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Short-chain fatty acids (SCFAs) are metabolites of gut microbes that can modulate

the host inflammatory response, and contribute to health and homeostasis. Since

the introduction of the gut-skin axis concept, the link between SCFAs and

inflammatory skin diseases has attracted considerable attention. In this review, we

have summarized the literature on the role of SCFAs in skin inflammation, and

the correlation between SCFAs and inflammatory skin diseases, especially atopic

dermatitis, urticaria, and psoriasis. Studies show that SCFAs are signaling factors in

the gut-skin axis and can alleviate skin inflammation. The information presented in

this review provides new insights into the molecular mechanisms driving gut-skin

axis regulation, along with possible pathways that can be targeted for the treatment

and prevention of inflammatory skin diseases.
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1. Introduction

Inflammatory skin disease refers to the inflammation response in the skin, which manifests
as skin redness, swelling, itching or scaling. Common inflammatory skin diseases, including
atopic dermatitis (AD), psoriasis, acne, and urticaria, are associated with other comorbidities
and impose a significant burden on the patients (Narla and Silverberg, 2020). Although the
above diseases vary in their clinical presentation, they may share common physio-pathological
pathways (Diotallevi et al., 2022). Recent studies have shown that the gut microbiome is an
important factor influencing host immunity, inflammation and metabolism (Yao et al., 2022).
The gut-skin axis is a fairly recent concept that refers to the bidirectional relationship between
the gut microbiome and skin, and an increasing body of evidence suggests that changes in the
gut microbiome is related with skin inflammation (Kim et al., 2020; Chun et al., 2021). The
gut and the skin are both highly innervated and vascularized organs, and harbor numerous
resident microorganisms with similar functions (O’Neill et al., 2016). Furthermore, various skin
conditions have been linked to an altered gut microbiome (Pessemier et al., 2021).

Short-chain fatty acids (SCFAs), mainly including acetate, propionate, butyrate, isobutyrate,
valerate, and isovalerate, contain less than 6 carbon atoms and are the final product of the
fermentation of resistant starch and dietary fiber by specific gut microbiota (Tan et al., 2014;
Rauf et al., 2022). SCFAs are transported from the intestine to distant organs and tissues
through the peripheral circulation (Canfora et al., 2015; Hee and Wells, 2021), and bind to G
protein-coupled receptors (GPCRs) that are expressed on skin cells, leukocytes, neutrophils,
and other types of cells, thereby exerting direct influence on tissue metabolism and function
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(Krejner et al., 2018; Schlatterer et al., 2021). Recent studies
have shown that SCFAs mitigate inflammation by regulating the
production of cytokines by immune cells such as neutrophils,
macrophages, dendritic cells (DCs) and T-cells (Yao et al., 2022).
However, the role of SCFAs in inflammatory skin diseases has
not been completely elucidated. In this review, we summarized
the literature on the relationship between SCFAs and skin
inflammation, and discussed the therapeutic potential of SCFAs
against inflammatory skin diseases.

2. The potential pathway of SCFAs in
inflammatory skin diseases

The potential anti-inflammatory mechanisms of SCFAs in
inflammatory skin diseases are related to specific membrane
receptors, histone deacetylase (HDAC) inhibitors, and metabolic
pathways (Figure 1).

2.1. SCFA receptors pathway

Short-chain fatty acid receptors are activated upon binding to
the ligand and facilitate SCFAs entry into cells (Thiruvengadam
et al., 2021). The established SCFAs receptors include G protein-
coupled receptor 41 (GPR41) [a.k.a free fatty acid receptor 3
(FFAR3)] (Deng et al., 2022), G protein-coupled receptor 43
(GPR43) [a.k.a. free fatty acid receptor 2 (FFAR2)] (Schlatterer
et al., 2021), G protein-coupled receptor 109A (GPR109A) [a.k.a.
hydroxycarboxylic acid receptor 2 (HCA2)] (Krejner et al., 2018),
Olfr-78 (for murine), OR51E2 (for human) (Ohira et al., 2017), aryl-
hydrocarbon receptor (AHR) (Rosser et al., 2020) and peroxisome
proliferator-activated receptors γ (PPARγ) (Aguilar et al., 2018; Yao
et al., 2022). SCFA-mediated receptors play an important role in
regulating the inflammatory response of the host. FFAR2-deficient
mice exhibit exacerbated inflammation in mouse models of arthritis,
colitis, and asthma, and similar dysregulation in germ-free mice
with low or no SCFA expression (Maslowski et al., 2009). These
results show that SCFAs interact with GPR43 profoundly affect
the inflammatory response (Maslowski et al., 2009). SCFAs act via
FFAR2/3 to attenuate the secretion of various inflammatory cytokine
and modulate the inflammatory response of human monocytes
(Ang et al., 2016). Moreover, SCFAs activate GPR43 and GPR109a
to regulate inflammatory response of the host by downregulation
of NF-κB signaling pathway (Singh et al., 2014; Cleophas et al.,
2016). Additionally, the PPARγ not only competitively inhibits the
activation of NF-κB (Mao et al., 2012), but also cooperates with SCFAs
to suppress the phosphorylation of NF-κB signaling pathway (Zhang
et al., 2022).

Recent studies have shown that SCFA receptors are closely related
to the pathogenesis of inflammatory skin diseases. AHR expression
significantly increase in the serum and skin lesions of patients with
AD (Kim et al., 2014; Beránek et al., 2018; Hu et al., 2020), whereas
PPARγ, GPR43, and GPR109a downregulate in psoriasis (Lin et al.,
2022). Moreover, a study has indicated that butyrate can increase
the expression of GPR43 and GPR109a in psoriasis and exert anti-
inflammatory effects (Krejner et al., 2018). The binding of these
receptors to SCFAs activates intracellular signaling pathways that
regulate cellular responses, immune function, and inflammation

(Marinissen and Gutkind, 2001; Trompette et al., 2014; Haase et al.,
2018).

Taken together, alterations in the expression of SCFAs-mediated
receptors may involve in the pathogenesis of inflammatory skin
diseases (Krejner et al., 2018). Existing evidence suggests that
SCFAs may play an anti-inflammatory role in inflammatory skin
diseases by restoring the expression of SCFAs-mediated receptors,
but the specific mechanism is rarely reported. Future studies are
needed to gain insight into the anti-inflammatory role of SCFAs in
inflammatory skin diseases.

2.2. HDAC inhibition and associated
pathway

The dynamic balance between histone acetylases (HATs) and
HDACs controls chromatin structure and gene expression (Koh
et al., 2016). HDAC inhibitors deacetylate histones in the promoter
regions, resulting in the transcriptional activation of the downstream
genes. The anti-inflammatory effects of SCFAs have been attributed
to their ability to inhibit HDAC activity. For instance, SCFA blocks
CXCL10 release through HDAC inhibition, reduce inflammation and
maintain immune homeostasis and gut health (Korsten et al., 2022).
Furthermore, butyrate promotes FOXP3 expression in naive CD4+

T-cells and induces their differentiation into peripheral-derived Tregs
(pTregs) by inhibiting HDACs (Martin-Gallausiaux et al., 2018),
while acetate, propionate and butyrate can modulate the immune
response of DCs, macrophages and Treg cells by inhibiting HDACs
(Thiruvengadam et al., 2021). Imiquimod (IMQ)-induced psoriasis-
like skin inflammation model reduces the suppressive activity of
Treg, and then upregulates IL-17 and IL-6, and downregulates IL-
10 and FOXP3, whereas butyrate can reverse these progressions
by inhibiting HDACs (Schwarz et al., 2021) (Figure 1). In LPS-
activated neutrophils, application of both butyrate and propionate
inhibits NF-κB activity and reduces TNF-α production mainly
by inhibiting HDACs (Aoyama et al., 2010). In addition, SCFAs
can alleviate systemic inflammation by significantly reducing the
production of TNF-α and IL-6 through the downregulation of
HDACs mRNAs (Eslick et al., 2022). Propionibacterium acnes in the
skin activate toll-like receptor-2 (TLR-2) and promote the secretion of
inflammatory factors such as IL-6, IL-8, and TNF-α, thereby inducing
skin inflammation. This process may be attenuated by SCFAs
via inhibiting HDACs (Wang et al., 2016). Furthermore, Butyrate
enhances the expression of filaggrin (FLG) and transglutaminase-
1 (TGM1) and promotes normal human epidermal keratinocytes
(NHEKs) terminal differentiation to maintain skin homeostasis by
inhibiting HDACs (Carrion et al., 2014) (Figure 1).

Overall, SCFAs can reduce the release of inflammatory cytokines
and promote the differentiation of epidermal keratinocytes via
inhibiting HDACs, thereby playing an anti-inflammatory role in
inflammatory skin diseases.

2.3. Metabolic pathway

Short-chain fatty acids can affect cellular metabolism
by promoting mitochondrial fatty acid β-oxidation (FAO)
(Trompette et al., 2018; Bachem et al., 2019). Skin barrier
dysfunction is a common pathological feature of inflammatory
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FIGURE 1

Schematic representation of the roles of SCFAs in inflammatory skin diseases. Both gut and skin microbiota can produce SCFAs. SCFAs can enhance the
activity of Treg, improve mitochondrial metabolism, promote keratinocyte differentiation, reduce the expression of inflammatory factors in HaCaT cells,
and inhibit the inflammatory response induced by P. acnes that results in skin inflammation relief and skin barrier improvement. FLG, filaggrin; FOXP3,
forkhead box protein 3; GPCRs, G protein-coupled receptors; HaCaT, human immortalized keratinocytes; ICAM-1, intercellular adhesion molecule-1;
IFN-γ, interferon-γ; IL-6, interleukin-6; IL-8, interleukin-8; IL-10, interleukin-10; IL-17, interleukin-17; LCFAs, long-chain fatty acids; NHEKs, normal
human epidermal keratinocytes; P. acnes, Propionibacterium acnes; S. epidermidis, Staphylococcus epidermidis; SCFAs, short chain fatty acids; TGM1,
transglutaminase-1; TLR-2, toll-like receptor-2; TNF-α, tumor necrosis factor-α; Treg, regulatory T-cells; VLCFAs, very long-chain fatty acids.

skin diseases (Diotallevi et al., 2022; Trompette et al., 2022). Recent
studies have shown that SCFAs is able to improve the skin barrier
and relieve skin inflammation by altering mitochondrial metabolism
and function (Trompette et al., 2022). Butyrate is metabolized by
epidermal keratinocytes, which in turn enhances the synthesis of
keratinocyte-derived long-chain fatty acids (LCFAs) and very long-
chain fatty acids (VLCFAs), a key event in the subsequent generation
of ceramides that are critical to skin barrier function. Interestingly,
this phenomenon is limited to the skin, since butyrate has little effect
on systemic LCFA and VLCFA levels. Furthermore, butyrate can
also enhance LCFA uptake (Bachem et al., 2019; Trompette et al.,
2022) (Figure 1). Genetic variation in the mitochondrial genome
is associated with chronic inflammatory skin disease. Intriguingly,
in mice with antibody-induced dermatitis, propionate-treated
disease progression pattern is similar to that of mitochondrial gene
variant (B6-mtFVB) mice, both effectively reducing the severity of
inflammatory skin disease (Schilf et al., 2021).

Thus, the anti-inflammatory effects of butyrate on the skin can
be attributed to fueling FAO (directly and indirectly) and altering
mitochondrial metabolism, promoting keratinocyte differentiation,
and improving the skin barrier.

3. Relationship between SCFAs and
inflammatory skin diseases

Many studies have reported the interaction between SCFAs and
inflammatory skin diseases. We reviewed the effects of SCFAs on AD,
eczema, acne, chronic spontaneous urticaria (CSU), and psoriasis.

3.1. SCFAs in atopic dermatitis

Atopic dermatitis is a chronic inflammatory skin disease that is
caused by a number of genetic, environmental, and immunological
factors (Williams and Flohr, 2006). Recent studies show that the
symptoms of AD are the result of a systemic immune response
induced by changes in the gut microecology (Kim et al., 2020).
Furthermore, evidence demonstrates that the intestinal levels of
SCFAs correlate with the onset of AD. For instance, Patients
with AD have low levels of fecal SCFAs, which corresponds to a
significant reduction in the abundance of SCFA-producing bacteria
(Reddel et al., 2019). Similar trends have been observed in animal
models as well (Kim et al., 2019). Moreover, the severity of AD
correlates negatively with the abundance of butyrate-producing
bacteria (Nylund et al., 2015). A follow-up study of children aged
6–24 months revealed lower levels of butyrate and valerate in
infants with transient AD compared to the healthy infants and those
with persistent AD (Park et al., 2020). Other studies have shown
that infants younger than 3 years with AD have lower amounts
of propionate and butyrate in their first year (Ta et al., 2020).
Similar patterns have been observed in mixed age groups (Song
et al., 2016) (see Table 1). Consistent with the above findings, mice
exhibiting AD-like symptoms induced with transdermal injection of
2,4-dinitrochlorobenzene have lower SCFA levels compared to the
healthy littermates. Furthermore, the symptoms of AD in these mice
are relieved after treatment, and the SCFA levels are normalized
(Chun et al., 2021). These findings underscore the role of the SCFAs
as signaling molecules of the gut-skin axis.

The development of AD is closely related to immune
dysregulation, microbial exposure, disrupted skin barrier and
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TABLE 1 Expression levels of SCFAs in different inflammatory skin diseases.

Disease Age SCFAs involved Samples Expression
levels

(compared
to normal)

Association
with

disease

Ref.

C2 C3 C4 iC4 C5 iC5 iC6

AD 0∼3 Y
√ √ √ √

Feces C4↓, C5↓ Park et al.,
2020

3∼12 M
√ √ √

Feces C2↓, C3↓, C4↓ The reduction in
butyrate and

propionate levels
was significantly
associated with

AD.

Ta et al., 2020

√ √ √
Feces C3↓, C4↓ Song et al.,

2016

Eczema Infant
√ √ √ √

Feces C4↓, C5↓ Butyrate and
valerate levels

were negatively
correlated with

SCORAD at
12 months of

age.

Kang M. J.
et al., 2021

Infants
√ √ √ √

Feces C3↑, C4↑ at
12 weeks. This

pattern was
reversed at

26 weeks with
C3↓ and C4↓

Butyrate and
valerate levels

were negatively
correlated with

eczema.

Wopereis
et al., 2018

Infants
√ √ √

Feces C2↓, C4↓ Kim H. K.
et al., 2015

Children
√ √ √ √ √ √ √

Feces C5↓ The level of fecal
valerate at 1 year

of age was
inversely

associated with
eczema at

13 years of age.

Batta et al.,
2021

Children
√ √ √ √ √

Feces The expression
level of valerate
was negatively
correlated with
the incidence

rate of eczema.

Gio-Batta
et al., 2020

CSU 12∼60 Y
√

Feces iC4↓ Wang et al.,
2021

18∼75 Y
√

Feces and
blood

C4
metabolism↓

Lower butyrate
levels due to

dysregulation of
the gut

microbiota may
play an

important role
in the

pathogenesis of
CSU.

Wang et al.,
2020

Psoriasis
√ √ √ √

Blood iC4↑, C5↑,
C2↓, C3↓

Khyshiktuev
et al., 2008

AD, atopic dermatitis; C2, acetate; C3, propionate; C4, butyrate; i-C4, iso-butyrate; C5, valerate; i-C5, iso-valerate; i-C6, iso-caproate; CSU, chronic spontaneous urticaria; HDACi, histone
deacetylases inhibition; M, months old; Y, years old; Ref., references; SCORAD, scoring of atopic dermatitis.

intestinal dysbiosis (Elias and Steinhoff, 2008). An imbalance
between the pro-inflammatory CD4+IL17+ T-cells and the
anti-inflammatory CD4+FOXP3+ regulatory T-cells (Tregs) in

the gut may be a key determinant of early AD development
(Kim et al., 2020). Both propionate and butyrate contribute to the
accumulation of Tregs in the colon through activation of DCs and
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T-cells or G protein signaling (Arpaia et al., 2013; Smith et al.,
2013). Therefore, restoring the balance between the intestinal
T-cell subpopulations by SCFAs supplementation may mitigate
the symptoms of AD (Kim et al., 2020). Low levels of SCFAs
may also increase intestinal permeability and disrupt its barrier
function, eventually triggering AD (Benedetto et al., 2011). SCFAs
are partly absorbed by the intestine and the remainder enter the
bloodstream, and are distributed to various organs and tissues
(Boets et al., 2017; Vonk and Reckman, 2017). Therefore, SCFAs
may act directly on skin cells to regulate the barrier function
(Schauber et al., 2006, 2008; Sunkara et al., 2012; Carrion et al.,
2014; Wei et al., 2017). Keratinocytes exposed to TNF-α and IFN-γ
express aberrantly high levels of the pro-inflammatory cytokine
IL-6, and the intercellular adhesion molecule-1 (ICAM-1), which
in turn recruit monocytes to the epidermis. These inflammatory
keratinocytes involve in the pathophysiology of AD. SFCAs markedly
reduce IL-6 and ICAM-1 mRNA levels in human keratinocytes
(HaCaT cells) stimulated with TNF-α and INF-γ in vitro (Chun
et al., 2021) (Figure 1). In addition, butyrate also inhibits the
inflammatory phenotype of cultured human keratinocytes by
inducing acetylation of histone H3 lysine 9 (AcH3K9) (Meijer et al.,
2010; Traisaeng et al., 2019).

The pathogenesis of AD is also related to an imbalance in the
skin microecology. The skin of AD patients is more susceptible
to the colonization and overgrowth of pathogenic bacteria due to
the lower abundance of probiotic bacteria (Leung, 2013), which
inhibit the growth of pathogens through metabolites (Iwase et al.,
2010; Naik et al., 2012; Ren et al., 2013). For instance, the
SCFAs produced during fermentation by beneficial bacteria have
an inhibitory effect on community-associated methicillin-resistant
Staphylococcus aureus (Kao et al., 2017). S. aureus is abundant
in the AD skin, and promotes inflammation by binding to and
activating TLR-2, resulting in IL-4-mediated inhibition of IL-10
(Leung, 2013; Kaesler et al., 2014). SCFAs not only improve the
local skin microflora but also restrain the migration of immune cells
and the production of TNF-α, IL-6, and IL-8 (Wang et al., 2016)
(Figure 1).

In summary, SCFAs are closely related to the pathogenesis
of AD. The level of SCFAs in AD patients is generally lower
than that in healthy controls. Low levels of fecal SCFAs may
increase intestinal permeability and induce AD. However,
transcutaneously induced AD-like animal models can also
reduce intestinal SCFAs levels, but little is known about SCFAs
expression in lesion skin. In future studies, it is recommended
to add the measurement of SCFAs expression in AD-damaged
skin to better illustrate the role of SCFAs in inflammatory skin
diseases.

3.2. SCFAs in eczema

Eczema is a common inflammatory skin disease with
underlying genetic and environmental causes. Studies show
that gut microecology is an important environmental factor in the
occurrence of eczema, and SCFA levels can predict the risk of eczema
(Kim H. K. et al., 2015). The decrease in SCFA level precedes eczema
symptoms (Sandin et al., 2009; Kim H. K. et al., 2015). Lower levels
of fecal butyrate and valerate have been observed in 6-month-old
infants with eczema, and butyrate levels, in particular, have negative
correlation with the development of eczema (Wopereis et al., 2018;

Kang M. J. et al., 2021). This is consistent with the inverse correlation
between low microbial complexity in early infancy and the likelihood
of allergies in later life (Wang et al., 2007; Bisgaard et al., 2011;
Ismail et al., 2012; Victora et al., 2016; Roduit et al., 2019; Cheng
et al., 2022). Furthermore, most patients with eczema have low levels
of SCFAs, and low fecal valerate levels in childhood is related to a
higher incidence of eczema in youth (Gio-Batta et al., 2020; Batta
et al., 2021). These findings indicate that low levels of SCFAs may
increase the susceptibility to eczema. However, research concerning
the role of SCFAs in the pathogenesis of eczema is mainly focused
on infants and young children, and it is unclear whether these
findings can be extrapolated to adult patients as well. More clinical
evidence is needed to elucidate the correlation between SCFAs and
eczema.

Interleukin-17 (IL-17) is expressed in different subtypes of
eczema and can enhance the inflammatory symptoms (Simon
et al., 2014). Valerate can inhibit IL-17 release by promoting IL-
10 production via the CD4+ T-cells and regulatory B-cells, a
process which involves reprogramming lymphocyte metabolism
and inhibition of HDAC activity (Yuille et al., 2018; Luu et al.,
2019). Butyrate can also diffuse through the intestinal epithelial
cells, promote the differentiation of naive T-cells to Tregs, and
prevent allergic diseases such as eczema (Kim H. K. et al., 2015).
Furthermore, the development of eczema is often associated with
impaired skin barrier function (Lee et al., 2021). Keratin (KRT1)
and FLG play a crucial role in the maintenance of a healthy
skin barrier (Freedberg et al., 2001; Pfisterer et al., 2021). KRT1-
deficient mice have a compromised skin barrier, and their skin
transcriptome resembles that of eczema skin (Roth et al., 2012).
Valerate can improve skin tissue integrity and barrier function
by upregulating KRT1 and tight junction proteins (Li et al.,
2020; Nguyen et al., 2020). Recent studies reveal that the etiology
of eczema is closely related to the genetic loss of FLG, which
leads to dryness and impaired skin barrier function (Kalb et al.,
2022). Butyrate and propionate can increase the expression of FLG
protein by inhibiting the activity of HDAC, and restoring the
function and permeability of the epidermal barrier (Kleuskens et al.,
2022).

Taken together, low levels of SCFAs may increase susceptibility
to eczema. SCFAs are capable of improving the skin barrier
and alleviating the skin inflammation of eczema. However,
the clinical application of SCFA in eczema needs further
investigation.

3.3. SCFAs in acne

Acne is a common inflammatory skin condition caused by the
overgrowth of P. acnes (Kong and Segre, 2012; Scanlan et al.,
2012; Wu et al., 2021). The probiotic Staphylococcus epidermidis can
inhibit bacterial colonization and P. acnes-induced inflammation at
the lesions by producing SCFAs (Wang et al., 2016). Propionate
and butyrate are ligands of GPR41 (Park et al., 2007), which are
upregulated through the SCFAs produced by S. epidermidis. In
addition, the latter may alleviate P. acnes-induced inflammation
by inhibiting HDAC activity (Wang et al., 2016). The protective
function of SCFAs depends on the routes of administration.
Subcutaneous injection of SCFAs and P. acnes in mice abrogated
the upregulation of inflammatory genes, as opposed to topical
application of the SCFAs on the back (Sanford et al., 2016). These
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results indicate that SCFAs can inhibit the growth of P. acnes,
and their anti-inflammatory effects depend on the mode of
application. The exact mechanisms underlying the differential
effects of SCFAs on the epidermal and subcutaneous tissues
are unclear. The same SCFAs may exert different effects in
different application environments. How to apply SCFAs safely
and effectively against skin inflammation (the dose of SCFAs,
the site, and the application environment, etc.) become research
highlights.

3.4. SCFAs in chronic spontaneous
urticaria

Chronic spontaneous urticaria is a type of chronic inflammatory
dermatosis that is predominantly mast cell-driven (Zuberbier et al.,
2021; Peng et al., 2022). Alterations in gut metabolites may exacerbate
the inflammatory response and immune dysfunction during the
pathogenesis of CSU (Wang et al., 2020). In addition, reduced
SCFAs accumulation due to an imbalance in the intestinal flora may
play an important role in the pathogenesis of CSU (Wang et al.,
2020). Clinical studies have shown that the levels of fecal isobutyrate
(Wang et al., 2021) and serum butyrate (Wang et al., 2020) are
lower in CSU patients compared to that in healthy individuals.
This is consistent with the observation that butyrate represses mast
cell proliferation, degranulation and cytokine production in mice
(Galli et al., 1982; Diakos et al., 2006), and reduces the levels
of inflammatory cytokines (Wang et al., 2018). SCFAs bind to
receptors (such as GPR43 and PPARγ) that are expressed on mast
cells (Sugiyama et al., 2000; Karaki et al., 2006), and inhibit the
inflammatory response, mast cell maturation, and even dermatitis
(Tachibana et al., 2008; Maslowski et al., 2009; Sina et al., 2009).
Thus, SCFA-specific receptors expressed on mast cells are potential
therapeutic targets for CSU. A recent study demonstrates that SCFAs
suppress the activity of human and murine primary mast cells
by inhibiting HDAC independent of GPR41, GPR43, and nuclear
PPAR receptors (Folkerts et al., 2020). This suggests that SCFAs
inhibit mast cell activation and inflammatory responses through
multiple pathways. In addition, SCFAs can inhibit mast cell activation
in vitro and in vivo at levels comparable to that in the intestine
and serum of human, without affecting cell viability (Cummings
et al., 1987; Wong et al., 2006). Therefore, it may be a promising
direction to study the pathogenesis and treatment of CSU based on
SCFAs.

3.5. SCFAs in psoriasis

Psoriasis is an immune-mediated inflammatory skin disease
with complex pathogenesis (Rodriguez et al., 2014; Rendon and
Schäkel, 2019). It manifests as chronic inflammation and subsequent
epidermal hyperplasia, resulting in silvery scales and thickening of
the skin (Rodriguez et al., 2014). Altered intestinal microecology is
a pathological factor in psoriatic development (Lu et al., 2021). One
study discovers that serum acetate and propionate levels are lower in
patients with psoriasis compared to healthy individuals (Khyshiktuev
et al., 2008). Furthermore, serum acetate and propionate levels
correlate negatively with that of IL-23/IL-27 in an IMQ-induced
mouse model of psoriasis, and administration of these SCFAs

alleviates the inflammatory symptoms (Lu et al., 2021). Psoriatic
progression depends on the activation of the TNF-α/IL-23/IL-17
signaling axis, and the hyperproliferation and aberrant differentiation
of epidermal keratinocytes (Takeshita et al., 2017; Furue et al.,
2018). IL-23 induces the transformation of Tregs to the T helper
type 17 (Th17) cells, whereas IL-17A reduces transforming growth
factor (TGF)-β1 production and Foxp3 expression, and inhibits Treg
activity (Rodriguez et al., 2014; Stockenhuber et al., 2018; Kanda
et al., 2021). Decreased Treg activity in patients with psoriasis is
closely related to the level of SCFAs (Kanda et al., 2021), and
the beneficial effects of SCFAs are also dependent on the role
of Tregs (Schwarz et al., 2021). In addition, the genes involved
in SCFA metabolism are significantly downregulated in patients
with psoriasis, which may be associated with Treg dysfunction
(Ahn et al., 2016). Administration of SCFAs can improve the
symptoms of psoriasis by inhibiting HDACs in the Tregs and
restoring their activity (Smith et al., 2013; Schwarz et al., 2021).
Furthermore, SCFAs can promote the expansion of peripherally
derived Tregs (Kaisar et al., 2017; Martin-Gallausiaux et al., 2018;
Isobe et al., 2020), although there is a lack of psoriasis-targeted
studies.

G protein-coupled receptor 109A and GPR43 are expressed at
significantly lower levels in the keratinocytes of psoriasis patients
compared to that of healthy individuals, and topical application
of butyrate can restore their expression levels (Krejner et al.,
2018). In addition, in vitro experiments have shown that butyrate
can upregulate filaggrin and TGM1 transcripts in cultured human
keratinocytes and promote the formation of cornified envelope
(Carrion et al., 2014), which may help improve psoriatic lesions. In
fact, topical application of SCFAs reduce both IMQ-induced psoriasis
and systemic inflammatory responses in mice (Schwarz et al., 2021).
Hence, these studies suggest that SCFAs may be involved in the
regulation of psoriasis by restoring Treg activity and promoting the
formation of cornified envelope.

4. SCFA-based therapy for
inflammatory skin diseases

In recent years, SCFAs have emerged in the field of inflammatory
skin diseases as an anti-inflammatory modulator, but it is still in its
infancy. Therefore, understanding the application of SCFAs in the
treatment of inflammatory skin diseases can pave a path for future
clinical practice.

4.1. Topical administration of SCFAs in
inflammatory skin diseases

The skin is the first line of defense against biological, physical,
and chemical stresses (Coppola et al., 2022). Numerous viruses,
bacteria, archaea, fungi, and mites reside on the skin surface which
constitute the skin microbiome (Eisenstein, 2020). Skin-resident
microbes maintain cutaneous homeostasis and regulate the local
inflammatory response (Chen et al., 2018), and any disruption in the
skin microbiome can induce an inflammatory reaction (Pessemier
et al., 2021). Local application of SCFAs can promote the growth
of beneficial microbes, and topical administration of probiotics
promotes the release of SCFAs to mitigate skin inflammation
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(Kim C. H. et al., 2015). In a trial to validate acetate for AD, topical
application of apple cider vinegar (0.5% acetate) for 2 weeks did
not affect the skin microbiome of healthy subjects and AD patients
compared to the water placebo group, and also did not prevent the
colonization of S. aureus on the inflamed skin (Luu et al., 2021).
However, no significant difference was observed in the diversity
of the skin microbiome between the AD patients and healthy
subjects at baseline (Luu et al., 2021). Therefore, the inhibitory effect
of apple cider vinegar on S. aureus growth may depend on the
bacterial strain and the levels of acetate (Fraise et al., 2013). On the
other hand, in mice with IMQ-induced skin inflammation, topical
injection of acetate led to further exacerbation of skin inflammation
(Nadeem et al., 2017). Similarly, topically (2% w/w) and systemically
administered (200 mmol/L) acetate was used to enhance psoriasis-
like signs in an animal model of IMQ-induced psoriasis (Karamani
et al., 2021). Therefore, the net effects of the actions of SCFAs are
context-dependent and can be pro- or anti-inflammatory (Schilf
et al., 2021). The exact effects of SCFAs may depend on the type of
SCFAs, the delivery method, the levels and the health condition of
hosts (Xiong et al., 2022). Moreover, fermentation initiators such as
sucrose can selectively promote SCFA production by the probiotic
S. epidermidis, and improve acne dysbiosis (Wang et al., 2016).
Topical application of butyrate not only inhibits allergic contact
inflammation in a mouse model (Schwarz et al., 2017), but also
alleviates skin inflammation and the expression of inflammatory
factors related to psoriasis (Schwarz et al., 2021).

However, most SCFAs have an offensive odor and are
therapeutically effective only at certain concentrations (Kao et al.,
2017; Traisaeng et al., 2019), which significantly limit their clinical
use. SCFA derivatives can obviate these limitations. The butyrate
derivative BA-NH-NH-BA consists of two butyrate molecules with
a -NH-O-NH- linker. It inhibits HDAC activity at a lower level
compared to butyrate, and mitigates S. aureus growth and the
inflammatory response in a mouse model (Traisaeng et al., 2019).
Taken together, the topical application of SCFAs have broad effects
on the skin microbiome, skin barrier, and related inflammatory
factors.

4.2. Oral supplementation of SCFAs in
inflammatory skin diseases

Gut microbes have the ability to modulate systemic inflammation
(Bowe et al., 2014), and imbalances in the gut microbes can manifest
as inflammatory skin diseases (O’Neill et al., 2016). The beneficial
effects of the gut microbiota on host health are closely associated
with SCFAs (Tan et al., 2014). Given the similarities in the gut
and skin microbiomes, orally administered SCFAs can potentially
exert an anti-inflammatory effect on the skin as well (Schwarz et al.,
2017).

Probiotics are living microorganisms that have beneficial effects
on host health, and can maintain intestinal homeostasis by restoring
SCFA levels (Zanten et al., 2012). Studies increasingly show that
skin inflammation is closely related to SCFA production. Oral
administration of Bifidobacterium adolescentis in mice with DNFB-
induced AD significantly improves AD-like symptoms, such as
skin damage and swelling, which correlates with increased levels
of propionate and butyrate and decreased levels of isovalerate
(Fang et al., 2020). Regular cheese consumption also introduces

probiotics into the gastrointestinal tract and increases the production
of SCFAs (Ríos-Covián et al., 2016; Kim et al., 2019). In one study,
the neuroprotective effects of Lactococcus chungangensis CAU 28-
fermented cream cheese and L. chungangensis CAU 28 dry cells
are compared in a mouse model of AD. The CAU 28 cream
cheese results in better outcomes, which can be attributed to a
more abundant supply of SCFAs compared to the bacterial cells.
Furthermore, oral administration of CAU 28 cream cheese induces a
coordinated immune response involving SCFAs and gut microbiota,
and effectively improves symptoms of AD (Kim et al., 2019). Oral
supplementation with multistrain probiotics (IRT5) can be the
alternative therapeutics for the prevention and treatment of skin
allergies. Its mechanism of action is mainly attributed to IRT5-
induced propionate which is the key immunomodulatory metabolite
for the Treg cells expansion and relieving skin inflammation (Kang H.
J. et al., 2021). Moreover, A study has showed that sialyllactose and
galactooligosaccharides are capable to promote re-epithelialization
and repair epidermal wound, which is related to differential changes
in SCFA profiles (Perdijk et al., 2019).

Glycomacropeptides (GMPs) are bioactive peptides extracted
from dietary proteins that are beneficial to human health (Artym and
Zimecki, 2013). Prophylactic feeding of glycopeptides induces SCFA
production, and prevents and reverses AD-like skin lesions in rats.
Studies show that the protective effect of GMPs on the skin barrier
may be mediated by the direct effects of acetate and butyrate on local
skin cells (Jiménez et al., 2020). Taken together, oral administration
of SCFAs can alleviate the symptoms of inflammatory skin diseases.
More clinical studies are needed to confirm the effectiveness of oral
supplementation of SCFAs.

5. Conclusion

The skin anti-inflammatory effects of SCFAs have been studied
in rodents experimental models, but the implication of these findings
to the human population is still debatable. Restoring the production
of SCFAs may relieve the symptoms of skin inflammation by
directly inhibiting the inflammatory factors, improving immune
homeostasis, and preventing colonization by pathogenic bacteria.
Nevertheless, the mechanism of SCFAs toxicities remains largely
unknown.

The current understanding of SCFAs-associated anti-
inflammatory effects in inflammatory skin diseases is still limited
and is a nascent area of research that requires further investigation.
Targeted metabolomics of lesioned skin specimens in patients
with inflammatory dermatoses may provide new insights into
the molecular basis of their action. Several studies focus on the
predominant SCFAs including acetate, propionate, and butyrate.
Nevertheless, little is known regarding the effects of other SCFAs,
which may play a key anti-inflammatory role. Future studies on
valerate and isobutyrate may bring new perspectives on the effects
of SCFAs on inflammatory skin diseases. Given the unpleasant
taste of SCFAs, it is necessary to develop derivatives that are
functionally similar and can be incorporated into clinical application.
However, the long-term safety and efficacy of SCFA derivatives
warrant further investigation. Encouraging evidence supports
the effect of SCFAs in the treatment of AD, psoriasis, acne, and
urticaria and SCFAs have therapeutic potential against chronic
wounds, alopecia, and seborrheic dermatitis as well. Given the
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close correlation between SCFA expression and skin inflammation
occurrence, SCFAs could be used to detect the therapeutic efficacy
and to predict the prognosis of inflammatory skin diseases. A deeper
understanding of SCFAs in inflammatory skin diseases provides a
systematic theoretical basis for studying SCFAs as potential drugs for
promoting human skin health.
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