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The research on microbe association networks is greatly significant for 

understanding the pathogenic mechanism of microbes and promoting the 

application of microbes in precision medicine. In this paper, we studied the 

prediction of microbe-disease associations based on multi-data biological 

network and graph neural network algorithm. The HMDAD database provided 

a dataset that included 39 diseases, 292 microbes, and 450 known microbe-

disease associations. We proposed a Microbe-Disease Heterogeneous Network 

according to the microbe similarity network, disease similarity network, and 

known microbe-disease associations. Furthermore, we integrated the network 

into the graph convolutional neural network algorithm and developed the 

GCNN4Micro-Dis model to predict microbe-disease associations. Finally, 

the performance of the GCNN4Micro-Dis model was evaluated via 5-fold 

cross-validation. We randomly divided all known microbe-disease association 

data into five groups. The results showed that the average AUC value and 

standard deviation were 0.8954 ± 0.0030. Our model had good predictive 

power and can help identify new microbe-disease associations. In addition, 

we  compared GCNN4Micro-Dis with three advanced methods to predict 

microbe-disease associations, KATZHMDA, BiRWHMDA, and LRLSHMDA. The 

results showed that our method had better prediction performance than the 

other three methods. Furthermore, we selected breast cancer as a case study 

and found the top 12 microbes related to breast cancer from the intestinal 

flora of patients, which further verified the model’s accuracy.
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Introduction

In microecology, human microbes, especially intestinal 
microbes, have been found to play a key role in the generation and 
development of human complex diseases (Baron, 1996). This 
discovery provided a new perspective for revealing the inherent 
pathological mechanism of complex diseases. Microbes are 
responsible for the development of infectious diseases, such as 
SARS, MERS, and COVID-19 (Singh et al., 2014; Gong et al., 
2022). According to the latest real-time statistics from WHO, 618 
million confirmed cases and 6.5 million deaths have been reported 
globally between the outbreak of COVID-19 up until 9 October 
2022 (World Health Organization, 2022). Although the 
composition, morphology, and functions of microbial 
communities are well understood and thoroughly studied, 
systematically analyzing the mechanisms by which human 
microbes initiate and drive diseases is still a major challenge 
(Karstens et  al., 2018). Generally, the interaction between 
microbes and diseases can be  verified to high accuracy using 
traditional experimental techniques, which can determine 
whether a certain microbe is directly or indirectly related to 
diseases. However, this method requires advanced experimental 
setup, environmental conditioning, and scientific research skill 
(Teh et  al., 2021). Experimentally identifying the relationship 
between millions of microbes and human diseases takes a lot of 
time, highly-skilled human labor, and financial resources. This 
pinch could be obliviated by combining deep learning methods 
and biological network methods to identify the potential 
interactions between microbes and diseases on a large scale, 
allowing us to systemically understand the pathogenic mechanism 
of complex human diseases and provide a reference for the 
prevention, diagnosis, and treatment of diseases (Liu et al., 2021).

To address the challenges above, we  propose a graph 
convolutional neural network approach, termed 
GCNN4Micro-Dis, for microbe-disease prediction. The key 
motivation is to model associations between diverse biological 
domains through a graph neural network.

Related work

In 2016, Ma et al. (2017) established the Human Microbe-
Disease Association Database (HMDAD) by collecting published 
literature and collating 483 pairs of human microbe-disease 
association information. These highly-accurate data sources have 
attracted the attention of the bio information field. Researchers 
have successively proposed microbe-disease prediction models 
based on different theories, which can be roughly divided into the 
following three categories: (1) methods based on network 
algorithms, (2) methods based on dichotomous local features, (3) 
Machine learning-based methods.

In network algorithm-based methods, the similarity or 
heterogeneous network is first constructed, then the association 
probability is calculated based on the network and the specific 

network algorithm. In 2017, Chen et al., (2018) proposed the first 
KATZHMDA, which used the known topological information of 
microbe-disease association network to infer the potential 
relationship between microbes and diseases by using the social 
network relationship prediction method. In this model, the 
problem of predicting potential associations is transformed into 
the calculation of the similarity between corresponding nodes 
according to the length and number of paths connecting two 
nodes in the network. This model not only exhibited excellent 
predictive power, but also pioneered the field of microbe-disease 
prediction. Huang et al. (2017) proposed the path-based human 
microbe-disease association prediction computing model 
(PBHMDA), which used a special depth-first search algorithm to 
traverse all the paths communicated between nodes in the 
heterogenous network, thereby obtaining the prediction score of 
each pair of microbe-disease association. Shen et al. (2016) used 
the restart random walk algorithm to score each candidate 
microbe-disease pair in the microbe network based on Spearman 
correlation and the disease network based on symptom similarity. 
The main advantage of these models is their ability to make full 
use of the network’s topological information. They also involve few 
parameters, which greatly reduces the difficulty of 
parameter selection.

The second type of method is based on dichotomous local 
features. It considers microbes and diseases as local objects and 
calculates the final prediction by combining their characteristics. 
Huang et al., (2017) integrated two independent recommendation 
models and developed NGRHMDA to infer disease-related 
microbes. NGRHMDA considers diseases that share the same 
associated microbes or microbes that share the same associated 
diseases as neighbors. It then considers microbes and diseases as 
users and items, respectively, and adopts a collaborative filtering 
recommendation algorithm for local recommendation to make 
association predictions. Shen et al. (2018) proposed BiRWMP to 
predict microbe-disease association. The model first builds the 
microbe-disease associated-network, then it calculates the 
correlation between microbes and diseases based on the random 
walk algorithm, using the disease-to-microbe node as the initial 
starting point. Since the model is a combination of random walks, 
the local information of microbes, and the random walk of disease 
information, it can make better predictions than the one-way 
random walk model. This method improves the local feature bias 
by considering different perspectives, solving the noise problem 
caused by the known uneven distribution of associations in the 
data set to a certain extent and improving the model’s overall 
predictive power.

The third category is machine learning-based methods. Wang 
et  al. (2017) proposed LRLSHMDA for predicting potential 
disease-related microbes. Two objective functions were 
constructed using the Laplacian Regularized Least Squares 
classification method. An optimal classifier was trained by 
combining the known topological information of the microbe-
disease association network. Potential disease-associated 
microbes are eventually inferred. Peng et  al. developed 
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ABHMDA, which reveals disease-related microbes through a 
strong classifier consisting of weak classifiers with corresponding 
weights. ABHMDA assigns different weights to multiple weak 
classifiers, which proves that the computational method can 
achieve satisfactory performance in identifying potential 
associations between microbes and diseases. This work inspired 
researchers to further explore more novel and effective 
computational methods to predict the association between 
microbes and diseases.

Materials and methods

Dataset

The dataset used in this study was downloaded from the 
newly built Human Microbe-Disease Association Database 
(HMDAD1), which collects human microbe-disease association 
data from 61 published studies. HMDAD contains 450 verified 
microbe-disease association records between 292 microbes and 39 
diseases (Ma et al., 2017; Table 1).

Microbe-disease heterogeneous 
network

HMDAD allows the download of data on 39 diseases, 292 
microbes, and 450 microbes with known association and disease 
data. This data can be represented as a microbe-disease binary 
network, which combines all microbe species (M = {m1, m2, m3, …, 
mx}) and diseases (D = {d1, d2, d3, …, dy}) as A network node. If the 
microbe mj is known to be associated with disease di, add an edge 
between node mj and di. Using the adjacency matrix A ∈ Rx*y, 
where x and y represent the database of different kinds of diseases 
and the number of microbes, an adjacency matrix A may 
be constructed. If di has been proven to be linked with mj, then 
A(i,j) = 1, or 0, resulting in an adjacency matrix A with 39 rows and 
292 columns containing 1 s and 0 s.

A microbe-disease heterogeneous network is illustrated in 
Figure 1. The network is constructed from microbe similarity 
network, disease similarity network, and known microbe-disease 
associations. The heterogeneous network contains two node types: 
microbe nodes and disease nodes, and three types of connecting 
edges: microbe connecting edges, disease connecting edges, and 

1 http://www.cuilab.cn/hmdad

microbe-disease association edges. The present study aimed to 
predict the potential association between microbes and diseases 
using the constructed microbe-disease heterogeneous network, 
and subsequently find new microbe-disease association pairs with 
high association possibility from it.

Graph convolutional neural 
network

Graph convolutional neural network (GCNN) is a model 
that applies convolution to the field of graph data (Wu et al., 
2021). Its core idea is to learn a mapping function f(x) by which 
the characteristics of a node x and its neighbors can 
be aggregated together, resulting in the representation vector of 
node x. In CNN, the image processing method is to further 
convolve and pool the matrix data by arranging the image pixels 
into a matrix (LeCun and Bengio, 1995). In GCNN, the image 
is processed by establishing a topological graph of corresponding 
relationships between vertices and edges. The spatial features on 
the topological graph are then extracted (Shou et al., 2022). The 
structure of GCNN is shown in Figure 2. The biggest difference 
between GCNN and CNN is that GCNN is stacked at multiple 
layers, and the parameters between layers are different. The 
parameters of each layer are shared iteratively. The biggest 
advantage of GCNN is its introduction of an optimized 
convolution parameter that extracts graph structure data 
features. This function is realized through a Laplace matrix in 
GCNN (Zhang et al., 2022).

GCNNs are divided into two major forms: spatial domain 
and spectral domain. Spatial domain GCNNs are similar to the 
application of convolution in deep learning and are optimized to 
collect information from adjacent nodes. Although this class of 
network intuitively borrows image convolution operations, it 
lacks a specific theoretical basis (He et al., 2022). In contrast, 
spectral domain GCNNs can extract features from nonlinear data 
more easily. They do so in three steps: (1) perform graphic 
Fourier transform on input data, (2) convolve the transform 
result in the spectral domain, (3) inverse Fourier transform 
convolution result.

Based on graph theory, the coefficient matrix obtained is 
defined as a graph with nodes and edges. Any graph composed 
of multiple nodes and edges can be expressed as G = (V, E, W), 
where V is a node, E is the edge between two nodes, and W is the 
weighted adjacency matrix of connection weights between two 
vertices. It is usually represented by a Laplace matrix defined as 
L = D−A, where D and A represent the degree matrix and 
adjacency matrix, respectively. The degree matrix is a diagonal 
matrix representing the number of connected nodes. The 
adjacency matrix represents the relationship between nodes. 
Connected nodes are represented as 1, and unconnected nodes 
are represented as 0. The formula of the Laplace matrix is 
as follows:

TABLE 1 Data features of verified microbe-disease association.

Number of 
diseases

Number of 
microbes

Number of 
microbe-disease 
association

39 292 450
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In Equation 1, U is a matrix composed of unit eigenvectors, 
and A is a diagonal matrix composed of the eigenvalues of the 
Laplace matrix.

Model performance evaluation 
metrics

For a prediction model, the model is under-fitted if the 
deviation is too large, and over-fitted if the variance is too large. A 
model’s output is strongly distorted when it is under-fitted or 

over-fitted. To solve these two thorny problems, a set of evaluation 
methods and performance indicators are needed to 
comprehensively evaluate the prediction effect of the model. 
Evaluation methods evaluate the generalizability of the model. 
Performance indicators evaluate the performance of a single 
model. The evaluation methods and performance indicators are 
described in detail below.

Selecting appropriate evaluation methods and performance 
indicators is important for the evaluation of the model. In this 
study, common performance index parameters such as accuracy 
(Acc), recall (Rec), and F1 score (F1) are used (Zhou and Li, 2010). 
Their definitions are as follows:

 
Acc TP TN

TP TN FN FP
=

+
+ + +  

(2)

 
Rec TP

TP FN
=

+  
(3)

 
F TP

TP FN FP
1

2

2

=
+ +

∗

∗
 

(4)

TP represents the number of known microbe-disease 
association data that can be correctly identified; FP represents the 
number of unknown microbe-disease association data that have 
not been correctly identified; TN represents the number of 
unknown microbe-disease association data that can be correctly 
identified; FN represents the number of known microbe-disease 
association data that have not been correctly identified.

The ROC and PR curves were widely used in model 
evaluation. In the microbe-disease association prediction 
literature, researchers used the area under the ROC curve (AUC 

FIGURE 1

Microbe-disease heterogeneous network.

FIGURE 2

The flowchart of GCNN.
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value) and the area under the PR curve (AUPR value) as the 
comprehensive evaluation indicators of the model. The larger the 
AUC and AUPR values, the better the predictive power of the 
model (Zhou and Washio, 2009).

ROC stands for “receiver operating characteristic.” Its vertical 
axis is the true positive rate (TPR), while its horizontal axis is the 
false positive rate (FPR). FPR and TPR are calculated using the 
following formulae:

 
TPR TP

TP FN
=

+  
(5)

 
FPR FP

FP TN
=

+  
(6)

TPR represents the proportion of correctly identifying the 
known microbe-disease associations. FPR represents the 
proportion of incorrectly identifying the unknown microbe-
disease associations. The meanings of TP, FN, FP, and TN have 
been described in detail in the literature. TP + FN represents all 
known microbe-disease associations, while FP + TN represents all 
unknown microbe-disease associations.

PR stands for Precision-Recall. Its vertical axis is Precision 
(Pre), while its horizontal axis is Recall (Rec). Precision is 
calculated as follows:

 
Pre TP

TP FP
=

+  
(7)

Precision represents the proportion of correctly predicted 
known microbe-disease associations in all predicted known 
microbe-disease associations. Recall represents the proportion of 
correctly predicted known microbe-disease associations in all 
known microbe-disease associations.

To sum up, the ROC curve considers both positive and 
negative samples in the data set: the known microbe-disease 
associations and the unknown microbe-disease associations. This 
parameter can be applied to evaluate the overall performance of 
the model. The PR curve covers only the positive samples, the 
known microbe-disease associations. It is an indispensable 
indicator when there is an imbalance between positive and 
negative samples.

Results

Data preprocessing

The positive samples comprise 450 known interactions. The 
negative samples comprise 450 randomly selected data from the 
unknown interactions. If the node code of the disease is di and the 
microbe node code is mj, then the sample code of the interaction 
between the disease and the microbe is di + mj.

Dataset partition

When evaluating the merits and demerits of a prediction 
model, the choice of evaluation method is very important. In 
model evaluation, data sets are commonly divided into training 
and test sets. The partitioning should satisfy two conditions: the 
data in the respective sets follow the real distribution, and the data 
in the sets are mutually exclusive. Considering the different 
partitioning methods, the evaluation methods are mainly divided 
into three types: cross-validation, self-help, and set-aside (Zhou 
and Washio, 2009).

The present study utilized the same assessment method as the 
existing microbe-disease association predictive models. The 
proposed model was evaluated using the cross-validation method, 
specifically 5-fold cross-validation (5-fold CV). For the microbe-
disease association data, these three datasets contained only 
known microbe-disease association data and unknown microbe-
disease association data. The known microbe-disease association 
data were used as positive samples, while the unknown microbe-
disease association data were used as negative samples.

Based on the 5-fold CV, all known microbe-disease 
associations were randomly divided into five groups.

 1. Divide the positive samples into five subsets of equal size.
 2. Divide the negative samples into five subsets of equal size.
 3. One of the five subsets of positive and negative samples 

takes turns as the test set.
 4. Remove the positive samples in the test set from the 

adjacency matrix by deleting their links with known 
interactions in the test set network.

 5. In the remaining four subsets of positive and negative 
samples, the training set is 0.875, and the validation set 
is 0.125.

 6. Randomly generate the initialization code of each node.
 7. Repeat all experiments five times, with iteration set to 5, 

and average the final results to reduce the bias caused by 
random grouping.

Hyper-parameters selection

Convolutional neural network training can be regarded as a 
process of minimizing the loss function. The training network 
must initialize the parameters, set the appropriate learning rate, 
select the appropriate batch normalization method, and 
continuously iterate and update the parameters according to the 
optimization algorithm and strategy, including hyper parameters 
like Epoch, Batch, Batch_size, iteration, learning rate, etc.

In this experiment, we set Epoch to 100, learning rate to 0.001, 
coding dimension to 256, and the number of GCN coding layers 
to 3. Epoch refers to the complete training of the model using all 
the data in the training set, called “generation training.” Iteration 
is the process of updating the model parameters using a Batch of 
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data, called “a training session.” The learning rate determines how 
fast the parameters move to the optimal value. If the learning rate 
is too large, it is likely to cross the optimal value and lead to 
function convergence failure or even divergence. On the contrary, 
if the learning rate is too low, the optimization becomes inefficient, 
the convergence is too slow, and the algorithm can easily fall into 
a local optimum. The appropriate learning rate should converge 
as soon as possible on the premise of ensuring convergence.

Model effects

Samples with the same number of positive samples were 
randomly selected as negative samples from the unknown samples 
to ensure the balance of positive and negative samples. The 5-fold 
CV method was used to ensure that each sample data was used as 
a test set. The experiment was repeated five times, which greatly 
reduced the influence of randomness. The 25 experimental results 
reported 19 AUC values that are mostly above 0.8 with an average 
value of 0.8154, indicating that the model can be well applied to 
predict the link between diseases and microbes.

There is still a lot of room to improve the model’s performance. 
Its results are largely limited by the amount of data, with only 450 
positive samples utilized in this study. Furthermore, the node 
initialization coding adopted random initialization coding, which 
cannot express the inherent attribute characteristics of different 
node entities well.

The average AUC value and standard deviation given by the 
model was 0.8954 ± 0.0030. Our model evidently performed well 
and can help identify novel disease-microbe associations (Table 2).

The ROC and AUPR curves of the fifth experiment (Iter5) are 
shown in Figure 3.

TABLE 2 The summary of model performance under 5-fold CV.

Iter1 Iter2 Iter3 Iter4 Iter5

Fold0 Acc 0.7556 0.7722 0.7722 0.7722 0.7833

Rec 0.7444 0.7556 0.7444 0.7333 0.7778

F1 0.7528 0.7684 0.7657 0.7630 0.7821

AUC 0.8121 0.8169 0.8223 0.8254 0.8328

AUPR 0.7866 0.8071 0.8148 0.8223 0.8065

Fold1 Acc 0.7444 0.7333 0.7333 0.7556 0.7722

Rec 0.7444 0.7667 0.7889 0.8111 0.7778

F1 0.7444 0.7419 0.7474 0.7684 0.7735

AUC 0.8020 0.8137 0.8230 0.8181 0.8207

AUPR 0.7661 0.8146 0.8138 0.7945 0.7913

Fold2 Acc 0.7444 0.7222 0.7444 0.7278 0.7556

Rec 0.7333 0.7556 0.7556 0.7667 0.7556

F1 0.7416 0.7312 0.7473 0.7380 0.7556

AUC 0.8258 0.8084 0.8226 0.7947 0.8126

AUPR 0.8279 0.8282 0.8283 0.7794 0.8125

Fold3 Acc 0.7389 0.6833 0.7278 0.7333 0.7278

Rec 0.7444 0.6667 0.7444 0.7222 0.7222

F1 0.7403 0.6780 0.7322 0.7303 0.7263

AUC 0.7795 0.7670 0.7985 0.7968 0.7974

AUPR 0.7906 0.7539 0.7866 0.7919 0.7713

Fold4 Acc 0.7722 0.7556 0.7611 0.7556 0.7611

Rec 0.7333 0.7111 0.7333 0.7000 0.6889

F1 0.7630 0.7442 0.7543 0.7412 0.7425

AUC 0.8485 0.8204 0.8338 0.8260 0.8190

AUPR 0.8468 0.8250 0.8164 0.8237 0.7981

A B

FIGURE 3

(A) The ROC curves of Iter5. (B) The AUPR curves of Iter5.
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Comparison with other methods

To verify the superiority of the GCNN4Micro-Dis model 
proposed in this study, it is compared with three advanced 
methods used to predict microbe-disease associations: 
KATZHMDA (Chen et al., 2018), BiRWHMDA (Zou et al., 2017), 
and LRLSHMDA (Wang et al., 2017).

 • The KATZ measure for Human Microbe-Disease Association 
(KATZHMDA) is a novel computational model based on the 
assumption that functionally similar microbes tend to have 
similar interaction and non-interaction patterns with 
non-infectious diseases and vice versa (Chen et al., 2018).

 • BiRWHMDA is a novel computational model to predict 
potential microbe-disease associations using bi-random walk 
on the heterogeneous network (Zou et al., 2017).

 • The Laplacian Regularized Least Squares for Human-
Microbe Disease Association (LRLSHMDA) is a semi-
supervised computational model using the Gaussian 
interaction profile kernel similarity calculation and Laplacian 
regularized least squares classifier (Wang et al., 2017).

The AUC of BiRWHMDA reached 0.7984, while the AUCs of 
LRLSHMDA and KATZHMDA were 0.8410 and 0.8428, 
respectively. The AUC of GCNN4Micro-Dis was better than that 

of BiRWHMDA. Therefore, the performance of GCNN4Micro-Dis 
was not different from the other three methods in terms of 
prediction accuracy.

The data set used in this study was unbalanced, making the 
AUPR value an indispensable model evaluation index. The AUPR 
of LRLSHMDA, KATZHMDA, and BiRWHMDA were 0.5045, 
0.4782, and 0.4363, respectively. The AUPR of GCNN4Micro-Dis 
was 0.8092, better than the other three competitors. The 
experimental data conclusively demonstrated that 
GCNN4Micro-Dis had a better prediction performance than the 
other three methods (Table 3).

Case study

In this section, a prevalent human disease, breast cancer, was 
selected as a case study to further analyze the performance of 
GCNN4Micro-Dis. Given that the role of gut microbiome in 
health and disease has recently attracted more and more attention, 
many observations and in vitro studies depict that it may 
be involved in the development of breast cancer. The 12 microbes 
most related to breast cancer were selected from the intestinal 
flora of patients as case studies. The result has been verified in the 
literature (Liu et al., 2020; Huang et al., 2021). Some fecal intestinal 
bacteria were found to be associated with breast cancer and are 
expected to become new targets for breast cancer treatment (Wu 
et al., 2016; Zheng et al., 2018; Table 4).

Conclusion

A heterogeneous network of microbe-disease association was 
constructed from data extracted from the HMDAD database. A 
graph neural network algorithm was proposed, and the accuracy 
of our algorithm was evaluated using a 5-fold cross-validation. 
The main parameters involved in the algorithm were verified, 
proving the effectiveness of the prediction method. The main 
research results of this paper are as follows.

GCNN4Micro-Dis, a microbe-disease prediction method 
based on the Graph Neural Network and Multi-Data 
Heterogeneous Networks, was proposed. The heterogeneous 
network was obtained by integrating the known microbe-disease 
networks. The network was applied to the Graph Neural Network 
model for prediction. The methods proposed in this study 
predicted the association between potential microbes and diseases. 
Although these methods performed well in experimental 
verification and analysis, there are still some limitations that could 
be addressed in future works:

(1) The known microbe-disease association dataset was too 
small, which reduced its accuracy to some extent. In the future, 
the method’s predictive power will improve with more data 
available. (2) More similarity data can be added. The microbe and 
disease similarity in this paper are calculated from the known 
microbe-disease associations, which were inadequate. The 

TABLE 3 Comparison of AUC and AUPR for different microbe-disease 
association predictions methods.

Methods AUC AUPR

GCNN4Micro-Dis 0.8154 0.8092

LRLSHMDA (Wang et al., 2017) 0.8410 0.5045

KATZHMDA (Chen et al., 2018) 0.8428 0.4782

BiRWHMDA (Zou et al., 2017) 0.7984 0.4363

Bold values represent the effect of our model.

TABLE 4 Top 12 potential microbes related to breast cancer.

BRCA subtypes Rank Microbes

HER2 positive 1 Megasphaera

2 Barnesiellaceae

3 Alloprevotella

ER positive 1 Megasphaera

2 Roseburia

3 Prevotellaceae

PR positive 1 Prevotellaceae

2 Tyzzerella

3 Enorma

Ki67 positive 1 Tenericutes

2 Izimaplasmatales

3 Sporobacter
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prediction could be more accurate if more similarity data could 
be integrated into the heterogeneous networks. (3) More network 
information can be  added. The current prediction methods 
require known microbe disease association data. Without this 
information, most methods cannot be  implemented. More 
information may be  mined if the potential microbe disease 
association can be  predicted without this information. For 
example, the correlation data between microbes and RNA and 
between RNA and microbes allows the use an RNA network as 
an intermediate layer to build a three-layer microbe RNA disease 
network. The three-layer heterogeneous network can mine more 
unknown information.

Due to the relatively late development of microbe-disease 
association prediction, there are still many deficiencies and 
challenges at the present stage. Nevertheless, many studies have 
made preliminary exploration on the design of the prediction 
model (Peng et al., 2017, 2021, 2022a,b; Shen et al., 2022), which 
can be summarized as follows:

 1. There are relatively few validated microbe-disease 
association data. Relatively few microbe-disease 
associations have been demonstrated through biological 
experiments compared to other biomarkers, such as 
non-coding RNAs. Since current computational methods 
often infer possible microbe-disease associations based on 
known association data, more known associations are 
needed to enrich the training set of the prediction models 
and improve their prediction power. Therefore, more 
accurate microbe-disease associations should be mined, 
using biological experiments as the fundamental data 
source for the calculation methods.

 2. Few available datasets. The number of publicly available 
microbe-disease association databases is limited, yet few 
researchers have constructed new data sets, forcing a broad 
consensus of data sets used in the field. Most of the data sets 
used currently are microbe-disease associations provided by 
the HMDAD database. Although they are true and reliable 
associations verified by biological experiments, the number 
is small. Small and single data sets cannot fully depict the 
performance of the prediction model and render the 
prediction model unreliable. Therefore, there is an urgent 
need to build a larger microbe-disease association database.

 3. The design of some methods should be improved. Methods 
based on network algorithms usually make assumptions 
about probability distributions, which fail if the data 
sources are not conformant. For example, this part of the 
model constructs similarity networks by assuming that 
functionally similar microbes have similar interaction 
patterns with diseases, which is more beneficial for 
microbes with more known related diseases. Optimizing 
the network structure by introducing local features is 
expected to improve this deficiency.

 4. The prediction performance must be improved. Microbe-
disease association prediction is a relatively new research 

field, so the performance of the proposed prediction 
models must be  improved. In the future, more diverse 
biological information and more effective computational 
methods (such as neural networks) can be used to design 
prediction models with superior performances.

As an unsupervised deep neural network, GCN can learn and 
extract features from unlabeled data, obtain low-dimensional 
feature expressions from high-dimensional original data, simplify 
the classification work, and overcome the randomness of weight 
coefficient initialization in traditional neural networks. In future 
works, biological information features, such as functional 
similarity of microbes and semantic similarity of diseases, will 
be  considered for addition to GCNN4Micro-Dis to more 
accurately predict the associations between microbes and diseases 
and help prevent, diagnose, treat, and prognose diseases.
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