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Colorectal cancer (CRC) is a common malignancy worldwide, and the gut microbiota

and metabolites play an important role in its initiation and progression. In this study,

we constructed a mouse model of inflammation-induced colorectal tumors, with

fixed doses of azoxymethane/dextran sulfate sodium (AOM/DSS). We found that

colorectal tumors only formed in some mice treated with certain concentrations

of AOM/DSS (tumor group), whereas other mice did not develop tumors (non-

tumor group). 16S rDNA amplicon sequencing and liquid chromatography-mass

spectrometry (LC-MS)/MS analyses were performed to investigate the microbes and

metabolites in the fecal samples. As a result, 1189 operational taxonomic units

(OTUs) were obtained from the fecal samples, and the non-tumor group had a

relatively higher OTU richness and diversity. Moreover, 53 different microbes were

identified at the phylum and genus levels, including Proteobacteria, Cyanobacteria,

and Prevotella. Furthermore, four bacterial taxa were obviously enriched in the

non-tumor group, according to linear discriminant analysis scores (log10) > 4.

The untargeted metabolomics analysis revealed significant differences between the

fecal samples and metabolic phenotypes. Further, the heatmaps and volcano plots

revealed 53 and 19 dysregulated metabolites between the groups, in positive and

negative ion modes, respectively. Styrene degradation and amino sugar-nucleotide

sugar metabolism pathways were significantly different in positive and negative

ion modes, respectively. Moreover, a correlation analysis between the metabolome

and microbiome was further conducted, which revealed the key microbiota and

metabolites. In conclusion, we successfully established a tumor model using a

certain dose of AOM/DSS and identified the differential intestinal microbiota and

characteristic metabolites that might modulate tumorigenesis, thereby providing

new concepts for the prevention and treatment of CRC.
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Introduction

Colorectal cancer (CRC) is one of the most common
malignancies and a major cause of cancer-related deaths worldwide
(Siegel et al., 2020; Sung et al., 2021). In the past 20 years, CRC
incidence and mortality have gradually increased, and this disease
has tended to affect younger people, especially in China, Japan,
and other eastern countries (Dekker et al., 2019; Siegel et al., 2020;
Akimoto et al., 2021). To some extent, this could be related to
the westernization of diets and lifestyles. Western diets rich in
red meat, processed meat, sugar, and refined carbohydrates can
increase the risk of colitis-related tumors by changing the intestinal
microenvironment, damaging intestinal DNA, and inducing
inflammation (Vernia et al., 2021; Arima et al., 2022). However,
some intestinal probiotics and beneficial metabolites can effectively
antagonize carcinogenesis (Hradicka et al., 2020; Matson et al., 2021).
In this context, the role of intestinal microecology changes in CRC
initiation and progression is worthy of further exploration.

The inflammation–cancer transformation tumor model, induced
with azoxymethane/dextran sulfate sodium (AOM/DSS), is an
effective tool to study the mechanisms underlying colorectal
tumorigenesis in an inflammatory environment. This animal model,
established based on a combination of a mutagen and inflammatory
agent, can simulate the entire process of mucosa inflammation-
associated tumor formation (Neufert et al., 2007; Angelou et al.,
2018). The induced neoplasms in this model mostly occur in the
distal colon and first appear in the form of polyps, similar to CRC
establishment in humans (Snider et al., 2016). Hence, it can reflect
the progression from colitis to carcinoma in humans. However,
with respect to AOM/DSS-induced tumorigenesis in mice, we found
that with a certain dose, colorectal tumors are successfully induced
in some animals, whereas no neoplasm-like changes occur in the
others. We speculated that the intestinal microecology of those mice
without tumor lesions might have a preventative effect on AOM/DSS-
induced carcinogenesis. Therefore, in the current study, 16S rDNA
amplicon sequencing and liquid chromatography-mass spectrometry
(LC-MS)/MS analyses were used to explore the intestinal flora
and metabolites of mice with or without tumors after AOM-DSS
treatment, which might help us to further understand the initiation
and development of enteritis-related CRC and provide new ideas for
the prevention and treatment of CRC from the perspective of the
intestinal microecology.

Materials and methods

Animals and treatment

Animal experimentation was approved by the Animal Committee
of the Chinese Academy of Sciences Institutional Laboratory
[WIVA042020003]. In total, 70 female C57BL/6 mice (6-weeks-
old, 20–24 g) were used in this study. AOM was purchased from
Sigma-Aldrich (No. A5486, USA), and DSS was purchased from
MP Biomedicals (No. 160110, CA). The animal experiments were
conducted in two stages.

In the first stage, 35 mice were randomly divided into seven
groups (n = 5) and treated with AOM/DSS at different concentrations
as follows: Group A, 10 mg/kg AOM, 2% DSS; Group B, 10 mg/kg
AOM, 1% DSS; Group C, 10 mg/kg AOM, 0.5% DSS; Group D,

10 mg/kg AOM, 0.25% DSS; Group E, 7.69 (10/1.3) mg/kg AOM,
2% DSS; Group F, 5.92 (10/1.32) mg/kg AOM, 2% DSS; Group G,
4.55 (10/1.33) mg/kg AOM, 2% DSS. The mice were intraperitoneally
injected with AOM on the first day. Then, 1 week later, the mice
were treated with DSS solution for 1 week, followed by 2 weeks of
normal drinking water, for three cycles. All mice were euthanized
until 14 weeks. The animal modeling process is shown in Figure 1A.

In the second stage, 35 mice were randomly divided into an
experimental group (n = 30) and control group (n = 5). Here, we
hypothesized that DSS at a certain dose might result in tumors in
50% of mice, without tumors in the other 50% of mice. The expected
dose of DSS was calculated as 0.5359% according to the method in a
previous study (Sanchez et al., 2018). Mice in the experimental group
were treated with 10 mg/kg AOM and 0.5359% DSS in drinking
water, based on the aforementioned procedure. Meanwhile, mice in
the control group were maintained under standard conditions for
14 weeks. Finally, the colon tissues and fecal samples of all mice were
collected for further investigation.

16S rDNA amplicon sequencing

The fecal genomic DNA was extracted using a Stool
DNA Kit (Qiagen, Germany) according to the manufacturer’s
experimental steps. After determining the DNA integrity and
concentration, the qualifying DNA samples were used for
amplification. Specific primers were designed for the 16S rRNA
V3–V4 region (F: 5′-CCTACGGGAGGCAGCAG-3′; R: 5′-
GGACTACHVGGGTATCTAAT-3′). PCR amplification was
performed using High-Fidelity PCR Master Mix with GC Buffer
(New England Biolabs, USA). Then, the PCR products were
separated using 2% agarose gel electrophoresis and magnetic beads
and purified with a Gel Extraction Kit (Qiagen, Germany). The
amplicon libraries were constructed using a TruSeq R© DNA PCR-Free
Sample Preparation Kit (Illumina, USA), then quantified with a
Qubit and qPCR, and finally sequenced on a NovaSeq6000 (Illumina,
USA) platform. The effective tags were analyzed and obtained with
the assistance of Novogene Biotechnology (Guangzhou, China).
Operational taxonomic units (OTUs) were clustered based on tags of
more than 97% identity using the Uparse v7.0.1001 method. Further
analyses, including alpha and beta diversity, were subsequently
performed.

Untargeted metabolomics analysis

Untargeted metabolomics were investigated via LC-MS/MS
analyses. Fecal samples (100 mg) were placed in Eppendorf tubes
and quickly treated with liquid nitrogen. Then, the samples were
resuspended well with 80% methanol and 0.1% formic acid. After
incubation for 5 min in an ice bath, the mixture was centrifuged at
15,000 × g and 4◦C for 20 min. The supernatants were transferred
and diluted with LC-MS grade water with methanol at a final
concentration of 53%. Following another centrifugation step at
15,000 × g and 4◦C for 15 min, the resulting supernatants were
collected for subsequent experiments.

LC-MS/MS analyses were performed using the Vanquish
UHPLC system and Orbitrap Q ExactiveTMHF-X mass spectrometer
(Thermo Fisher Scientific, Germany) provided by Novogene (Beijing,
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FIGURE 1

Establishment of AOM/DSS-induced mice models. (A) Flow chart of the mice treated with AOM/DSS. (B) Weight of mice in each group during AOM/DSS
treatment. (C) Macroscopic view of colon. (D) Representative hematoxylin and eosin stain of the distal colon with tumor and no tumor.

China). The samples were injected into a Hypesil Gold column
(2.1 mm × 100 mm, 1.9 µm), and the flow rate was 0.2 ml/min.
Eluent A was 0.1% formic acid in water, and eluent B was methanol
for the positive polarity mode, whereas for the negative polarity
mode, eluent A was 5 mmol/L ammonium acetate in water, pH 9.0,
and eluent B was methanol. The solvent gradient was set as follows:
1.5 min, 2% B; 12 min, 2–100% B; 14 min, 100% B; 14.1 min, 98%
B; 17 min, 2% B. A QExactiveTMHF-X mass spectrometer was used
with the source conditions as follows: sheath gas flow rate of 40
Arb, aux gas flow rate of 10 Arb, spray voltage of 3.2 kV, capillary
temperature of 320◦C. The raw data files were generated based
on UHPLC-MS/MS and processed using Compound Discoverer 3.1
(Thermo Fisher, USA).

Statistical analysis

Qiime software (Version 1.9.1) was used to calculate Observed-
OTU, Chao1, Shannon, and Simpson indices. Differences in
alpha diversity indices among groups were analyzed based on
the rarefaction curve and rank abundance curve. A Wilcox
test was used for alpha diversity and beta diversity analyses.
ANOSIM analysis was performed to test for differences in the
microbial communities among groups. Raw data of LC-MS/MS
were analyzed using Compound Discoverer 3.1. The differences in
metabolic patterns among different groups were revealed based on
partial least squares discrimination analysis (PLS-DA). To study
phenotypic changes that might be caused by changes in the host
microbial community structure, correlation analyses between the
microbiome and metabolome were performed based on Pearson’s

correlation analysis, correlation network diagram analysis, and
correlation Sankey diagram analysis. P < 0.05 was considered
statistically significant.

Results

Generation of AOM/DSS-induced tumor
mouse models

First, the mice were treated with AOM/DSS at different
concentrations. After the initiation of tumorigenesis for 14 weeks,
the mice were euthanized and investigated. We observed that mice
in the group administered 1 and 2% DSS lost significantly more
weight than those in the other two groups (Figure 1B). Moreover,
the nodular tumors were macroscopically visible in the distal colon
of mice in different groups (Figure 1C). In addition, the mice had
obvious tumors in group A and B, whereas group D had no tumors
(Table 1 and Figures 1C, D). However, the mice treated with 2% DSS
and different concentrations of AOM had poor survival outcomes
(Table 1). Therefore, we selected DSS as a variable factor to establish
the target mouse models.

Here, we hypothesized that DSS at a specific dose would cause
50% of mice in a test population to develop tumors, and the
theoretical dose was 0.5359% based on the results of groups A–D.
Next, the mice in the experimental group (n = 30) were treated with
10 mg/kg AOM and 0.5359% DSS, and a negative control group of
mice (n = 5) was also used in parallel. Fourteen weeks later, the
mice were euthanized and investigated. As a result, 12 mice had

Frontiers in Microbiology 03 frontiersin.org

https://doi.org/10.3389/fmicb.2022.1082835
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-13-1082835 January 9, 2023 Time: 12:52 # 4

Hong et al. 10.3389/fmicb.2022.1082835

TABLE 1 Incidence of tumor in mice treated with different doses of
AOM/DSS.

Group
(n = 5)

Application Survival With
tumor

Incidence
(%)

AOM
(mg/kg)

DSS (%)

A 10 2 1 1 100

B 10 1 5 5 100

C 10 0.5 5 2 40

D 10 0.25 5 0 0

E 7.69 2 2 2 100

F 5.92 2 3 2 66.67

G 4.55 2 2 1 50

tumors and 18 mice had no tumors in the experimental group. Then,
we randomly selected the nine mice with tumors (tumor group),
nine mice with no tumors (non-tumor group), and five control mice
(control group) for further experiments and analysis.

Alterations to the gut microbiomes in
different groups

To explore whether tumorigenesis is related to the gut
microbiome, 16S rRNA sequencing was performed to identify gut
microbiota profiles. In total, 1,189 OTUs were obtained among the
three groups, comprising 828 in the control group, 797 in the tumor
group, and 883 in the non-tumor group (Figure 2A). Moreover, a
relative increase in bacterial richness was found in the non-tumor
group, as revealed based on the rarefaction curve, compared with that
in the other two groups (Figure 2B). In addition, the rank abundance
curve yielded similar results (Figure 2C). To investigate bacterial
diversity, we analyzed the alpha diversity indices and observed
that there were statistically significant differences in the observed
species, Shannon, Simpson, and Chao1 indices among different
groups (Figures 2D–G). The principal component analysis showed
that there were three separations of gut microbiota distributions
among the three groups (Figure 2H). Non-metric multi-dimensional
scaling analysis also revealed different distributions of microbial
communities among the three groups (Figure 2I).

Identification of differential bacteria
among different groups

The gut microbial community structures at the phylum and
genus levels in the three groups were analyzed, and the top 10
differences are presented in Figures 3A, B. The differences in
the microbial distribution among the groups were determined
through ANOSIM analysis (Supplementary Figures 1A–C).
Next, the differential component proportions of microbes in each
group were revealed based on the heatmaps (Figures 3C, D). In
addition, at the phylum level, we observed that the Cyanobacteria,
Proteobacteria, and Fusobacteriota were significantly enriched
in the non-tumor group compared to abundances in the tumor
groups, and Verrucomicrobiota was more abundant in controls

(Supplementary Figures 1D–F). At the genus level, Prevotella,
Alloprevotella, Neisseria, and Akkermansia exhibited marked
differences among the groups (Supplementary Figures 1G–I).

To further determine the specific gut microflora associated
with colorectal tumorigenesis, linear discriminant analysis effect
size was performed among the three groups. The branching
maps containing six levels, from phylum to species, reveled the
signature microbiota. We found that the family Prevotellaceae
and class Gammaproteobacteria may have a great effect in the
non-tumor group, whereas the families Pseudomonadaceae and
Akkermansiaceae, orders Pseudomonadales and Verrucomicrobiales,
and class Verrucomicrobiae might play important roles in the control
group (Figure 3E). Moreover, based on linear discriminant analysis
scores (log10) > 4, the histogram showed that four bacterial taxa,
including Proteobacteria, Gammaproteobacteria, Prevotellaceae, and
Prevotella, were enriched in the non-tumor group, two bacterial
taxa were enriched in the tumor group, and 10 bacterial taxa were
enriched in the control group (Figure 3F).

Changes in fecal metabolites among
different groups

To identify the signature metabolites from fecal samples
among the groups, we performed untargeted LC-MS/MS-based
metabolomics. The PLS-DA showed significant differences between
the fecal samples and metabolic phenotypes of different groups in
both positive and negative ion modes (Figures 4A, B). In total,
1,112 and 554 metabolites were found to be changed in the tumor
group, non-tumor group, and control group, in positive and negative
ion modes, respectively (Supplementary Table 1). The differences
in metabolites among the three groups are shown in Figure 4C.
Further, we focused on the differences between the tumor group and
non-tumor group. The heatmaps revealed the metabolite differences
across each sample within the two groups (Figure 4D). The volcano
plots also showed the significant upregulated or downregulated
metabolites in the tumor group compared with levels in the non-
tumor group (Figure 4E). Briefly, in positive ion mode, levels of 31
and 22 fecal metabolites were up- and downregulated, respectively,
in the non-tumor group, with statistically significant differences
compared to those in the tumor group. Meanwhile, in negative
ion mode, levels of 10 and nine fecal metabolites were significantly
up and downregulated, respectively, in the non-tumor group, with
statistically significant differences compared to those in the tumor
group. The structures of these metabolites were diverse, with many of
the metabolites being either directly generated or modulated by the
gut bacteria, including homogentisic acid, 3-methyladenine, and 2’-
deoxyguanosine (downregulated in positive ion mode); nicotinic acid
mononucleotide, N-acetyl-L-leucine, and linoleoyl ethanolamide
(upregulated in positive ion mode); glycoursodeoxycholic acid, 2’-
deoxyuridine, and pentadecanoic acid (downregulated in negative
ion mode); and hydrocinnamic acid, oxoadipic acid, and 3-
methyladipic acid (upregulated in negative ion mode). Moreover,
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis was used to identify the enriched pathways associated with
differential metabolites in the two groups, and the top 20 most
enriched pathways are listed in Figure 4F. Among them, styrene
degradation and amino sugar-nucleotide sugar metabolism, were
significantly altered in positive and negative ion modes, respectively.
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FIGURE 2

The diversity of the microbial communities in three groups. (A) Venn diagram shows the compositions of OTUs. (B) Rarefaction curve. (C) Rank
abundance curve. (D–G) Alpha diversity index analysis (ACE, Shannon, Simpson, and Chao1). (H) Principal component analysis; (I) NMDS analysis.
*p < 0.05, **p < 0.01.

Correlation analysis between the gut
microbiota and metabolites

To investigate the association between differential microbiota
and metabolites in fecal samples, we conducted correlation analysis
based on top 10 different bacteria at the genus level and top 20
different metabolites between the tumor group and non-tumor
group. As shown in Figures 5A, B, the correlation heatmaps
revealed the association between metabolites and microbiota,
based on Pearson correlation coefficient analysis, in positive and
negative ion methods. To further reveal the key bacterial flora
and metabolites, we generated correlation network diagrams and
observed that the connections were multiple and consanguineous
(Figures 5C, D). Moreover, the correlation Sankey chart analysis also
visually demonstrated the association between the gut microbiota
and metabolites (Figures 5E, F). Notably, in positive ion mode,
we observed that D-α-tocopherol was significantly negatively
correlated with most microbiota, including Actinobacillus,
Capnocytophaga, F0058, Lautropia, and Peptostreptococcus.
Similarly, N1-(5-methylisoxazol-3-yl)-2-tetrahydro-1H-pyrrol-1-
ylacetamide also exhibited negative correlations with most microbes.

Meanwhile, 1,2-di(3,4-dimethoxyphenyl)diaz-1-ene, 3-methyl-5-
oxo-5-(4-toluidino)pentanoic acid, oxymatrine, pantothenic acid,
progesterone, and styrene showed positive correlations with the
vast majority of microbe–metabolite pairs. In negative ion mode,
the results showed highly negative associations for several microbe–
metabolite pairs, such as Actinobacillus/L-methionine sulfone,
Capnocytophaga/L-methionine sulfone, and Parasutterella/2’-
deoxyuridine. However, Lautropia/glycoursodeoxycholic acid,
Capnocytophaga/glycoursodeoxycholic acid, Lautropia/4-
hydroxyisoleucine, and F0058/LPG 15:0, among others exhibited
opposite relationships. Taken together, these results revealed
significant correlations with respect to key microbe–metabolite pairs
in the tumor and non-tumor groups, suggesting their potential roles
in modulating tumorigenesis.

Discussion

The AOM/DSS-induced mouse model is a common experimental
tumor model to develop colitis-associated colon cancer. Specifically,
it can mimic the non-hereditary features of CRC in terms of the
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FIGURE 3

Identification of the differential bacteria from the three groups. (A,B) Component proportion of bacteria at the phylum (A) and genus (B) level in different
groups. (C,D) Heat maps to identify different fecal microbiota at the phylum (C) and genus (D) level in the different groups. (E) The cladogram to show
specific differential bacteria in the three groups. (F) LEfSe indicating the different bacterial taxa.

normal epithelium/adenoma/carcinoma progression (Neufert et al.,
2007; Dekker et al., 2019). Further, it is an essential tool to investigate
the underlying mechanisms of CRC initiation and progression, but
it is also a valuable and effective model for the evaluation of novel
therapeutic options. For example, Wei et al. elucidated the role
and molecular mechanism of NDRG2 in tumor development using
AOM/DSS mice (Wei et al., 2020). Moreover, Gobert revealed the
protective function of spermine oxidase in colon inflammation and
tumorigenesis (Gobert et al., 2022).

In previous studies, researchers have devoted time to finding
the optimal conditions of AOM and DSS utilization to induce
tumor development, including the doses of AOM and/or DSS
(Bissahoyo et al., 2005; Suzuki et al., 2005; Neufert et al.,
2007; Angelou et al., 2018). Interestingly, we observed that when

mice were administrated various concentrations of AOM/DSS,
different tumor burdens were noted. Compared to those in the
5 mg/kg AOM group, the percentage of tumor-bearing mice,
tumor multiplicity, and size were significantly increased in the
10 mg/kg AOM group, whereas 20 mg/kg AOM resulted in
acute toxicity (Bissahoyo et al., 2005). Moreover, in another study,
Suzuki administered 10 mg/kg AOM to the mice, followed by
DSS solution at levels of 0.1, 0.25, 0.5, 1, and 2%. The incidences
of neoplasms were 0, 0, 20, 100, and 100% for each group,
respectively (Suzuki et al., 2005). To some extent, the tumor-
promoting ability of AOM/DSS might thus be dose-dependent.
Therefore, we hypothesize that there is a certain dose of these
chemical agents that could lead to a 50% possibility of tumor
development.
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FIGURE 4

Changes of the fecal metabolites in the groups. (A,B) PLS-DA of fecal samples between tumor group and control group (A), between tumor group and
non-tumor group (B), by the positive and negative ion methods. (C) Heat maps of different fecal metabolites among three groups. (D) Heat maps of
different metabolites in each fecal samples between tumor group and non-tumor group. (E) Volcano Plots indicating the variation of fecal metabolites
between the two groups. (F) KEGG pathway analysis of metabolism between the two groups.

In our study, we generated the mouse models with multiple
combinations of AOM and DSS doses, as presented in Table 1. As
a result, we found increasing incidences of tumors in the mice treated
with DSS, from 0.25 to 2% (the dose of AOM was 10 mg/kg). Among
these concentrations, 1 and 2% DSS resulted in a tumor incidence
of 100%, whereas 0.5 and 0.25% DSS induced lower incidences,
specifically less than 50%. However, 2% DSS treatment led to poor
survival outcomes in the groups. Thus, we set the AOM dose at
10 mg/kg and the targeted dose of DSS at 0.5359% for the following
animal experiment (n = 30), which was thought to be associated
with a theoretical 50% probability of tumor initiation. Finally, in the
experimental group, 12 mice developed tumors and 18 mice had no
tumors. We next sought to determine what factors contribute to this
phenomenon.

With the continuous progress of high-throughput sequencing
and bioinformatics, studies on the human intestinal flora have been
further developed. Numerous studies have indicated that genetic
and environmental factors play important roles in carcinogenesis
(Song et al., 2015; Yang et al., 2019). CRC occurs directly in the
gut and is therefore closely related to changes in the intestinal
microecology. Accumulating evidence demonstrates that dysbiosis

of the intestinal flora could modulate the progression, development,
and treatment of CRC (Louis et al., 2014; Feng et al., 2015; Fong
et al., 2020; Huang et al., 2020, 2022). For example, a recent study
showed that CRC patients have gut microbiome imbalances, which
were characterized by an increase in the abundance of cancer-
related bacteria, such as pks + Escherichia coli, enterotoxigenic
Bacteroides fragilis, and Fusobacterium nucleatum, whereas the
abundance of beneficial bacteria such as Roseburia, Clostridium, and
Bifidobacterium were found to be decreased (Janney et al., 2020).
Similarly, in the current study, the abundances of Colidextribacter
and Bacteroides were increased in the tumor group, suggesting that
these harmful bacteria might participate in the process of colorectal
tumorigenesis. Interestingly, although the abundance of the beneficial
bacteria Clostridium increased in the tumor group, other probiotics
commonly believed to play a role in CRC, such as Bifidobacterium
and Roseburia, did not show a decrease in abundance in the tumor
group, indicating that changes in the composition of gut microbes
during inflammation-mediated colorectal tumorigenesis might be
different from those occurring with conventional CRC. These so-
called “abnormal” intestinal flora changes deserve further study and
discussion, in the context of the AOM/DSS-mediated inflammation
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FIGURE 5

The association analysis between top 10 differential fecal microbiota at genus level and top 20 differential metabolites. (A,B) Pearson correlation
coefficient analysis. (C,D) Correlation network diagram analysis. (E,F) Correlation Sankey diagram analysis, by the positive and negative ion methods,
separately. Red represented that the microbiota was positively correlated with metabolites, and bule represented that the microbiota was negatively
correlated with metabolites. *P < 0.05.

tumor animal model. Moreover, at the phylum level, we observed
that a variety of microbes, such as Proteobacteria and Cyanobacteria,
were significantly increased in the non-tumor group compared to the
abundance in the tumor group. Proteobacteria, as a source of natural
products, provides unappreciated potential to discover and develop
novel bioactive molecules with antibiotic and anticancer effects (Buijs
et al., 2019). Cyanobacteria and its metabolites also have favorable
potential as anticancer drugs (Mondal et al., 2020).

Metabolomics can clearly reflect the functional changes in the
gut microbiota under specific conditions through the detection of
metabolites, which might provide clues to reveal the relationship
between the gut microbiota and the occurrence and development

of diseases (Han et al., 2021; Krautkramer et al., 2021; Bauermeister
et al., 2022). Our metabolomic analysis showed that 72 metabolites
in the non-tumor group were significantly changed, compared
with levels in the tumor group. Among them, tetrahydrocortisone,
O-arachidonoyl ethanolamine, and D-α-tocopherol were enriched
in the non-tumor group. These metabolites and their analogs have
some anti-inflammatory properties. For example, as an endogenous
cannabinoid, O-arachidonoyl ethanolamine has been proven to
be an endogenous inhibitor of cytochrome P450 cyclooxygenase,
with anti-inflammatory effects (Carnevale et al., 2018). Moreover,
tetrahydrocortisone is a metabolic product of hydrocortisone, and
its enrichment indicates that the glucocorticoid anti-inflammatory
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pathway might be active (Wang et al., 2018; Sagmeister et al., 2019).
D-α-Tocopherol can play an anti-inflammatory role by reducing
the release of proinflammatory cytokines (such as interleukin-1
β, interleukin-6, and tumor necrosis factor α) and chemokines
(such as interleukin-8) and reducing the adhesion of monocytes to
the endothelium. The KEGG pathway analysis showed that some
pathways, such as styrene degradation and amino sugar-nucleotide
sugar metabolism, were significantly enriched between the groups.
Interestingly, environmental nanoparticles, especially polystyrene
nanoparticles, are a potential risk for intestinal injury. It has been
reported that PNP exposure can induce cytotoxic and genotoxic
effects on cells by inducing oxidative stress related to nuclear damage
(Vecchiotti et al., 2021). Homogentisic acid is a metabolite annotated
to the styrene degradation pathway, and it has been proven to be
cytotoxic for various cell lines (Jurič et al., 2022). However, whether
it can participate in CRC is worth further exploring.

It is known that the gut microbiome can regulate metabolic
homeostasis, and we further conducted correlation analysis of the
gut microbiome and metabolome. Notably, in our findings, D-
α-tocopherol, an anti-inflammatory factor enriched in the non-
tumor group, was significantly negatively correlated with several
microbes, such as Actinobacillus, Capnocytophaga, and Lautropia.
A previous study revealed that Actinobacillus had the higher degree
of centrality across the progression of precancerous lesions of
gastric cancer, and Acinetobacter might contribute to the occurrence
of intraepithelial neoplasia (Liu et al., 2021). Capnocytophaga,
an oral bacterium, was also found to be highly present in oral
squamous cell carcinoma tissues and exert tumor-promoting effects
on oral cancer (Zhu et al., 2022). Moreover, Li et al. (2020)
revealed that Lautropia was enriched in hepatitis patients and might
participate in the progression of liver cancer. Therefore, in the
future, more experiments should be performed to validate the effect
of the identified microbiota and metabolites on CRC progression
and treatment.

It should be noted that, whether the changes in the gut
microbiota could affect disease development or the occurrence of
disease may cause an imbalance in the intestinal flora, as well as
the mechanism underlying such phenotypes, need to be further
elucidated. Moreover, although some differential microbiota and
metabolites were identified in the animal models, their antitumor
effects in animal models and in humans have not been further
demonstrated. Despite this, our study investigated the intestinal
microecology of colorectal tumors using an AOM/DSS mouse
model, with a specific concentration used for treatment. We
demonstrated the differentially abundant microbiota and metabolites
in the gut and identified the potential key relationships between
them. These findings might provide guidance to elucidate the
mechanism underlying the pathogenesis of inflammation-mediated
colorectal tumors.

Conclusion

In this study, we successfully generated an AOM/DSS mouse
model, based on a certain dose that could influence the development
of CRC. Using this model, 16S sequencing and LC-MS/MS analyses
were performed to identify and explore the differential gut microbiota
and metabolites that might be associated with tumorigenesis. This
could ultimately provide a new direction for the prevention and
treatment of CRC.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Ethics statement

This animal study was reviewed and approved by Animal
Committee of Chinese Academy of Sciences Institutional Laboratory
(WIVA042020003).

Author contributions

CQJ and RG conceived and designed experiments. YTH, RG, and
BXC performed the experiments. YTH, BXC, XZ, and QQ interpreted
the results of experiments. YTH wrote the manuscript. All authors
reviewed and approved the final manuscript.

Funding

This research was supported by Engineering construction
project of improving diagnosis and treatment ability of difficult
diseases (oncology) (ZLYNXM202012), Wu Jieping Medical Research
Foundation (320.6750.2021-11-8), and Joint Foundation of Health
Commission of Hubei Province (znpy2019086).

Acknowledgments

We thank Jinwen Yin, for the tremendous support
in the past years.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the reviewers.
Any product that may be evaluated in this article, or claim that may
be made by its manufacturer, is not guaranteed or endorsed by the
publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fmicb.2022.1082835/
full#supplementary-material

Frontiers in Microbiology 09 frontiersin.org

https://doi.org/10.3389/fmicb.2022.1082835
https://www.frontiersin.org/articles/10.3389/fmicb.2022.1082835/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmicb.2022.1082835/full#supplementary-material
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-13-1082835 January 9, 2023 Time: 12:52 # 10

Hong et al. 10.3389/fmicb.2022.1082835

References

Akimoto, N., Ugai, T., Zhong, R., Hamada, T., Fujiyoshi, K., Giannakis, M., et al.
(2021). Rising incidence of early-onset colorectal cancer - a call to action. Nat. Rev. Clin.
Oncol. 18, 230–243. doi: 10.1038/s41571-020-00445-1

Angelou, A., Andreatos, N., Antoniou, E., Zacharioudaki, A., Theodoropoulos, G.,
Damaskos, C., et al. (2018). A novel modification of the AOM/DSS model for inducing
intestinal adenomas in mice. Anticancer Res. 38, 3467–3470. doi: 10.21873/anticanres.
12616

Arima, K., Zhong, R., Ugai, T., Zhao, M., Haruki, K., Akimoto, N., et al. (2022).
Western-style diet, pks island-carrying escherichia coli, and colorectal cancer: Analyses
from two large prospective cohort studies. Gastroenterology 163, 862–874. doi: 10.1053/j.
gastro.2022.06.054

Bauermeister, A., Mannochio-Russo, H., Costa-Lotufo, L. V., Jarmusch, A. K.,
and Dorrestein, P. C. (2022). Mass spectrometry-based metabolomics in microbiome
investigations. Nat. Rev. Microbiol. 20, 143–160.

Bissahoyo, A., Pearsall, R. S., Hanlon, K., Amann, V., Hicks, D., Godfrey, V. L., et al.
(2005). Azoxymethane is a genetic background-dependent colorectal tumor initiator
and promoter in mice: Effects of dose, route, and diet. Toxicol. Sci. 88, 340–345. doi:
10.1093/toxsci/kfi313

Buijs, Y., Bech, P. K., Vazquez-Albacete, D., Bentzon-Tilia, M., Sonnenschein, E. C.,
Gram, L., et al. (2019). Marine Proteobacteria as a source of natural products: Advances in
molecular tools and strategies. Nat. Prod. Rep. 36, 1333–1350. doi: 10.1039/c9np00020h

Carnevale, L. N., Arango, A. S., Arnold, W. R., Tajkhorshid, E., and Das, A. (2018).
Endocannabinoid virodhamine is an endogenous inhibitor of human cardiovascular
CYP2J2 epoxygenase. Biochemistry 57, 6489–6499. doi: 10.1021/acs.biochem.8b00691

Dekker, E., Tanis, P. J., Vleugels, J. L., Kasi, P. M., and Wallace, M. B. (2019). Colorectal
cancer. Lancet 394, 1467–1480.

Feng, Q., Liang, S., Jia, H., Stadlmayr, A., Tang, L., Lan, Z., et al. (2015). Gut
microbiome development along the colorectal adenoma-carcinoma sequence. Nat.
Commun. 6:6528.

Fong, W., Li, Q., and Yu, J. (2020). Gut microbiota modulation: A novel strategy for
prevention and treatment of colorectal cancer. Oncogene 39, 4925–4943.

Gobert, A. P., Latour, Y., Asim, M., Barry, D., Allaman, M., Finley, J., et al. (2022).
Protective role of spermidine in colitis and colon carcinogenesis. Gastroenterology 162,
813–827.

Han, S., Treuren, W. V., Fischer, C. R., Merrill, B. D., DeFelice, B. C., Sanchez, J. M.,
et al. (2021). A metabolomics pipeline for the mechanistic interrogation of the gut
microbiome. Nature 595, 415–420.

Hradicka, P., Beal, J., Kassayova, M., Foey, A., and Demeckova, V. (2020). A novel
lactic acid bacteria mixture: Macrophage-targeted prophylactic intervention in colorectal
cancer management. Microorganisms 8:387. doi: 10.3390/microorganisms8030387

Huang, J., Jiang, Z., Wang, Y., Fan, X., Cai, J., Yao, X., et al. (2020). Modulation
of gut microbiota to overcome resistance to immune checkpoint blockade in cancer
immunotherapy. Curr. Opin. Pharmacol. 54, 1–10.

Huang, J., Liu, D., Wang, Y., Liu, L., Li, J., Yuan, J., et al. (2022). Ginseng
polysaccharides alter the gut microbiota and kynurenine/tryptophan ratio, potentiating
the antitumour effect of antiprogrammed cell death 1/programmed cell death ligand 1
(anti-PD-1/PD-L1) immunotherapy. Gut 71, 734–745. doi: 10.1136/gutjnl-2020-321031

Janney, A., Powrie, F., and Mann, E. H. (2020). Host-microbiota maladaptation in
colorectal cancer. Nature 585, 509–517. doi: 10.1038/s41586-020-2729-3
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