine 

FIGURE 1

Survey of the publications (Elsevier Scopus) in topics related to 
“(Micro)algae” and “Urine” from 2000 to 2022 (Accessed date: 
October 29, 2022). Line serves to guide the eye.

https://doi.org/10.3389/fmicb.2022.1067782
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Tao et al. 10.3389/fmicb.2022.1067782

Frontiers in Microbiology 03 frontiersin.org

at a lower light intensity (Jaatinen et  al., 2016), in which a 
parameter of dilution (or dilution ratio) is used (Tuantet 
et al., 2019).

Synthetic urine
Nitrogen sources in synthetic urine generally include 

ammonium, nitrate (hydrolysis) and urea. Hulatt et al. (2012) 
showed that the growth of C. vulgaris in a medium containing 
urea as the nitrogen source had a slightly higher maximum rate 
and yield than that with nitrate; however, no growth was observed 
with ammonium. The proposed explanation related to the 
ammonium utilization causing a significant decrease in the 
medium pH (e.g., from 6.8 to 4.0), thus resulting in the cessation 
of microalgae growth (Hulatt et al., 2012). In contrast, according 
to the earlier experimentation conducted by Schuler et al. (1953), 
C. vulgaris may prefer ammonium over nitrate as the nitrogen 
source. Trace elements added to synthetic urine include ethylene 
diamine tetraacetic acid (EDTA) ferric sodium salt, H3BO3, 
Mn(II), Zn(II) and Cu(II) (Tuantet, 2015). Chang et al. (2013) 
indicated that both fresh and synthetic urine might sustain rapid 
algal growth if additional trace elements such as Cu, Fe, Mn and 
Zn were dosed. Examples of synthetic urine used in microalgae 
cultivation are summarized in Table 1. As shown, the synthetic 
urine is commonly diluted 10–20 times upon use in batch studies, 
reducing ammonium inhibition while providing sufficient 
nutrients for microalgae growth. In comparison, C. sorokiniana 
could grow on pure urea and the algae growth would not 
be inhibited by ammonium up to a concentration of 1,400 mg 
NH4

+-N L−1 at pH lower than 8.0 (Tuantet et al., 2013).

Human urine
At 20°C, hydrolysis of ~64% of the urea in fresh human urine 

to ammonia and carbon dioxide occurs within 4 days (Adamsson, 
2000). When hydrolyzed urine instead of fresh urine is used for 
cultivation, additional elements (e.g., Mg) may be required. In 
most cases, when urine is hydrolyzed, the N/P ratio increases due 
to the precipitation of phosphate (Chang et al., 2013; Tuantet et al., 
2013). The compositions of real human urine samples are 
presented in Table 1. Similar to the problem existing in synthetic 
urine, microalgae growth in real urine suffers from inhibition 
from salt and nitrogen compounds, especially when free ammonia 
concentration is above 140 mg L−1 and/or nitrate concentration 
above 1,000 mg L−1 (Larsen et  al., 2021). In batch studies, the 
dilution of human urine for microalgae cultivation is 5–100. 
While the proportion of viable cells in the biomass produced from 
less diluted urine was allegedly higher due to the abundant 
nutrients (Jaatinen et  al., 2016), the chemistry condition in 
concentrated urine would prompt the precipitation of some 
critical elements (e.g., Fe2+, a component required for the synthesis 
of chlorophyll), thereby decreasing the overall microalgal growth 
and nutrient accumulation in the biomass (Tuantet et al., 2013). 
For example, in batch tests, Scenedesmus could grow at 10-time 
dilution (i.e., an initial NH3-N concentration of ~200 mg L−1) but 
not at lower dilutions, however, sustainable growth was only 

observed at 20-time dilution (at ~100 mg NH3-N L−1; Chatterjee 
et al., 2019). Thus, applying an optimized pre-dilution to pure 
urine is crucial before microalgae cultivation in a photobioreactor 
(Tuantet et al., 2019). In continuous cultivation, in contrast to the 
optimum dilution rate for synthetic urine ranging between 0.10 
and 0.15 h−1, the algal growth in human urine demonstrates a 
higher efficiency at a dilution rate of 0.05 h−1 than at 0.10 h−1 
(Tuantet, 2015). While biomass productivity could be higher at a 
dilution rate between 0.1 and 0.2 h−1, the nitrogen removal 
efficiency is compromised (Tuantet et al., 2019). In addition, an 
investigation has been conducted to assess whether differences in 
gender-related components, e.g., sex hormones, can influence the 
microalgae growth (Tuantet, 2015). Results showed that the 
impact was insignificant. Contamination of human urine by 
bacteria and the unmetabolized drug is another challenge for 
microalgae cultivation. Various bacteria were detected in 
C. vulgaris cultures employing sterilized or non-sterilized media, 
indicating that bacteria may play an essential role in microalgae 
growth in urine (Lakaniemi et  al., 2012). As for trace drugs, 
pretreatment of urine with activated carbon can eliminate the 
potentially harmful effects (Piltz and Melkonian, 2017).

Microalgae species

Via uptake and conversion of nutrients, microalgae enable 
urine purification and resource recovery in biofuels, biochemicals, 
and bio-fertilizer (Tuantet, 2015). As for biomass production, 
microalgae can grow autotrophically by utilizing organic/
inorganic nitrogen and CO2/bicarbonate as carbon sources. 
Meanwhile, microalgae cells can directly use phosphate in urine 
under aerobic conditions and transform it into adenosine 
triphosphate (ATP) or other organic substances through 
assimilation and proliferation (Yang et al., 2008). Figure 2 presents 
the microalgae species successfully cultivated in synthetic and real 
human urine. Some typical species and their characteristics are 
summarized as follows:

Chlorella is a fast-growing microalgae species with reported 
maximum specific growth up to 0.25 h−1 under autotrophic and 
light saturating conditions (Cuaresma et al., 2009), the dry weight 
of which is contributed by 6%–8% nitrogen and 1%–2% 
phosphorus. Microalgae biomass of Chlorella can be directly used 
as a fertilizer and/or a potential source for chemicals and biofuels 
(Tuantet et  al., 2013). Because Chlorella is rich in protein 
(Adamsson, 2000), the cultivated biomass from urine can 
be directly fed to zooplankton and the latter can be provided to 
fish in the constructed food chain (Adamsson, 2000). The widely 
investigated Chlorella in urine media includes C. sorokiniana and 
C. vulgaris (Figures 2A,B). C. vulgaris has higher Omega-3 fatty 
acids content. These fatty acids are commonly found in green leafy 
vegetables and oily fish such as herring, sardines, and tuna 
(Revellame et al., 2021). C. vulgaris prefers ammonium to nitrate 
as a source of nitrogen, which benefits the growth in urine 
(Schuler et al., 1953). Another species of Chlorella, C. sorokiniana 
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TABLE 1 Compositions of cultivation media used for microalgae.

Cultivation devices Cultivation 
media

N source1 or 
hydrolyzed state2,a TN or NH4

+-N,b mg L−1 TP or PO4
3−-P, mg L−1 COD, mg L−1 Dilution Refs.

Algal tanks RHU Unhydrolyzed2 11,450/500 850/n.a. n.a. 50 Adamsson (2000)

24-well microtiter plates SHU Urea1 5,370/n.a. n.a./733 1,428 5, 10 Tuantet et al. (2013)

RHU Unhydrolyzed2 6,340/442 401/n.a. 7,480 5, 10

RHU Unhydrolyzed2 6,500/361 510/n.a. 6,305 5, 10

Blue cap bottle RHU n.a. 4,850 ± 1,730/n.a. 155 ± 65/n.a. n.a. 3/4, n.d., 2, 4 Zhang et al. (2014)

Erlenmeyer flasks SHU Urea1 305/n.a. 21.2/n.a. n.a. n.d. de Wilt et al. (2016)

RHU Hydrolyzed2 5,124/3,240 151.2/n.a. n.a. 6

SHU Urea1 109.8/n.a. 13.0/n.a. n.a. n.d. Yang et al. (2008)

RHU Unhydrolyzed2 4320/275 355/n.a. n.a. 25, 75, 100, 150, 300 Jaatinen et al. (2016)

RHU Unhydrolyzed2 6,800/520 670/n.a. n.a. n.d.,100

Transparent flasks Livestock Ammonium1 15.4 ± 0.3/13.4 ± 0.5 0.7 ± 0.0/n.a. 111.9 ± 16.7 n.d. Kim and Kim (2017)

Outdoor raceway RHU Hydrolyzed2 3,480 ± 130/1,800 ± 750 190 ± 52/n.a. 5,500 ± 200 n.d., 2, 3, 4, 5, 10, 15, 20, 25 Chatterjee et al. (2019)

Tubular/bubble column 

PBRc

Piggery Ammonium1 162.0 ± 8.0/n.a. 209.0 ± 5.5/n.a. 3,700 ± 51 n.d. Zhu et al. (2013)

Swine Ammonium1 510 ± 10/460 ± 15 76.1 ± 5.0/36.7 ± 7.3 5,200 ± 900 2 Chen et al. (2020)

SHU Ammonium1 n.a./6,000 600/n.a. n.a. 120 Chang et al. (2013)

RHU Hydrolyzed2 8,000 − 10,000/2,500–8,100 700–2,000/n.a. 8,000–10,000 120

RHU Hydrolyzed2 8,880/6,000 792/n.a. 9,960 120

SHU Urea1 109.8/n.a. 13.0/n.a. n.a. n.d. Yang et al. (2008)

Flat/Panel PBR Swine Ammonium1 501.27 39.12 321.4 2 Cheng et al. (2020)

SHU Ammonium1 4,326/4,005 n.a./255 n.a. 2–50 Tuantet et al. (2014)

RHU Unhydrolyzed2 7,167/844 466/n.a. 8,349 2, 3, 5, 10, 20, 50

RHU Unhydrolyzed2 4,358/393 200/n.a. 2,886

RHU Hydrolyzed2 5,310/4660 260/n.a. 5,160

SHU Ammonium1 6,990/n.a. n.a./620 n.a. 1.8–10 Tuantet (2015)

RHU Unhydrolyzed2 2,260/312 n.a./215 2,520 5, 10, 20

RHU Hydrolyzed2 3,550/733 n.a./387 4,885 5, 10, 20

RHU Hydrolyzed2 3,500/3,260 n.a./341 3,555 5, 10, 20

RHU Hydrolyzed2 2,220/2,150 n.a./295 2,795 5, 10, 20

RHU n.a. 2,626/n.a. 146/n.a. 3,270 1.8–8.5 Tuantet et al. (2019)

MPBR RHU Hydrolyzed2 5,015 ± 209/2258 ± 43 345 ± 2/n.a. n.a. 30 Nguyen et al. (2021)

Twin-layer PBR RHU n.a. 5,760/n.a. 290/n.a. n.a. n.d., 5, 10 Piltz and Melkonian (2017)

RHU n.a. 3,700/n.a. 210/n.a. n.a.

RHU n.a. 2,500/n.a. 170/n.a. n.a.

aWithout specification, ammonia/ammonium insignificantly (~10%) contributes to the total nitrogen in unhydrolyzed human urine; SHU, syntenic human urine; RHU, real human urine; ammonium indicates that ammonium was used as N source, and urea 
indicates that urea was used as N source. n.a. represents “not available”. Superscript numbers, 1: N source in synthetic urine including urea and ammonium. 2: Whether the human urine was hydrolyzed before the tests.
bConcentrations shown in the table were the values before dilution; n.d, no dilution; TN, total nitrogen; TP, total phosphorus; COD, chemical oxygen demand.
cPBR, photobioreactor; MPBR, membrane photobioreactor.
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shows great potential for commercial production as a nutrient 
substitute for humans and animals (Morais Junior et al., 2020). 
C. sorokiniana is mesophilic, the growth of which is characterized 
by a relatively high optimal temperature (30°C–40°C) and a 
maximum specific growth rate of ~0.27 h−1 (Cuaresma et  al., 
2009). Furthermore, C. sorokiniana can synthesize neutral oil as 
triacylglycerol under stress conditions (e.g., under high light 
intensity or nutrient deficiency). The study by Tuantet et al. (2014) 
demonstrated that dilution of urine by two times could achieve 
adequate incubation of C. sorokiniana CCAP211/8K, which 
contributed to >90% of total nitrogen and phosphorus removal. 
Of all the commercial microalgae, while Chlorella has the second 
largest annual production inferior to Spirulina, the price of 
Chlorella is significantly higher on the market (Yuan et al., 2022).

Spirulina is the benchmark of microalgal biotechnology and 
is currently the most (3,000 dry tons annually) commercially 
produced microalgae (Detrell et al., 2020). Spirulina (Arthrospira 
platensis; Figures  2C,D), one of the essential cyanobacteria, 
produces high concentrations of pigments (chlorophyll a and 
phycocyanin), fatty acids (i.e., γ-linolenic acid) and proteins 
(Gutierrez-Salmean et  al., 2015). A. platensis contains a more 
balanced ratio of saturated to unsaturated fatty acids including 
Omega-3 and Omega-6 (Revellame et  al., 2021). Moreover, 
S. platensis has a relatively high cell growth rate and requires an 
easy process for biomass recovery as a result of the filamentous cell 

structure. Studies have demonstrated that the cultivation of 
S. platensis is viable for waste purification or aquatic food 
production (Chang et al., 2013). For example, S. platensis was 
harvested after 7 days of incubation and percentage removal of 
97.0% and 96.5% was, respectively, achieved for NH4

+-N and total 
phosphorus in the urine at a 120-dilution (Chang et al., 2013).

Scenedesmus acuminatus is also widely used in the treatment 
of anaerobic digestion effluents and secondary domestic 
wastewater (Figures 2E,F), because of its capacity to grow at a high 
biomass concentration of 8–11 g L−1 (Posadas et  al., 2015; Tao 
et  al., 2017b). Scenedesmus is one of the high protein content 
species, which contains 50%–56% protein, 10%–17% carbohydrate 
and 12%–14% lipid (Raeisossadati et al., 2020). For example, a 
strain of Desmodesmus sp. QL96 isolated from Tibet, China 
contains 17 amino acids (including 7 essential ones; Cheng et al., 
2021). The properties of Desmodesmus highlight its commercial 
merits in biomass cultivation from urine. Scenedesmus species 
have been reported to take up high concentrations of nitrogen 
(273 mg L−1) and phosphorus (58.8 mg L−1; Kim et  al., 2015). 
Scenedesmus was grown in 0.5% diluted urine supplemented with 
EDTA and iron, and its maximum biomass density was about 
133 mg-dry weight L−1.

Architecture of photobioreactors

Microalgae are generally cultivated in open or closed systems 
(Song et al., 2018). Raceway ponds are traditional open systems to 
cultivate microalgae (Table 1). While these configurations have 
merits including low cost and simple operation, microalgal 
productivity in open systems is highly susceptible to 
environmental conditions. In comparison, closed systems 
including tubular, flat panel and bubble column photobioreactors 
(PBRs) are relatively costly and currently limited to small-scale 
microalgae cultures that generate high-value products including 
poly-unsaturated fatty acids, carotenoids and other chemicals for 
pharmaceutical and cosmetics industries (Rezvani et al., 2022). 
The operating cost for closed reactors relates to collecting culture 
fluid and microalgae cells. Recent advancements in reactor design 
have paved the way for more efficient enrichment and collection 
of microalgae (Zittelli et al., 2013; Tuantet, 2015). The architectures 
of PBRs for microalgae cultivation in urine are summarized in 
Figure 3 and Table 2.

PBRs constructed for microalgae cultivation should sustain 
fast reaction rates, stable operation performance and a high 
capacity to recover nutrients via microalgae harvesting (Yang et al., 
2008). In earlier experiments, Tuantet et  al. (2013) cultured 
Chlorella on human and artificial urine microtiter plates. Column 
PBRs have simple configurations and better flow conditions 
(Figure 3A and Table 2). However, some practical problems exist 
when urine is used as feed. In addition to the nutrient levels of raw 
urine being unsuitable for algal growth, the dark color of urine and 
the low light penetration would challenge the PBR setup. To 
overcome the limitations, on the one hand, the bioreactors are 

FIGURE 2

Microalgae species cultured in synthetic and real human urine. 
(A) Chlorella sorokiniana (CCAP 211/8K). Copyright Organisms 
(2020). (B) Chlorella vulgaris (CCAP 211-11b). Reproduced from 
Darienko et al. (2019) with permission. Copyright 2019 Taylor & 
Francis Group. (C) Spirulina platensis 834. Copyright 
Hydrobiology, F.A.C.C.O.T.I.O (2013). (D) Arthrospira platensis. 
Reproduced from Braune et al. (2021) with permission. Copyright 
2021 MDPI. (E) Scenedesmus acuminatus. Adapted from 
Unpaprom et al. (2015) with permission. Copyright 2015 Science 
Publishing Group. (F) Desmodesmus abundans. Reproduced 
from Karlson et al. (2020) with permission. Copyright 2020 
Swedish Biodiversity Data Infrastructure.
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A B C

FIGURE 3

Architectures of photobioreactors (PBRs) for microalgae cultivation. (A) Column PBRs, (B) flat/panel PBRs, and (C) membrane PBR (MPBR). Refer to 
the study by Pawar (2016).

TABLE 2 Summary of photobioreactors (PBR) and operating parameters for biomass culture in urine.

PBR types Parameters of PBR
Illumination

Aeration Light intensity T (°C) Refs
Source Switch

Column PBR n.a.b Red (620 nm) 

LED

n.a. 1% CO2 300 μmol m−2 s−1 30 Yang et al. (2008)

1.2 L (60 cm height, 7.2 cm diameter) Concentric 

fluorescent lamp

14 h:10 h CO2: 3 L min−1 444.4 W m−2a 30 Chang et al. (2013)

Flat/panel PBR Flat panel with a vertical baffle (as 

shown by the right reactor): 0.925 L, 

420 × 225 (mm)

High-pressure 

sodium lamps

n.a. CO2: 5% v/v, 1, 0.76, 

0.67 L L−1 min−1

490–

1,550 × 2 μmol m−2 s−1

35/38 Tuantet et al. (2014)

0.92 ± 0.12 L High-pressure 

sodium lamps

n.a. CO2: 8%–20% n.a. 38 Tuantet (2015)

0.90 L High-pressure 

sodium lamps

12 h:12 h CO2: 8%–20% v/v 1,530 μmol m−2 s−1 38 Tuantet et al. (2019)

Membrane PBR Two PBRs with a diameter of 100 mm 

and a height of 600 mm, 4 L each. A 

hollow fiber membrane (MF) module 

(width × height = 95 mm × 320 mm, 

working surface area of 0.05 m2).

n.a. 24 h: 24 h CO2 gas/air mixture 

at 2 L min−1 with 

2.5% (v/v) of CO2.

3,000 lux n.a. Nguyen et al. (2021)

a1 W m−2 = 4.5 μmol m−2 s−1.
bn.a. represents “not available.”

typically fed with diluted urine. Conversely, an optimized system 
requires shorter light paths for microalgae growth. In the study by 
Chatterjee et al. (2019), extremely high dilution would be necessary 
even for only 50% nitrogen recovery in a 0.5 m deep raceway pond. 
To this end, a short light-path PBR (typically in the flat-panel 
configuration, Figure 3B) has been developed to supply light to all 
cells encapsulated inside the microalgal culture and thus support 
dense cultivation. Continuous microalgae cultivation has been 
carried out in a PBR with a narrow light path (i.e., 5 mm). However, 
an inherent conflict remained between the nitrogen removal and 
photosynthetic efficiency when the PBR was used to treat urine 
containing 0.77–2.6 g-N·L−1. Because an increase in the biomass 

concentration/density would shield the illumination and create a 
“dark zone” for a considerable part of the culture, advancements to 
minimize the “dark zone” in order to enhance biomass productivity 
are of significance in a short light-path PBR (Tuantet, 2015).

From a theoretical perspective, cultivation at a high cell density 
is essential to sustain high nutrient removal efficiencies in urine 
treatment (Tuantet et  al., 2014). A PBR employing a higher 
hydraulic retention time (HRT) can prompt biomass growth and 
nutrient removal, but this may require a larger volume/footprint for 
reactor deployment. To address this issue, the membrane separation 
process has been integrated with PBR to increase the capacity and 
improve biomass recovery efficiency (Ma et al., 2017; Nguyen et al., 
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2021; i.e., membrane PBR in Figure  3C and Table  2). While 
membrane modules used in PBRs could be  similar to those in 
conventional membrane bioreactors, the operating protocols may 
differ due to the characteristics of microalgae. For instance, the 
formation of a cake layer on the membrane surface in PBRs could 
be deemed as a means to recover the suspended cells from the dilute 
culture, which may pave the way for the application of dynamic 
membrane processes in membrane PBRs for more-efficient biomass 
harvesting (Ma et al., 2013b). Developing a realistic PBR with a 
compact structure is therefore one of the most critical interests in 
microalgae production in human urine (Larsen et al., 2021).

Standard matrices to evaluate 
microalgae growth and nutrient 
removal/recovery

Cell growth and biomass production

Specific growth rate
The specific growth rate (μ, h−1) of microalgae production in 

urine can be calculated by linear regression of the natural logarithm 
of optical density (OD) as a function of culturing time according 
to the following equation (Equation 1; Chang et al., 2013):

 
µ =











−

ln
N
N

t t

2

1

2 1  
(1)

where N1 and N2 represent the OD of a predetermined 
wavelength [e.g., 750 nm (Tuantet et  al., 2013)] at t1 and t2 
respectively. For instance, the growth rates (0.20–0.38 day−1) of 
C. vulgaris cultured in urine at different dilutions (i.e., 1:25–
1:300) of urine were determined using Equation 1, which were 
compared to that obtained in Chu-10 medium (0.37 day−1; 
Jaatinen et  al., 2016). Note that either biomass (X, g L−1) or 
Chlorophyll a (Chl a) concentration (Cchl, mg L−1) can 
be  alternatively introduced into Equation 1 to estimate the 
specific growth rate (Porra et al., 1989).

Biomass productivity
The successful implementation of microalgae as a potential 

bio-energy feedstock depends on the biomass yield. For example, 
Yang et al. (2008) found that, in the batch culture of Spirulina, 
1.05 g biomass could be obtained by treating 12.5 ml synthetic 
human urine. The standard parameter describing biomass 
productivity (β, g L−1 day−1) in batch reactors is given in Equation 
2 (Gao et al., 2018; Nguyen et al., 2020a,b):

 
β =

X t
BRT  

(2)

where Xt is the biomass concentration in a photobioreactor, 
and BRT is the biomass retention time (day; Chatterjee et al., 

2019; Tuantet et al., 2019). Xt can be determined by employing 
the standard plate count method (counts ml−1), flow cytometry 
(counts ml−1), weighing of the volatile suspended solids (g L−1; 
Jaatinen et al., 2016) or calibration conversion of the OD values 
[i.e., Xt = 0.3421 × OD750 for C. sorokiniana (Zittelli et al., 2013; 
Tuantet, 2015)]. We summarized the Xt and β values describing 
algal production in different literature in Table 3, and the results 
indicated that a higher β (9.3–14.8 g L−1 day−1) was observed at 
low dilution (i.e., no dilution or dilution ratio = 2). Moreover, 
when a PBR is operated in continuous mode and at a steady state 
(i.e., when there is no accumulation of biomass in the reactor), 
the volumetric biomass productivity (βvol) is determined based on 
the biomass dry weight concentration (Xt, g L−1) and the reactor 
dilution rate (D, h−1; Tuantet et al., 2019; Equation 3), which can 
be converted to the area productivity (Parea) by integrating the 
reactor dimensions (Equation 4):

 βvol t= X D  (3)

 
Parea vol

SVR
=
1000β

 
(4)

where SVR is the surface area to volume ratio (m−1). When the 
microalgae community in urine is at the logarithmic phase, the 
net specific microalgae growth rate, dX/dt, is given in Equation 5:

 

d

d
t

X
t

D X= −( )µ
 

(5)

Photosynthetic and harvesting efficiencies
Since the additional light source is widely implemented for 

microalgae production in urine, the observed biomass yield can 
be normalized to the lighting energy to assess the photosynthetic 
efficiency (Yph, g molph

−1; Equation 6):
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X q
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24
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(6)

where q is the liquid flow (L day−1), Iphin24 is the daily integral 
light intensity (molph m−2 day−1), Ar is the reactor surface area (m2) 
and Iphin is the average light intensity (μmolph m−2·s−1). In the study 
by Tuantet et  al. (2019), the maximum Yph of C. sorokiniana 
CCAP211/8 K reached 0.97 g molph

−1 at a dilution rate of synthetic 
urine between 0.10 and 0.15 h−1, which is comparable to other 
studies using C. sorokiniana (Cuaresma et al., 2009; Holdmann 
et  al., 2018). Following cultivation, settlement or separation 
processes (Tuantet et al., 2014) are applied to separate or recover 
microalgae cells from the dilute medium. The harvesting efficiency 
(η, %) is calculated by using Equation 7:

 
η = ×

X V
X V
R R

t

100

 
(7)
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where XR is the biomass concentration in the recovered 
volume (VR). V is the liquid volume of the photobioreactor.

Nutrients removal and recovery

Nutrient removal
Microalgae can absorb N and P nutrients into their cells at 

concentrations as low as 2.2 and 0.15 mg L−1, respectively (Boelee 
et al., 2011). When urine is used as a nutrient medium to cultivate 
microalgae, three routines of assimilation, ammonia volatilization, 
and denitrification, contribute to nitrogen removal (Gao et al., 
2016). The percentage removal (pN, %) and removal rate (rN, 
mg L−1  day−1) of nitrogen are, respectively, determined by 
Equations 8, 9:

 
p

C C
CN

N N t

N

=
−

×, ,

,

0

0

100

 
(8)

 
r

C C
tN

N N t=
−

×, ,0
100

 
(9)

where CN,0 and CN,t are the nitrogen concentrations (mg L−1) 
at t = 0 and time t (day). In comparison, phosphorus removal/
recovery during microalgae cultivation on urine relates to both 
assimilation by microalgal cells and precipitation induced by pH 
changes (Singh et al., 2015; Wang et al., 2017). The calculations of 
percentage removal and removal rate of phosphorus also refer to 
Equations 8, 9.

In a semi-continuous culture of C. sorokiniana, 84% removal 
of total nitrogen and nearly 100% removal of total phosphorus can 
be achieved via microalgae growth in fresh human urine (Zhang 
et al., 2014). Tuantet et al. (2014) demonstrated that the removal 
of nitrogen by microalgae cultivation (75%–85% or 1,000–
1,300 mg L−1) was comparable with conventional treatment 
technologies including nitrification and anaerobic ammonia 
oxidation (Udert et al., 2003). Likewise, when S. platensis was 
applied to swine wastewater, it was reported that ammonia 
removal ranged from 84% to 96% (Chang et al., 2013). Figure 4 
summarizes the nitrogen and phosphorus removal by microalgae 
cultivation from urine in different literature (Adamsson, 2000; 
Yang et al., 2008; Chang et al., 2013; Tuantet et al., 2013, 2014, 
2019; Zhu et al., 2013; Zhang et al., 2014; de Wilt et al., 2016; 
Jaatinen et al., 2016; Piltz and Melkonian, 2017; Chatterjee et al., 
2019; Chen et al., 2020; Nguyen et al., 2021). Generally, a higher 
illumination/light intensity and a longer cultivation time (or BRT) 
would result in higher N and P removal. In comparison, the 
impacts of dilution (red circles: dilution >20, blue circles: dilution 
<10) and photobioreactor configurations were less significant.

Nutrient recovery
Microalgae can use nitrate and nitrite to synthesize amino 

acids, proteins and other substances (Vílchez and Vega, 1995). 

Tuantet et al. (2014) showed that 85% of phosphorus and 90% of 
nitrogen could be recovered from urine by incorporation into 
biomass. Typically, the protein and lipid contents can be measured 
according to standard methods (Bahcegul et  al., 2011; Chang 
et al., 2013) to estimate the conversion of nutrients in urine to 
biomass. For example, following cultivation in synthetic urine, the 
protein and lipid contents (% dry weight) obtained from 
S. platensis were 36.2% and 17.2%, respectively, (Chang et  al., 
2013), which were comparable with those (35.4% and 19.8%) 
obtained in real human urine. This was consistent with the 
conclusion drawn by Danesi et  al. that the lipid content of 
Spirulina was not affected by the nitrogen source (Danesi et al., 
2002). Data in Table 3 shows that the protein content (%) of the 
microalgae cultivated in urine generally ranges from ~35% to 
~60% of the biomass with the lipid content varying in response to 
the medium composition and dilution.

Critical operating factors that 
influence the cultivation efficiency

According to the literature review, operating parameters 
including the light intensity, temperature, retention time, dose of 
trace elements and carbon source, and solution pH significantly 
impact the microalgae growth and conversion of nutrients to 
biomass. It is vital to investigate and determine the optimal 
operating conditions to prompt microalgae growth and resource 
recovery (Kinnunen and Rintala, 2016).

Light intensity and temperature

Light intensities and switch modes used for microalgae 
production in urine are summarized in Table 2. Essentially, light 
intensity influences the microalgae photosynthesis and 
consequently their growth rate via modulation of ATP and 
NADPH production and essential molecules synthesis. The study 
by Tuantet et al. (2013) indicated that illumination was one of the 
most important factors influencing algal growth and nutrients 
removal, which is also confirmed by the analysis in Figure 4. A 
biomass density of 6.6 g L−1 was obtained in 2-times diluted urine 
at a light intensity of 1,540 μmol m−2  s−1 compared to that of 
3.8 g L−1 in 10-times diluted urine at 1050 μmol m−2 s−1 (Tuantet 
et  al., 2014). Note that different illumination units (e.g., 
μmol m−2  s−1, W m−1 and lux) have been used in the literature 
(Yang et al., 2008; Chang et al., 2013; Tuantet et al., 2014, 2019; 
Tuantet, 2015), and the photosynthetic photon flux density 
(μmol m−2 s−1) could be converted to lux by multiplying a factor of 
54–82 (for sunlight and high-pressure sodium lamps) according 
to the manufacturer (for example, Apogee Instruments, Inc., UT, 
United States). Overall, it was suggested that increasing the light 
intensity up to 1,500 μmol m−2  s−1 could prompt microalgae 
growth and improve the nutrient removal efficiency (Tuantet 
et al., 2014).
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Temperature change also influences the solubilization and 
volatilization of ammonia, thus leading to pH excursion. As 
shown in Table  2, a temperature between 30°C and 40°C is 
typically applied to the incubation because, for example, the 
optimal temperature for the growth of S. platensis is between 
29°C and 32°C (Yang et  al., 2008). Nevertheless, some 
microalgae can tolerate low temperatures; for example, 
S. acuminatus could grow in human urine even at 5°C with the 

recovery of N and P achieving 52% and 38%, respectively, 
(Chatterjee et al., 2019).

Retention time

As for photobioreactor design and operation, biomass and 
hydraulic retention time (BRT and HRT) are two key parameters 

TABLE 3 The performance of microalgae production in urine.

Microalgae Cultivation 
media Dilution Biomass 

Xt, g L−1
Productivity β, 

g L−1 day−1 Lipids, g L−1 Protein/Fatty 
acid content, % Supplements Refs.

C. vulgaris RHU n.d./100a 0.73/0.59VSS 0.08/0.06VSS n.a. n.a. Trace elements Jaatinen et al. 

(2016)25–300 0.48 − 0.60VSS 0.05–0.07VSS n.a. n.a. –

C. sorokiniana RHU 6 1.8 n.a. n.a. n.a. – de Wilt et al. (2016)

2.7 n.a. n.a. n.a. With 

micropollutantsSHU n.d. 5.5 n.a. n.a. n.a.

D. abundans RHU n.d. n.a. 14.5 n.a. n.a. – Piltz and Melkonian 

(2017)

C. soroliniana RHU 2 n.a. 14.8 0.9–3.6 38–48/(16 − 25w/w) Mg and P Tuantet et al. (2014)

SHU 2 7.5 n.a. n.a. n.a. P

S. acuminatus RHU 20 and 15 0.34 n.a. n.a. n.a. – Chatterjee et al. 

(2019)

C. vulgaris RHU 30 2.14 0.313 n.a. n.a. – Nguyen et al. (2021)

S. platensis RHU 120 0.81 n.a. 19.8 35.4 – Chang et al. (2013)

SHU 0.75/1.17/1.75 n.a. 17.2/17.5/17.9 36.2/56.4/60.2 −/100/200 mg L−1 

CH3COONa

S. platensis RHU/SHU 180 2.32/2.40 n.a. 20.43/17.58% 32.4/34.78 – Feng and Wu (2006)

C. soroliniana RHU 2 n.a. 9.3 16%–25% w/w 43%–53% w/w Mg2+ Tuantet et al. (2013)

S. platensis SHU/RHU n.d. 1.05/2.9–3.4 n.a. n.a. n.a. – Yang et al. (2008)

C. sorokiniana Swineb 2 5.54 n.a. n.a. 0.27 g L−1 day−1 – Chen et al. (2020)

2 8.08 n.a. n.a. 0.272 g L−1 day−1 –

an.a. represents “not available”; n.d., no dilution. 
bSwine wastewater was listed for comparison.

A B

FIGURE 4

Comparison of (A) nitrogen and (B) phosphorus removal by algal cultivation at different illumination/light intensities and cultivation time. The size 
of bubbles represents the percentage removal. Red circles: dilution >20, and blue circles: dilution <10. Data were achieved from the literature 
(Adamsson, 2000; Yang et al., 2008; Chang et al., 2013; Tuantet et al., 2013, 2014, 2019; Zhu et al., 2013; Zhang et al., 2014; de Wilt et al., 2016; 
Jaatinen et al., 2016; Piltz and Melkonian, 2017; Chatterjee et al., 2019; Chen et al., 2020; Nguyen et al., 2021).
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(Nguyen et al., 2021). Results in Figure 4 indicate that BRT may 
have a positive relationship with nutrients removal from urine. In 
a PBR, BRT relates to biomass accumulation and thus determines 
the nutrient removal rates (Akerstrom et al., 2014). A short BRT 
(2–5 days) may not be sufficient to sustain the rapid growth of 
microalgae, which consequently limits the biomass production 
rate even when a high nitrogen uptake rate is obtained (Luo et al., 
2017; Praveen et al., 2019). Likewise, the highest TP removal of 
52.1% was achieved at a BRT of 7 days during incubation (Nguyen 
et al., 2021). It should be noted that a longer BRT may result in the 
deterioration of the settling/harvesting properties of the biomass 
(Wang et al., 2013; Ma et al., 2018a). In addition, a longer HRT 
resulting from an extended BRT would decrease the productivity 
of a PBR to treat human urine. Conversely, a short HRT leads to 
higher nutrient loads but compromises the removal of N and P. To 
address the limitations, membrane separation processes have been 
integrated with PBRs (MPBR) to achieve flexible control of BRT 
and HRT. High nutrient loads such as 90–110 mg-N L−1 day−1 and 
5–6 mg-P L−1  day−1 have been used in MPBRs (Nguyen et  al., 
2021). In summary, the BRT and HRT should be set given the 
treatment efficiency and capital cost for bioreactor deployment. 
According to the study by Nguyen et  al. (2021), a short BRT 
(7 days) and an extended HRT (>2 days) are thus suggested to 
capture nutrients from urine while minimizing the environmental 
impacts effectively.

Trace elements

Tuantet (2015) found that the algal growth was inhibited due 
to the exhaustion of trace elements within 24 h, highlighting the 
importance of trace elements in biomass production in diluted 
urine. As for the effect of dilution on microalgae growth, Jaatinen 
et al. (2016) reported that the highest biomass densities of 0.73 
and 0.60 g L−1 were obtained at 1:100 dilution of urine with and 
without the addition of trace elements. Moreover, C. sorokiniana 
showed the fastest growth rate in urine diluted 20 times with trace 
elements added (Tuantet et al., 2013).

Magnesium (Mg2+), iron (mainly in the form of FeII) and 
certain trace elements are present in urine at low concentrations 
(Tuantet et al., 2013). When urine is collected and stored, the 
formation of precipitates due to an increase in pH reduces the 
availability of these elements. Udert et al. (2003) demonstrated 
that the precipitation capacity of guano stone and octa calcium 
phosphate in urine reached 87% when the hydrolysis rate was 
11%. As a result, the magnesium content in hydrolyzed urine 
(0.15–0.17 mg L−1) could be significantly lower than in fresh urine 
(25.4 ± 17.0 mg L−1; Zhang et al., 2014). Mg2+ plays a vital role in 
algal metabolism because it is essential for chlorophyll production 
(Sydney et  al., 2010). The magnesium content in Chlorella sp. 
ranged from 0.36% to 0.80% of dry weight, and only 40 mg L−1 dry 
biomass could be  sustained at a 0.36% magnesium content 
(Borowitzka and Borowitzka, 1988). Therefore, magnesium 
supplementation is essential to promote microalgal growth in 

hydrolyzed urine (Table 3; Tuantet et al., 2019). No significant 
difference was found between the specific growth rates of 
microalgae fed with hydrolyzed urine with additional Mg2+ 
(μ = 0.095–0.111 h−1) as compared to synthetic and fresh urine 
(Tuantet et  al., 2013). Moreover, iron is also one of the most 
crucial trace metals involved in the enzymatic reactions of 
photosynthesis in photosystem I (PSI) and PSII (Cao et al., 2014). 
An increase in the iron concentration in the medium 
(1.2 × 10−2 mM) would elevate the biomass as well as lipid content 
of C. vulgaris (Liu Z.-Y. et al., 2008). Note that significant elements 
such as Cl also indispensably contribute to the photosynthesis of 
chlorophyll and affect the uptake of trace elements (Yang 
et al., 2008).

Inorganic/organic carbon source

Typically, microalgae production in human urine uses the 
internal inorganic carbon source of bicarbonate (HCO3

−) and/or 
exogenous sparged CO2. Additional CO2 can prompt the growth 
of microalgae. As shown in Table 2, the gas concentration (v/v) of 
extra CO2 ranges from 1% to 20% because an overhigh CO2 dose 
may cause acidification of the media. Nevertheless, field studies 
have shown that microalgae cultivation by using flue gasses can 
withstand a high CO2 concentration of 40% (Pires et al., 2012).

Besides, microalgae can grow under mixotrophic conditions. 
Under autotrophic conditions, S.platensis fed with an inorganic 
carbon source (with ammonium or urea as the nitrogen source) 
demonstrated a yellowish-green appearance with relatively low 
protein content. At the same time, the biomass became green and 
difficult to settle down after adding an organic carbon source 
(Chang et  al., 2013). Adding an organic carbon source could 
alleviate the inhibition effect of ammonium. For example, by 
adding 100 and 200 mg L−1 sodium acetate (or glucose) to the 
synthetic urine (Table  3), the productivity of S.platensis was 
improved with the nitrogen and phosphorus removal increasing 
from 97% and 96.5% to ~100% and 98%, respectively (Chang 
et  al., 2013). As for treating urea in human urine, adding an 
organic carbon source could also facilitate the removal of 
ammonia via biomass production. As such, introducing waste 
organic carbon sources (e.g., effluents from food plants) to 
microalgae cultivation in human urine can provide a valuable 
solution to increase nutrient recovery efficiency.

pH

Medium pH directly influences microalgae growth and 
determines the speciation of nutrients that may support or inhibit 
biomass production. As aforementioned, hydrolysis of urea in 
human urine produces HCO3

− and ammonia while raising the 
solution pH (Adamsson, 2000; Zhang et al., 2013). Conversion 
between ammonia and ammonium is primarily determined by the 
solution pH (pKa = 9.25; Zhang et al., 2018; He et al., 2022; Zhang 
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et al., 2022), and higher pH could facilitate the transformation of 
NH4

+ to NH3 (Figure 5). NH3 is far more toxic than NH4
+ because 

the transport of NH4
+ involves the participation of transporters 

(Figure  5C; Källqvist and Svenson, 2003; Wang et  al., 2019). 
Ammonia or free ammonia can reduce photosynthetic activity 
and directly shows toxicity to microalgae (Zhang et al., 2014). The 
photosynthetic rate of Scenedesmus was allegedly decreased by 
50% of its maximum rate in the presence of free ammonia of 
20 mg L−1 under basic conditions (Azov and Goldman, 1982), 
though different microalgae species have different tolerance to the 
pH-dependent toxicity of NH3/NH4

+ (Tao et  al., 2017a). As 
mentioned above, a high pH level can lead to the precipitation of 
unchelated trace metals, thus inhibiting algal growth (Adamsson, 
2000). To stabilize the solution pH and neutralize the alkalinity 
especially when human urine is directly used as the feed, sparging 
of CO2 (or diluted CO2) has been carried out. In addition to 
serving as an inorganic carbon source, the excessive CO2 can 
buffer the pH (pKa (H2CO3/HCO3

−) = 6.30; Ma et  al., 2018b; 
Figure 5B) and prevent the inhibition of free ammonia on algal 
growth (Tuantet et al., 2014).

With the absorption of ammonium in algal growth, the pH 
would decrease because of the production and accumulation of 
H+, which slows down the growth rate (Azov and Goldman, 1982). 
In a photobioreactor, when the medium pH drops from pH 6.8 to 
<4 during cultivation, the microalgae would be  subject to the 
cessation of growth or even death (Hulatt et al., 2012; Jaatinen 
et al., 2016). C. sorokininana has shown a high specific growth rate 
within the pH range from 4 to 7 (Tuantet et al., 2014). In addition, 

consideration should be given to the source of human urine. For 
example, it has been reported that gender may influence the pH 
because the female urine demonstrated a more narrow pH 
window (7.1–7.9) as compared to that (5.7 and 8.0) of the male 
urine (Tuantet, 2015).

Perspectives and outlook

In this section, we  discuss the challenges that should 
be  addressed toward a broader application of microalgae 
production in urine. Important questions may include (i) the 
impacts of co-existing bacteria, and (ii) contamination by human 
metabolites. According to the literature, consideration should also 
be given to the genetic engineering that has been playing a more 
crucial role in increasing biomass/biofuel production.

Co-existing bacteria

When non-sterilized human urine is used as the feed, bacterial 
contamination of the cultivations very likely occurs, which leads to 
competition for the nutrients and lower conversion to algal biomass. 
While this problem in the early growth stage may be  solved by 
sterilization of the inoculation medium, it was reported that a large 
variety of bacteria were detected from C. vulgaris cultures grown on 
both sterilized and non-sterilized media at an extended cultivation 
period (Jaatinen et al., 2016). Maintaining the culture composition 

A
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C

FIGURE 5

Ratios of (A) NH4
+/NH3 and (B) H2CO3(aq)/HCO3

−/CO3
2− concentrations at different pH. (C) Competition between assimilation and PSII damage by 

ammonium nitrogen in the chloroplast. Blue: N source by GS-GOGAT, and Red: hazardous material to photosynthesis, damaging the OEC and 
then blocking electron transport from QA

− to QB
−. Reproduced from (Wang et al., 2019) with permission. Copyright 2022 Frontiers.
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in the photoautotrophic mode (i.e., in the absence of organic carbon) 
may inhibit the competition from bacterial growth. Microalgal cells 
can regain dominance in the diverse community in 2 days when the 
organic carbon supply ceases (Zhang et al., 2014). Nevertheless, the 
autotrophic nitrifiers can adapt to fill a similar ecological niche 
compared to the microalgae though the biomass yield of ammonia-
oxidizing bacteria is low (Ma et al., 2013a, 2015). In the symbiosis, a 
consortium of microalgae and nitrifying bacteria can decrease the 
need of expensive external aeration (Sun et al., 2020; Li et al., 2022). 
The photosynthetic oxygenation rate can drive the nitrification in 
urine with a volumetric nitrification rate of 67 mg N L−1 day−1, and a 
maximum biomass-specific photooxygenation rate of 160 mg O2 
gVSS−1 day−1 (Muys et al., 2018).

In addition, the microalgae growth also leads to the secretion of 
extracellular organic matter that can be  used by heterotrophic 
bacteria (Zhang et  al., 2014). In turn, microalgae can convert 
nutrients into cellular components through photosynthesis and 
respiration. Currently, some single-cell microalgae such as 
Chlamydomonas, Chlorella and Phormidium are proven candidate 
for the formation of symbiosis suitable for waste treatment and 
facilitates the removal of N and P (Nguyen et al., 2020a). Inoculation 
of Arthrospira platensis with nitrated urine has been found to 
exhibit better growth and produce 62% more protein than untreated 
urine (Coppens et al., 2016). As for biofuel production, the biomass 
consisting of bacteria and microalgae may provide higher biogas 
production than pure microalgae (Jaatinen et  al., 2016). For 
instance, 17%–24% higher methane yields (376–403 ml-CH4·g-VS−1) 
were obtained from a mixture of microalgae (C. vulgaris) and 
bacteria (1%–10%) than the control that only contained microalgae 
(Lu et al., 2013). As such, the following studies to explore (i) the 
algal and bacterial inter-group competition and collaboration and 
(ii) the impacts of co-existing bacteria on biofuel conversion are 
required to advance the process performance.

Contamination by human metabolites

Source-separated urine contains about 60 ± 30% of drugs and 
lifestyle biomarkers consumed by humans (Monetti et al., 2022). 
Following intake, ~50% of pharmaceuticals do not change the 
chemical form, and are discharged with the intermediates as 
human metabolites (Lienert et al., 2007). Some human metabolites 
(e.g., conjugates of the antibiotic sulfamethoxazole, the anti-
convulsant carbamazepine and the analgesic ibuprofen; Quinn 
et al., 2009; Ren et al., 2022a,b; Yang et al., 2022) have detrimental 
effects on the environment and may pose direct toxicity to 
microalgae. For instance, the anticonvulsant carbamazepine and 
the antidepressant fluoxetine form more toxic metabolites than 
their parent compounds (Verstraete et al., 1997; Jelic et al., 2015; 
Monetti et al., 2022). In contrast to the abundant studies of the 
contents of N, P and organic matter (Table  1) that influence 
microalgae growth and biomass production, there is little 
investigation of the micropollutants in urine involving the 
metabolism of microalgae. de Wilt et  al. (2016) evaluated the 

efficiency of microalgae C. sorokiniana to remove six spiked 
pharmaceuticals (147 ± 9 μg L−1 diclofenac, 317 ± 33 μg L−1 
ibuprofen, 337 ± 23 μg L−1 paracetamol, 181 ± 62 μg L−1 metoprolol, 
117 ± 17 μg L−1 carbamazepine and 202 ± 30 μg L−1 trimethoprim). 
Results showed that 60%–100% of diclofenac, ibuprofen, 
paracetamol and metoprolol could be  readily removed by 
photolysis and biodegradation while carbamazepine was 
refractory (removal <30%; de Wilt et al., 2016). While the presence 
of micropollutants at 100–300 μg L−1 did not inhibit microalgae 
(C. sorokiniana) growth, the deployment of pre-treatment 
technologies may be required at higher concentrations to prevent 
the pitfalls. Specific micropollutants can be removed by activated 
carbon, an effective absorbent for various organic and inorganic 
molecules because of the large surface area, porous structure and 
surface-bound groups (Yin et  al., 2007). Activated carbon 
adsorption has been applied to eliminate antibiotics, beta-
blockers, and nonsteroidal anti-inflammatory drugs from urine 
(Udert et  al., 2016). Future work is essential to (i) assess the 
microalgae response to micropollutants at elevated concentrations, 
and (ii) develop cost-effective, reliable and environmentally 
benign processes to polish human urine under realistic conditions.

Genetic engineering

Essentially, the accumulation of neutral lipids by 
Acutodesmus, Phaeodactylum, Dunaliella and Nannochloropsis 
requires nutrient limitation or starvation, which can inhibit 
microalgal growth (Sun et al., 2018). While the acquisition of 
favorable and stable traits can be conducted via crossbreeding 
for crops (Armbrust, 1999; Chepurnov et al., 2008), this is not 
applicable to most microalgae that have some deficiency 
(Dismukes et al., 2008). To address the limitation, microalgae 
genetic engineering is considered as an optimal approach to 
solve this bottleneck. Direct or indirect genetic modification has 
been proposed as a means to improve the growth and lipid 
productivity of promising microalgal strains.

Genetic engineering can facilitate lipid accumulation without 
affecting the algal growth (Munoz et al., 2021), by modifying the 
single metabolic pathways including fatty acid synthesis 
metabolism, Kennedy pathway, polyunsaturated fatty acid and 
triacylglycerol metabolisms and fatty acid catabolism. For 
example, the synthesis of fatty acids requires a continuous supply 
of acetyl-CoA. Compared with wild type strains, the total lipid 
contents of N. oceanica and Schizochytrium sp. were increased by 
36% and 11%, respectively, by employing the overexpress of the 
malonyl-CoA acyl carrier protein transacylase (Chen et al., 2017). 
In addition, commercial production of large-scale bulk of 
microalgae is still not feasible (Remmers et al., 2018). Genetic 
engineering may pave the way for increasing the photosynthetic 
rate to modulate the carbon flux toward lipids while maintaining 
high biomass production (Ajjawi et al., 2017). This strategy to 
prompt the yield of microalgae lipids may eventually make 
microalgal derivatives an effective means of commercial biofuels.
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Conclusion

In conclusion, we present a comprehensive overview of the 
synthetic/human urine, microalgae species and photobioreactors 
that have been recently used in the algal production in urine. The 
standard matrices, including specific growth rate, biomass 
productivity, photosynthetic and harvesting efficiencies, and 
nutrients removal and recovery, have provided a platform for 
comparison among different studies. A summary of the critical 
operating factors is expected to facilitate our understanding of 
how the photobioreactors should be maintained to achieve high 
efficiencies. It is also recognized that the impacts of co-existing 
bacteria, contamination by human metabolites, and genetic 
engineering require continuing investigation toward a broader 
application of microalgae biomass production in urine.
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Glossary

ATP Adenosine triphosphate

BRT Biomass retention time

GOGAT Glutamate synthase

GS Glutamine synthase

HRT Hydraulic retention time

MF Microfiltration

MPBR Membrane photobioreactor

OD Optical density

OEC Oxygen-evolving complex

PBR Photobioreactor

PSI Photosystem I

PSII Photosystem II

PSBR Porous substrate photobioreactors

SVR Surface area to volume ratio

TN Total nitrogen

TP Total phosphorus

Symbol Entity Unit

Parea Area productivity g m−2 day−1

Iphin Average light intensity μmolph m−2·s−1

X Biomass concentration g L−1

XR Biomass concentration in the recovered volume g L−1

BRT Biomass retention time day

β Biomass productivity g L−1 day−1

Chl a Chlorophyll a concentration mg L−1

Iphin24 Daily integral light intensity molph·m−2·day−1

D Dilution rate h−1

η Harvesting efficiency %

HRT Hydraulic retention time day

q Liquid flow L day−1

CN Nitrogen concentrations mg L−1

N OD of a predetermined wavelength abs

pN Percentage removal of nitrogen %

Yph Photosynthetic efficiency g molph
−1

Ar Reactor surface area m2

rN Removal rate of nitrogen mg L−1 day−1

μ Specific growth rate h−1

SVR Surface to volume ratio m−1

t Time day (or h)

VR Volume of the recovered solution L
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