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Remediation of environmental toxic pollutants has attracted extensive

attention in recent years. Microbial bioremediation has been an important

technology for removing toxic pollutants. However, microbial activity is also

susceptible to toxicity stress in the process of intracellular detoxification,

which significantly reduces microbial activity. Electroactive microorganisms

(EAMs) can detoxify toxic pollutants extracellularly to a certain extent, which

is related to their unique extracellular electron transfer (EET) function.

In this review, the extracellular and intracellular aspects of the EAMs’

detoxification mechanisms are explored separately. Additionally, various

strategies for enhancing the effect of extracellular detoxification are

discussed. Finally, future research directions are proposed based on the

bottlenecks encountered in the current studies. This review can contribute

to the development of toxic pollutants remediation technologies based on

EAMs, and provide theoretical and technical support for future practical

engineering applications.

KEYWORDS

electroactive microorganism, toxic pollutants, toxicogenic mechanism,
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Introduction

Toxic pollutants can be enriched in living organisms through a series of migration
and transformation, resulting in carcinogenic, teratogenic, and mutagenic effect. The
sources of toxic pollutants are diverse and ubiquitous in the environment (Ma et al., 2016;
Zhang et al., 2016; Sun et al., 2022b). Treating toxic pollutants efficiently has always been
a focus and a difficult task in the field of environmental remediation.
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GRAPHICAL ABSTRACT

The toxicogenic mechanisms of toxic pollutants and the detoxification mechanisms of electroactive microorganisms.

Microbial remediation is the most commonly used
technology to treat toxic pollutants, but toxicity stress causes
a bottleneck in the efficient and stable microbial remediation.
Microorganisms generally transfer toxic pollutants to cells
for metabolism, achieving detoxification by degrading the
pollutants. However, degradation and detoxification are
sometimes not completely synchronous. Liu et al. (1998) found
that although pyridine was degraded by microorganisms,
the microbial toxicity increased with the formation of the
intermediate methylpyridine in this process, thus inhibiting the
activity of microorganisms and even leading to system collapse.

It has been reported that electroactive microorganisms
(EAMs) show better activity than that of other microorganisms
under toxicity stress (Zheng et al., 2020; Chaudhary et al., 2022).
Desulfovibrio, an electroactive sulfate-reducing bacteria, became
the dominating bacteria at the genus level and accounted for
32% of the relative abundance after 150 days under the toxicity
stress of Cr(VI), despite the fact that it was scarce in the
initial inoculum (Qian et al., 2022). The most likely explanation
for this phenomenon is that EAMs have a unique metabolic
pathway that can perform extracellular electron transfer (EET)
with redox active substances to complete a series of metabolic
activities (Li and Yu, 2015; Logan et al., 2019). However, the
correspondence between the extracellular metabolism and the

detoxification ability of EAMs and the related mechanisms still
need to be clarified further.

The toxic pollutants remediation technology based on
EAMs has the advantages of environmental friendliness and
low cost, considered to be the most green and sustainable new
environmental pollution treatment method at present (Li and
Yu, 2015; Xu et al., 2019). Despite various reviews on the EET
mechanism of EAMs (Xiao and Yu, 2020; Xie et al., 2020;
Thapa et al., 2022), there haven’t many relevant summaries
that are pertinent to the detoxification mechanism of EAMs
under pollutants’ toxicity stress. This review summarizes the
toxicogenic mechanisms of toxic pollutants to microorganisms,
the detoxification mechanisms of EAMs to these pollutants
and several strategies to strengthen extracellular detoxification,
as well as prospects for possible future research directions
based on conclusions regarding the problems encountered in
current research.

Toxicogenic mechanisms of toxic
pollutants to microorganisms

There are two main toxicogenic mechanisms of toxic
pollutants to microorganisms, including the following: on
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FIGURE 1

Toxicogenic mechanisms of toxic pollutants.

the one hand, the electrophilic groups of toxic pollutants
can directly covalently bond with the nucleophilic groups of
biological macromolecules (Dudev and Lim, 2014); on the
other hand, numerous reactive oxygen species (ROS), which are
produced in the oxidation-reduction process of toxic pollutants,
oxidize biological macromolecules (Figure 1; Guo et al., 2021).
The essence of these two mechanisms is that toxic pollutants
with strong electrophilicity directly or indirectly react with
biological macromolecules to destroy the structure and function
of cells, finally leading to apoptosis (Roy et al., 2005).

Covalent binding to biological
macromolecules

In microbial cells, the electrophilic groups of toxic pollutants
or their metabolites can covalently bind with nucleophilic
groups in biological macromolecules, thus changing the
structure and function of biological macromolecules, such as
DNA and proteins, and causing a series of harmful biological
effects (Jiang et al., 2022).

Because its bases contain many nucleophilic sites, DNA
can covalently bind with electrophilic toxic pollutants or their
metabolites to form stable complexes (Shibata and Uchida,
2019). For example, heavy metals can covalently bind with
the nitrogen atoms located on DNA bases (Tanaka and Ono,
2008); the intermediate product (high-activity electrophilic diol
epoxide), which is produced in the intracellular metabolic
process of polycyclic aromatic hydrocarbons in microbes, can
covalently bind with deoxyguanosine (Vondracek and Machala,
2021). There are two ways to cross-link DNA by toxic pollutants,
including intrachain interactions and interchain interactions,

and the formation of complexes causes DNA double strands to
unwind and bend (Park et al., 2005).

Because of its nucleophilic groups (e.g., amino, sulfhydryl,
and carboxyl), proteins can also be covalently modified,
resulting in various harmful biological effects (Wells and Winn,
1996). For example, acetaldehyde can covalently bind with
various proteins (e.g., albumin, erythrocyte protein, tubulin,
lipoprotein, and cytochrome enzymes involved in ethanol
metabolism) to form complexes, thus interfering with the
physiological functions of proteins and stimulating the immune
response of cells (Israel et al., 1986; Smith et al., 1989; Wehr
et al., 1993). Moreover, Mauch et al. (1986) proved that the
free lysine e-amino group is an important target of proteins
that covalently bind with acetaldehyde. In addition, heavy
metals can bind with thiol groups that are located on proteins
and damage protein folding or the combination of cofactors
and enzymes, thus destroying the normal biological activity of
proteins (Sharma and Melkania, 2018).

Accumulation of reactive oxygen
species

Reactive oxygen species are oxygen derivatives, such as
superoxide anions, hydroxyl radicals, and hydrogen peroxide,
which are produced by enzymatic reactions during the normal
metabolic activities of microorganisms (Sun et al., 2022a). Under
normal physiological conditions, the content of intracellular
ROS in microorganisms is dynamically balanced, and a
small amount of ROS can be removed by the antioxidant
system. However, due to the limited scavenging capacity
of antioxidant systems, excessive ROS may damage the
activities and functions of various antioxidant-related enzymes
(Ballard and Towarnicki, 2020; Sies and Jones, 2020; Sun
et al., 2022a). The intake of toxic pollutants (e.g., polycyclic
aromatic hydrocarbons and heavy metal ions) can promote
the production of ROS (Gao et al., 2019; Vondracek and
Machala, 2021). Excessive ROS mainly act on lipids, proteins
and DNA in cells, causing oxidative damage and finally
affecting the normal physiological and metabolic activities of
microorganisms (Tekpli et al., 2011).

When a large amount of ROS accumulates in cells,
the rich lipids in the cell membrane are greatly damaged.
The peroxidation of lipids may change the physiological
characteristics of the membrane and disturb the lipid asymmetry
of the membrane, thus changing the fluidity of the membrane.
As a result, membrane depolarization and an eventual loss
of integrity occurs (Tekpli et al., 2011). With a microbial
electron microscope, Morcillo et al. (2016) observed that the
structure of the microbiological cell membrane was obviously
damaged after exposure to toxic heavy metals. However,
damage to the membrane structure not only affects the process
of microbiological substrate intake but also promotes the
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accumulation of toxic pollutants in cells, thus aggravating the
toxicity effects on microorganisms (Chen et al., 2020b).

Reactive oxygen species undergo oxidation reactions with
intracellular structural and functional proteins, and these
reactions include the removal of carboxyl groups, formation
of carbonyl groups, and oxidation of sulfhydryl groups (Wells
et al., 1997). For example, iron will react with hydrogen peroxide
to generate more active ·OH (Fenton reaction), leading to
the oxidation of amino acids such as histidine, tyrosine, L-
cysteine (Yan et al., 2021). The oxidative damage caused by these
reactions leads to the crosslinking of proteins, changes in amino
acid composition and protein structure, which will change or
destroy the function of the protein (Davies et al., 1991).

Reactive oxygen species can also directly destroy the double-
stranded structure of DNA through the shear action of oxidation
reactions (Radzig et al., 2013). Thiebault et al. (2007) found
that a high concentration of U could induce the production of
ROS and cause irreversible damage to DNA. Not all ROS cause
oxidative damage in the same way, ·OH can directly react with
DNA, while other less active ROS is through a series of reactions
into a higher active ROS such as ·OH and ·ONOO− playing
an oxidizing role. For example, ·O−2 can’t directly lead to DNA
damage, but can react with NO to generate ONOOH, resulting
in oxidative damage to DNA (van der Vliet et al., 1995).

Detoxification mechanisms of
electroactive microorganisms

Since contact with the cell membrane and entry into cells
is a prerequisite for the pollutants’ toxicity effects on EAMs,
microorganisms generally produce a series of responses in the
cell to achieve detoxification under toxicity stress. However,
due to the limited capacity of this intracellular detoxification,
it is difficult for microorganisms to maintain good activity for
a long time under toxic stress. Recent studies have reported
that EAMs perform better activity than normal microorganisms
under toxicity stress (Zheng et al., 2020; Chaudhary et al., 2022).
Unlike normal microorganisms, EAMs can transfer electrons
to the extracellular space through their unique EET pathway
(Chaudhary et al., 2022). At the same time, toxic pollutants
with strong electrophilicity can be used as the final electron
acceptors in the process of extracellular respiration due to their
good ability to accept electrons (Roy et al., 2005). Therefore, in
addition to intracellular detoxification, EAMs can also detoxify
toxic pollutants through the EET pathway.

Intracellular detoxification

Under suitable environmental conditions, EAMs can
detoxify toxic pollutants by their intracellular metabolic activity,
similar to other microorganisms. The intracellular metabolic

activity of EAMs also depends on the intracellular electron
transfer (IET) pathway, which is mainly composed of three
parts, namely, various functional enzymes, quinone pools (e.g.,
menadione or ubiquinone) and c-type cytochromes (cyt-cs)
(Chen and Strous, 2013). Among them, quinone pools can
mediate electron transfer between the cytoplasm and periplasm;
cyt-cs can play a role in electron transfer among various
enzymes (Yang et al., 2020).

Enzymes play an important role in the IET pathway,
and several studies have proven that they mediate nearly all
reactions in organisms (Zumstein and Helbling, 2019). In
the process of detoxification of toxic pollutants by EAMs, a
complete IET pathway often contains a variety of enzymes,
such as monooxygenase, dioxygenase, and dehydrogenase,
which may be needed in the detoxification of complex
organics such as polycyclic aromatic hydrocarbons (PAHs)
by EAMs (Ismail et al., 2022). The O2 content in the
environment affects the detoxification of toxic pollutants
by EAMs (Alegbeleye et al., 2017). The first step in the
detoxification of PAHs by EAMs (e.g., Pseudomonas aeruginosa
and Ochrobactrum anthropi) under aerobic conditions is
to reduce the number of benzene rings, which occurs in
two ways: through monooxygenase and dioxygenase (Logan
et al., 2019; Ismail et al., 2022). Monooxygenase combines
an oxygen atom into PAHs to form oxidized aromatic
hydrocarbons, and then hydrates with epoxidase to form
trans-dihydrodiol or spontaneously isomerizes to form phenols
(Fuchs et al., 2011). Dioxygenase decomposes the aromatic ring
to form cis-dihydrodiol, which is then transferred to NAD+

by dehydrogenase while the important intermediate product
catechol is metabolized (Alegbeleye et al., 2017). Finally, the
hydrolase opens the ring of catechol in the ortho position
to form cis, cis-muconic acid or opens the ring by ring
transformation to form 2-hydroxymuconic semialdehyde (Seo
et al., 2009). The detoxification of PAHs by microorganisms
can also occurs under anaerobic conditions through using
inorganic salts, such as nitrate and sulfate, and metal ions,
such as trivalent iron and high-valent manganese, as electron
acceptors for respiration to oxidize PAHs to low molecular
weight substances (Nzila, 2018). Similarly, EAMs can detoxify
Cr(VI) intracellularly under aerobic and anaerobic conditions.
Under aerobic conditions, reductants such as Cr(VI) reductase,
dimer glycoprotein, and n-ethylmaleimide reductase can
mediate the reduction reaction of Cr(VI). Under anaerobic
conditions, water-soluble and fat-soluble reductase such as
cytochrome enzyme, hydrogenase, and flavin reductase mediate
the reduction of Cr(VI) (Thatoi et al., 2014; He et al., 2020).

Although intracellular detoxification can transform toxic
pollutants into low-toxicity substances, sometimes the toxicity
effects on EAMs are enhanced in the process. Formation
of toxic intermediates (Table 1) and ROS is the reason for
increased toxicity. In addition, due to the limited intracellular
detoxification, there are still some toxic pollutions can directly
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TABLE 1 A list of microbial toxicity of parent pollutants weaker
than metabolites.

Pollutant Intermediate/Final
product

References

Pentachlorophenol Tetra-chloro-benzoquinone
and 2,5-dichloro-3,6-
dihydroxy-1,4-benzoquinone

Bryant and Schultz,
1994

Phenanthrene Pyrogallol Wang et al., 2021

2,4-Dichlorophen
oxyacetic acid

2,4-Dichlorophenol Seck et al., 2012

Trichloroethylene Vinyl chloride Dolan and McCarty,
1995

Nitrosamine Alpha-hydroxynitrosamine Loeppky and Shi,
2008

Inorganic arsenic Methylarsonic acid and
dimethylarsinic acid

Vahter, 2002

Inorganic lead Trimethyl lead and triethyl
lead

Li X. X. et al., 2020

Inorganic mercury Methylmercury Pan-Hou, 2010

cause toxicity effects on EAMs (Rathore et al., 2022). At the same
time, the toxicity of these pollutions can attack enzymes as a
class of proteins (Feng et al., 2015). Therefore, the intracellular
detoxification effect of EAMs can be inhibited under toxic
stress. Chang et al. (2016) reported that two homologous strains,
Trichoderma asperellum PTN7 and PTN10, exhibited different
tolerance and detoxification capacity under the toxicity stress
of Cr(VI). This is mainly related to the different reduction
capacities of the two strains to extracellular crude enzyme.
Due to its superior extracellular reduction ability, PTN10 can
alleviate the process of DNA and protein damage caused by
ROS produced during the intracellular reduction of Cr(VI), thus
showing better toxicity tolerance and biological activity than
PTN7 (Xia et al., 2021).

In conclusion, the intracellular metabolism of EAMs
can detoxify toxic pollutants, but compared to extracellular
detoxification, this method is more negative. Because contact
with the cell membrane and entry into cells is a prerequisite
for the toxicity effects of toxic pollutants on EAMs, intracellular
detoxification cannot fundamentally play a detoxification
role, which explains why normal microorganisms are unable
to maintain long-term good activity in the environment
under toxic stress.

Extracellular detoxification

The extracellular detoxification mechanism of EAMs is
mainly to reduce the electrophilicity of toxic pollutants by
extracellular reduction, thereby reducing the pollutants’ toxicity
effects (Chen et al., 2019; Cui et al., 2021). Nitroaromatic
hydrocarbons are common toxic organic pollutants. Due to the
strong electrophilicity of the nitro groups located on benzene

rings, nitroaromatic hydrocarbons are not easily oxidized by
microorganisms but are easily reduced (Tas and Pavlostathis,
2014). It has been reported that EAMs can achieve the
extracellular reduction of nitroaromatic hydrocarbons through
the EET pathway. For example, Geobacter metallireducens
and Shewanella putrefaciens CN32 can transfer the electrons
obtained by the oxidation of substrates to nitroaromatic
hydrocarbons through extracellular iron oxides, thus promoting
the reduction of nitro groups to produce amino aromatic
hydrocarbons with low toxicity (Tobler et al., 2007; Luan et al.,
2015). In addition, the extracellular reduction of EAMs can
also act on toxic inorganic pollutants, such as Cr(VI) (Xia
et al., 2021). Because Cr(VI) is reduced to Cr(III) with low
electrophilicity through extracellular reduction, its toxicity to
EAMs decreased to 1/100 of the original level (Chang et al.,
2016). Therefore, the extracellular reduction of toxic pollutants
by EAMs is an effective detoxification mechanism (Table 2).

Electroactive microorganisms, as a complex with strong
catalysis, promote the extracellular redox process of toxic
pollutants to achieve detoxification (Xie et al., 2020). The EET
pathway is the key to the extracellular detoxification ability
of EAMs, which is composed of a series of redox processes
(Figure 2). And the EET pathways of EAMs are mainly
composed of cyt-cs, nanowires and small molecule electroactive
substances (Zhao et al., 2021).

A large number of studies have found that a variety of cyt-
cs with different positions and functions are involved in the
EET pathway, such as CymA inner membrane protein, Fcc3 and
STC periplasmic protein, MtrA and OmcA outer membrane
protein in the model bacterium Shewanella oneidensis MR-
1 (Zhao et al., 2021); MacA inner membrane protein, PpcA
periplasmic protein, OmcS and OmcZ outer membrane protein
in the model bacterium G. sulfurreducens (Mehta et al., 2005;
Nevin et al., 2009). It has been reported that the cyt-cs of EAMs
can reduce U(VI) and Cr(VI) in vitro (Shelobolina et al., 2007;
Liu et al., 2016). This series of proteins constitute the electron
transfer chain of EAMs, such as the Mtr respiratory pathway
of MR-1. Wang et al. found that the reduction ability of the
MR-1 mutant with the deficiency of CymA to nitroaromatic
hydrocarbons was 64.3% lower than that of wild-type bacteria,
which indicated that CymA played an important role in the
detoxification ability of MR-1 (Wang et al., 2020). In addition,
it is estimated that the periplasmic space (approximately 0.2 fL)
of an MR-1-cell contains more than 300,000 hemes from cyt-
cs (Sturm et al., 2015). This means that EAMs may have
multiple EET pathways. For example, its similar homologous
complex MtrDEF can also play a role in compensating for the
electron transfer function when MtrABC is blocked (McLean
et al., 2008). In general, these cyt-cs constitute a dense electron
transfer network, which provides multiple EET pathways for
EAMs to reduce and detoxify toxic pollutants extracellularly.

Nanowires, which are conductive appendages and filaments
that can transmit electrons extracellularly, can also be used by
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TABLE 2 A summary of toxic pollutants reduced by electroactive microorganisms.

Pollutant Electron acceptor Electron donor Microorganism Reaction efficiency Reaction rate References

1,3-Dinitrobenzene Nitro group Reducing sugar Bacillus subtilis 73.2% from 2.19 mg/L in
10 h

0.136 h−1 Zhou et al., 2020

Escherichia coli
DH5α

91.7% from 2.19 mg/L in
3 h

0.84 h−1

Nitrobenzene Nitro group Sodium lactate, 10 mM Shewanella
putrefaciens CN32

/ 1.31 d−1 Luan et al., 2015

/ 1.88 d−1

/ 1.53 d−1

Cationic red X-GRL Azo bonds Lactate, 18 mM Shewanella
oneidensis MR-1

98.4% from 100 mg/L in
12 h

0.176 h−1 Li et al., 2018b

Methylene blue Cyano NaBH4 Bacillus cereus 98% from 50 mg/L in 1 h 2.983 h−1 Alfryyan et al., 2022

Potassium dichromate Cr(VI) Lactate, 30 mM Shewanella
oneidensis MR-1

80% from 25 mg/L in 6 h 0.255 h−1 Liu et al., 2020

Potassium dichromate Cr(VI) Sodium acetate, 0.1 g/L Mixed bacteria 90.8% from 1 mg/L in
144 h

/ Beretta et al., 2020

/ Cu(II) Sodium acetate, 1 g/L Mixed bacteria 97.8% from 5 mg/L in
72 h

/ Zhang et al., 2018b

NaVO3·2H2O V(V) Methanol phenanthrene Mixed bacteria 100% from 10 mg/L in
168 h

0.44 d−1 Shi et al., 2020

FIGURE 2

Extracellular detoxification mechanism of electroactive microorganisms (EAMs). The red arrow represents the electron transfer pathway, the
black arrow represents the material transformation process, and the dashed arrow represents the non-occurring toxicity effects.

EAMs to transfer electrons across extended distances (Gorby
et al., 2006; Shi et al., 2016). Shewanella can generate nanowires
with a length of tens of microns by extending the fusion of

MtrC and OmcA to the outside of cells (El-Naggar et al., 2010;
Pirbadian et al., 2014). However, the nanowires of Geobacter are
pili composed of PilA protein, and their electrical conductivity
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may come from the aromatic amino acids located on PilA
protein or OmcS with electrical conductivity (Vargas et al.,
2013; Liu et al., 2019). According to previous research reports,
nanowires exhibit a good performance of extracellular catalytic
reduction under the stress of heavy metals. G. sulfurreducens
can transfer electrons to extracellular U(VI) by conductive pili
and then reduce it to insoluble U(IV), which precipitates on the
surface of pili to achieve extracellular detoxification (Cologgi
et al., 2011; Reguera, 2018). Therefore, this electron transfer
mechanism can reduce the harm to microorganisms from toxic
pollutants within the conductive range of nanowires and plays a
protective role.

Due to the good redox properties, some endogenous
(e.g., phenazines, flavins, and quinones) and exogenous [e.g.,
anthraquinone-2,6-disulfonate (AQDS), cysteine, and sulfur-
containing molecules] small-molecule electroactive substances
can flexibly mediate and promote the EET process (Huang
et al., 2018). These substances are called electron shuttles (Wu
et al., 2020). Marsili et al. (2008) found that the efficiency
of electron transfer to the electrode of the MR-1 biofilm was
reduced by more than 70% after removing flavins. Conversely,
the addition of electron shuttles can enhance the detoxification
ability of EAMs. Chen et al. found that the addition of AQDS
promoted electron transfer between soil microorganisms and
iron minerals, thus producing more active Fe(II) to promote
the dechlorination of pentachlorophenol (Chen et al., 2020a).
Therefore, electron shuttles can make a great contribution
to promoting the process in which EAMs transfer electrons
extracellularly to toxic pollutants by the EET pathway.

In addition, the extracellular polymeric substances (EPSs)
that are tightly attached to the cell membrane surface have
a certain auxiliary effect on the extracellular detoxification of
EAMs. On the one hand, EPSs can be regarded as a "huge"
protective barrier, in which rich functional groups, such as
carboxyl, hydroxyl, and sulfonyl groups, actively participate
in the binding of toxic pollutants (Maurya et al., 2022). On
the other hand, EPSs are important interface mediums for
communication and materials exchange between EAMs and
the external environment, particularly when used as electron
shuttles (e.g., polysaccharide, protein, and humic acid) can
promote the EET process (Sedenho et al., 2021). Jiang and
Kappler (2008) found that G. sulfurreducens used dissolved
humic substances as electron shuttles to transfer electrons to
iron oxide at a rate approximately seven times higher than
that of direct transfer. Interestingly, the hydrophobicity and
permeability of cell membrane will change under toxic stress,
which promotes the release of macromolecules such as proteins
and polysaccharides, thus increasing the content of EPSs on
the surface of EAMs and improving their detoxification effect
(Maurya et al., 2022).

In summary, EET plays an important role in the extracellular
detoxification of toxic pollutants by EAMs. In terms of EET,
the abundant cyt-cs in cells are the main source of the ability

of EAMs, constituting various electron transmission pathways
and playing a supporting role in the whole EET process. While
the endogenous or exogenous electron shuttles and EPSs with
good redox activity can also flexibly promote electron transfer
(Li et al., 2016).

Strengthening the extracellular
detoxification strategies

Compared with extracellular detoxification, intracellular
detoxification is a passive response to the stress of toxic
pollutants. EAMs can detoxify toxic pollutants in cells,
but the effect of toxicity on EAMs cannot be prevented.
Therefore, extracellular detoxification under toxicity stress is
more beneficial for EAMs to survive in an environment of toxic
pollutants. However, the relatively inefficient electron transfer
between electron acceptors and donors is the bottleneck that
prevents EAMs from using the ability of EET to detoxify toxic
pollutants (Wang et al., 2022). Therefore, if the EET ability of
EAMs can be improved by some strategies, the extracellular
detoxification ability of EAMs to toxic pollutants may be
strengthened (Figure 3).

Enhanced electron transfer pathway

The EET pathway of EAMs is mainly composed of cyt-cs,
small-molecule electroactive substances, and nanowires. Among
them, cyt-cs play a supporting role in the whole EET process
(Chiranjeevi and Patil, 2020); nanowires play an important
role in the long-distance EET of EAMs (Lovley, 2011); small
molecule electroactive substances can be used as electron
shuttles to flexibly transfer electrons (Watanabe et al., 2009). At
the same time, it has been found that some nano scale artificial
conductive materials can also promote the EET process of EAMs
(Zhao et al., 2021). Therefore, increasing the content of cyt-cs,
nanowires, small-molecule electroactive substances and artificial
conductive materials may be a strategy to promote the EET
process of EAMs and strengthen their detoxification ability.

Studies have proven that biosynthesis can regulate the
expression of related genes to promote the synthesis of cyt-cs
that are related to the EET pathway in EAMs, thus strengthening
their detoxification ability (Rosenbaum and Henrich, 2014).
Li Y. et al. (2020) induced the overexpression of cyt-cs (e.g.,
MtrA, MtrB, MtrD, and OmcA) genes of S. xiamenensis by
graphene oxide, thereby increasing the ability to reduce Cr(VI)
by 2.7 times. In addition, some researchers have promoted the
EET ability of other EAMs by the heterologous expression of
cyt-cs genes with good EET performance. For example, Jensen
et al. (2010) reconstituted MtrA, MtrB, and MtrC on the EET
pathway of S. oneidensis MR-1 into Escherichia coli, thereby
making the ability to reduce metal ions and their oxides of
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FIGURE 3

Strengthening the extracellular detoxification strategies.

engineered strains eight times and four times higher than that
of the parent wild-type, respectively.

Increasing the content of electron shuttles in the EET
pathway can also improve the detoxification ability of EAMs
(Liu et al., 2018). On the one hand, add exogenous electron
shuttles directly. For example, Kang et al. (2022) found that
under the condition of Fe(III) reduction, the addition of
sucrose and NH4

+ enhanced the reduction ability of EAMs
to perfluoroalkyl substances in sediments, while the system
with added NH4

+ had the best enhancement effect, and the
remaining perfluoroalkyl substances in this system decreased by
30.2% compared with that of the control group after 5 days.
On the other hand, promote the generation of endogenous
electron shuttles by regulating gene expression. Yang et al.
(2022) heterologously expressed the riboflavin synthesis gene
cluster ribADEHC of Bacillus subtilis in S. carassii-D5, thus the
riboflavin yield and the reduction efficiency of methyl orange
were 4.7 times and 1.3 times that of the wild type, respectively.

It has been reported that promoting the synthesis of
nanowires can strengthen the EET ability of EAMs. For
example, Leang et al. (2013) knocked out the PilZ protein
coding gene GSU1240 in the G. sulfurreducens genome to
make engineered strains produce more nanowires, while the
maximum current density increased by 1.5 times. However,
at present, few studies have reported that this strategy can
improve the detoxification ability of EAMs. As nanowires play
an important role in the long-distance and interspecific electron
transfer process of EAMs, it is speculated that this strategy
may help to strengthen the detoxification ability of EAMs
to extracellular toxic pollutants and promote the synergistic
detoxification among EAMs.

Recent studies have found that carbon nanotubes with
good biocompatibility and excellent electrical conductivity can
promote the redox process of cyt-cs (Zhang et al., 2018a).
To explore whether carbon nanotubes can strengthen the
detoxification ability of EAMs, Yan et al. (2013) found that
most nitrobenzene was reduced extracellularly by adding 0.5%

(w/v) carbon nanotubes to the cell-immobilized alginate beads,
and the reduction efficiency of nitrobenzene increased by 74%.
In addition, it was observed that the strain showed better
activity under toxicity stress. It is speculated that the reason
why CNTs can change the electron transfer mechanism of
EAMs is as follows: (1) CNTs are rich in redox-active sites
that are conducive to high conductivity, thus accelerating
EET (Tasis et al., 2006); (2) CNTs can absorb a variety of
organic compounds (Chen et al., 2007; Zhang et al., 2009), thus
allowing greater mass diffusion and enhancing reaction kinetics.
Additionally, whether other nanomaterials with similar physical
and chemical properties to carbon nanotubes have this function
is worthy of further study (Guo et al., 2015; Liu et al., 2015;
Huang et al., 2017).

Increasing the content of electronic
carrier

NAD (H/+) in EAMs is an important carrier of electrons in
the EET pathway, and it is also among the key limiting factors of
its detoxification ability (Li et al., 2018a). Therefore, regulating
the synthesis of intracellular NAD (H/+) may solve the problem
involving the low electron transfer efficiency in the EET pathway
by promoting the generation of electrons, thus strengthening the
detoxification ability of EAMs (Yong et al., 2014). Yong et al.
(2014) significantly increased the availability of NAD (H/+) by
overexpressing the NAD synthase gene nadE, thereby making
the output power of the engineered strain 3 times higher than
that of the wild-type strain. Additionally, several studies have
applied the strategy of modular synthesis biology, such as Li
et al. (2018a) redirected the synthesis of NAD+ by using three
modules (ab initio, remediation, and general biosynthesis) of
S. oneidensis MR-1, thereby increasing the content of NAD
(H/+) in cells and increasing the number of electrons entering
the EET pathway. Similarly, whether this strategy can strengthen
the detoxification ability of EAMs needs further exploration.
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Regulating the expression of signaling
molecules

Intracellular signaling molecules can influence the growth
and metabolic activity of EAMs by regulating the expression
of related genes, such as the second messenger or global
regulator, which can regulate its EET pathway (Camilli and
Bassler, 2006). Therefore, whether the detoxification ability of
EAMs can be strengthened by regulating the expression of
intracellular signaling molecules has attracted the attention of
many researchers. Cheng et al. (2020) heterologously expressed
the adenylate cyclase-encoding gene from Beggiatoa sp. PS in
S. oneidensis MR-1 to increase intracellular second messenger
cyclic adenosine 3’, 5’-monophosphate (cAMP) content, thereby
upregulating the expression level of the coding genes of
the cyt-cs and flavin synthesis pathways, resulting in the
reduction rate of Cr(VI) being increased by three times higher.
Additionally, several studies have found that the EET efficiency
of EAMs can also be improved by regulating intracellular global
regulatory factors. For example, Luo et al. (2018) introduced
the global regulatory factor IrrE of Deinococcus radiodurans
into P. aeruginosa PAO1, thereby promoting the secretion
of more phenazine compounds and increasing the maximum
power density of the system by 70%. Therefore, regulating
the expression of intracellular signaling molecules is a feasible
strategy to strengthen the detoxification ability of EAMs.

Conclusion and outlook

Toxicity stress has a strong detrimental impact on
microbial activity during the bioremediation of toxic pollutants.
Under toxicity stress, EAMs exhibit more steady activity
than ordinary microorganisms, which is mostly due to
EAMs’ unique and outstanding detoxifying capabilities.
However, the detoxification mechanisms of EAMs are still lack
relevant comprehensive review. This review summarizes the
toxicogenic pathways of toxic pollutants to microorganisms, the
detoxification mechanisms of EAMs and important strategies to
strengthen extracellular detoxification:

1) The main toxicogenic mechanisms of toxic pollutants
include direct covalent binding of toxic pollutants’
electrophilic groups to nucleophilic groups of biological
macromolecules, as well as the promotion of ROS
generation causing oxidative damage to cells.

2) Under toxicity stress, the detoxification mechanisms
of EAMs to toxic pollutants are included intracellular
detoxification and extracellular detoxification. The
excellent detoxification ability of EAMs comes from
its extracellular detoxification mechanism, which can

extracellularly reduce electrophilic toxic pollutants
through EET pathway.

3) The extracellular detoxification capacity of EAMs can be
further improved by enhancing the electron transport
pathway, regulating the synthesis of NAD (H/+) and
modulating signaling molecule expression.

However, the study on detoxification of EAMs under
toxicity stress is still in the initial stage, with most studies
focusing on a single pollutant and rarely on the combined
effects of pollutants. Therefore, comprehensive researches into
the detoxification process of EAMs on composite contaminants
are required for improved applicability in practical engineering.
At the same time, it is unknown whether the metabolic
activities of other microorganisms coexisting with EAMs in
practical applications will assist or interfere EAM detoxification.
Furthermore, many strategies have been demonstrated to
enhance the ability EET, but some of them have not been applied
to enhance their detoxification ability under toxicity stress, thus
the EET ability of EAMs and the mechanism of enhancing their
detoxification ability remain to be further explored. Further
clarification of these understandings may help us to develop
EAMs-based toxic pollutants remediation technologies, as well
as providing a more complete theoretical basis for future
practical engineering applications.
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