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The gut microbiota is a dynamic and highly diverse microbial ecosystem that

affects many aspects of the host’s physiology. An improved understanding

of the gut microbiota could lead to better strategies for the diagnosis and

therapy of cryptococcal meningitis (CM), but the impact of Cryptococcus

infection and anti-fungal treatment on the gut microbiota has rarely been

studied. We characterized the diversity and composition of the gut microbiota

in CM patients at diagnosis and healthy controls (HCs) using metagenomic

sequencing and determined the effects of anti-fungal drugs. We found that

CM patients had distinct bacterial and fungal compositions compared with

HCs, with eight differentially abundant fungal and 72 differentially abundant

bacterial species identified between the two groups. CM patients showed an

increased abundance of Enterococcus avium, Leuconostoc mesenteroides,

and Weissella cibaria, and a decreased abundance of Prevotella spp. compared

with HCs. However, anti-fungal treatment only led to minor changes in

the intestinal microbiota. Moreover, both positive and negative correlations

existed in fungal, bacterial, and clinical indicators. Our study suggests that

the Cryptococcus neoformans infection caused a distinct dysbiosis of the

gut microbiota and contributes valuable information implying potential links

between the CM and gut microbiota.
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Introduction

Cryptococcal meningitis (CM) is a global invasive fungal
disease associated with high morbidity and mortality (Iyer
et al., 2021; Rajasingham et al., 2022). Cryptococcus neoformans
(C. neoformans) and C. gattii are the main species responsible
for life-threatening CM (Hagen et al., 2015; Kwon-Chung
et al., 2017); immunocompromised individuals are the most
vulnerable, but there are also reports of cryptococcal infections
in immunocompetent hosts (Perfect et al., 2010; Kwon-Chung
et al., 2014). It is estimated that 223,100 cases of CM occur
globally each year, leading to 181,100 deaths (Rajasingham
et al., 2017). Most CM-related deaths occur in resource-
limited settings in which access to drugs is limited and
effective treatments are expensive, signifying the need to develop
affordable therapeutics against these deadly fungal pathogens
(Loyse et al., 2019; Vilas-Bôas et al., 2020; Driemeyer et al., 2022;
Rajasingham et al., 2022).

Recent increases in our understanding and analysis of the
gut microbiota have shed light on the impact of alterations to
human health. The gut microbiota is a dynamic and highly
diverse microbial ecosystem that affects many aspects of the
host’s physiology (Kamada et al., 2013; Erny et al., 2021),
and is involved in the host immune response, protection
against pathogen overgrowth, biosynthesis, and metabolism.
For example, the microbiota was found to be important for
the host response against C. gattii, with germ-free mice more
susceptible to infection, and showing lower survival, higher
fungal burden in the lungs and brain, reduced levels of
interferon-γ, interleukin (IL)-1β, and IL-17, and lower nuclear
factor κB p65 phosphorylation than wild-type mice (Costa et al.,
2016). Additionally, bloodborne Candida albicans infection
was reported to decrease the diversity of the gut microbiota
(Hu et al., 2021), while the gut bacterial microbiota affected
generation of the pulmonary IL-17 response to Aspergillus
fumigatus infection in mice (McAleer et al., 2016).

These findings highlight the commensal microbiota
modules immune responses in infectious diseases and show that
altering the composition could be a therapeutic approach for
disease. However, it is unclear whether and how Cryptoccocus
infection induces changes in the gut microbiota in human.
In particular, the effect of anti-fungal treatments on the gut
microbiota is unknown. Previous studies primarily focused
on anti-bacterial and anti-viral treatment (Villanueva-Millán
et al., 2017; Wipperman et al., 2017; Ponziani et al., 2018), but
little is known about the effects of anti-fungal treatment on the
intestinal microbiome. Additionally, most earlier studies on
the gut microbiota concentrated on the bacterial community,
while research into gut fungal communities only started more
recently. Thus, more comprehensive research into the role
of intestinal bacteria and fungi in the pathobiology of fungal
diseases is needed.

To this end, we performed a cross-sectional study of
CM patients and healthy controls (HCs) to characterize the
bacterial and fungal gut microbiota changes in response to
Cryptococcus infection and anti-fungal therapy in individuals
from China.

Materials and methods

Study population

Patients with CM were recruited from Jiangxi Chest
Hospital. A diagnosis of CM was based on positive results
from cerebrospinal fluid (CSF) culture, a CSF cryptococcal
antigen test (IMMY, Norman, OK, USA), or positive CSF
India ink staining (Perfect et al., 2010). Inclusion criteria were
a confirmed CM patient; age ≥ 18 years; and body mass
index (BMI) between 18 and 25 kg/m2. Exclusion criteria
were anti-fungal therapy administered prior to admission;
recurrent CM; a known history of autoimmune or rheumatic
diseases, metabolic diseases, chronic gastrointestinal diseases,
or malignant tumors; pregnant or breastfeeding; presence of
acute infection; a history of gastrointestinal tract surgery; and
intake of antibiotics or colon-cleansing preparation within the
last 3 months preceding stool collection. HCs were recruited
via the healthy donor biobank of the Neurology Department in
Jiangxi Chest Hospital.

Participants were divided into four groups: HCs (n = 16),
CM patients not receiving therapy (CM group; n = 15), CM
patients receiving 2 weeks of anti-fungal therapy (CM-2W
group; n = 7), and CM patients receiving 4 weeks of anti-fungal
therapy (CM-4W group; n = 6). All subjects were HIV-negative.
This research was approved by the Institute Ethics Committee
of Jiangxi Chest Hospital. All participants provided their written
informed consent before stool donation.

Collection of clinical data

Clinical data were collected by reviewing medical charts.
The following data were recorded: age, sex, BMI, clinical
manifestations like headache, fever, nausea, and vomiting,
conscious disturbance and other neurological symptoms such
as those associated with vision and hearing, CSF examination,
treatment, and outcome.

Stool collection and DNA extraction

Whole stools were collected in sterile boxes, immediately
homogenized, and aliquots of 200 mg were frozen at –80◦C
for further analysis. Genomic DNA was extracted from
aliquots using the QIAamp PowerFecal Pro DNA Kit (Qiagen,
Germantown, MD, USA) according to the manufacturer’s
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instructions. The DNA pellet was resuspended in 80 mL
of trypsin–ethylenediaminetetraacetic acid buffer, and the
concentration was measured using the QubitTM dsDNA Assay
Kit with the QubitTM 3.0 Fluorometer (Thermo Fisher Scientific,
Carlsbad, CA, USA).

Library construction and shotgun
metagenomic sequencing

A total of 200 ng DNA was used as input material for
sample preparations. Sequencing libraries were generated using
the KAPA HyperPlus Library Preparation Kit (Roche, Basel,
Switzerland) following the manufacturer’s recommendations,
and index codes were added to attribute sequences to each
sample. Briefly, the DNA sample was fragmented to a size
of 350 bp, then fragments were end-polished, A-tailed, and
ligated with the full-length adaptor for Illumina sequencing with
further PCR amplification. Finally, PCR products were purified
using the AMPure XP system, and libraries were analyzed
for size distribution by the Agilent 2100 Bioanalyzer system
(Agilent, Santa Clara, CA, USA) and quantified using real-time
PCR. Whole-genome shotgun sequencing was performed on the
NovaSeq 6000 system (Illumina, San Diego, California, USA) to
obtain paired-end reads with 150 bp in the forward and reverse
directions. Each sample obtained an average of 8G raw data.

Statistical analyses

Participant characteristics are expressed as medians (ranges)
and were compared using Mann–Whitney or χ2-tests as
appropriate. Prism v.9.0 software (GraphPad, San Diego,
CA, USA) was used for analyses and graph preparation.
Alpha diversity, reflecting the species richness and diversity,
was measured using the Pielou index, number of genes,
and Shannon index. Beta diversity, comparing the similarity
of species diversity among groups, was calculated using
principal coordinate analysis (PCoA). A heatmap was drawn
of the relative abundance of bacteria and fungi based on
data from the Wilcoxon rank sum test adjusted by the
Benjamini–Hochberg procedure (FDR < 0.1, fold-change > 2).
Correlation coefficients of observations among fungi, bacteria,
and clinical indicators were calculated using Bland and Altman.
P-values were adjusted by the Benjamini–Hochberg procedure.
Differences with P < 0.05 were considered significant.

Results

Participant characteristics

A total of 16 CM patients and 15 HCs were recruited to
the study. CM patients received the same anti-fungal therapy

TABLE 1 Demographic features of CM patients and healthy controls.

Parameter CM patients
(n = 15)

HC (n = 16) P-value

Age (years) 46.67 ± 15.94 43.25 ± 14.32 0.535

Sex: Male 9 (60%) 8 (50%) 0.576

Body mass index (kg/m2) 21.10 ± 0.84 21.63 ± 1.16 0.158

Clinical parameters

Headache (n %) 13 (86.67%) – –

Fever (n %) 9 (60.00%) – –

Nausea/Vomiting (n %) 10 (66.67%) – –

Vision disorder (n %) 4 (26.67%) – –

Auditory symptoms (n %) 1 (6.67%) – –

Conscious disturbance (n %) 5 (33.33%) – –

CSF examination

Opening pressure (mmH2O) 330.00
(360.00–180.00)

– –

CSF protein (mg/l) 823.80
(1001.50–535.40)

– –

CSF glucose (mmol/l) 1.80 ± 1.06 – –

Treatment

AMB + 5FC (n %) 15 (100%) – –

Fluconazole (n %) 15 (100%) – –

In-hospital mortality (n %) 1 (6.67%) – –

CM, cryptococcal meningitis; HC, healthy control; AMB, amphotericin B;
FC, flucytosine.

regime. Treatment involves induction with amphotericin B in
combination with flucytosine for 2 weeks, followed by
consolidation and maintenance with fluconazole. There
were no significant differences between CM patients and
HCs with respect to age, sex, or BMI. One CM patient
died before their 4-week treatment period was complete.
Detailed demographic and clinical characteristics are shown in
Table 1.

Bacterial dysbiosis in CM

No significant difference was observed in alpha diversity
(assessed using three different indexes) between CM patients
and the HC group (Figure 1A). However, the bacterial
compositions of CM patients and HCs were segregated on
PCoA, with significant differences in beta diversity identified
between the bacteria of the CM group and those of the HC group
(Figure 1B, P < 0.001).

Next, we focused on comparisons at the species level, and
identified 72 differentially abundant bacterial species between
the two groups (P < 0.05) (Figure 1C). CM patients were
significantly enriched in 16 species, including Enterococcus
avium, Leuconostoc mesenteroides, and Weissella cibaria
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belonging to the Firmicutes phylum; Aquimarina macrocephali,
Bacteroides sp. AF04-22, and Parabacteroides sp. AM58-2XD
belonging to the Bacteroidetes phylum; and Microbacterium
foliorum of the Actinobacteria phylum. The HC group
was significantly enriched in Prevotella sp. 885, Prevotella
bryantii, and Prevotella micans belonging to the Bacteroidetes
phylum, and Photobacterium damselae of the Proteobacteria
phylum.

We further constructed gene modules exhibiting significant
enrichment in terms of Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways, gene ontology (GO) categories,
or hallmark gene sets. We identified 48 differentially abundant
modules between CM patients and HCs. Twenty-eight pathways
were significantly upregulated in CM patients compared with
HCs (Figure 1D), including lysine degradation (M00032),
lipoic acid biosynthesis (M00883), and pentose phosphate
pathways (M00006). Phosphatidylcholine (PC) biosynthesis
(M00091), tyrosine degradation (M00044), multidrug resistance
(M00641), and nitrogen fixation (M00175) pathways were
significantly upregulated in the HC group compared with CM
patients.

Altered fungal microbiota diversity in
CM patients

We next assessed the composition of the fungal microbiota
in CM patients and HCs. Like bacteria, no significant difference
was observed in alpha diversity between CM patients and HCs
(Figure 2A), but a significant difference in beta diversity was
detected (Figure 2B).

The fungal composition was then compared at the
species level, and eight differentially abundant fungi were
identified (Figure 2C). The CM group was enriched with
Pyricularia sp. CBS 133598, Rasamsonia emersonii, and
Cytospora leucostoma belonging to the Ascomycota phylum,
and Wallemia ichthyophaga of the Basidiomycota phylum.
Ustilaginoidea virens, Metschnikowia aff. pulcherrima, and
Pyricularia pennisetigena belonging to the Ascomycota
phylum, and Jimgerdemannia flammicorona of the
Mucoromycota phylum were more abundant in HCs than
CM patients.

We also identified 12 differentially abundant modules
between CM patients and HCs (Figure 2D). Seven modules,
including gluconeogenesis (M00003), glycolysis (M00001 and
M00002), assimilatory sulfate reduction (M00176), urea cycle
(M00029), and arginine biosynthesis (M00844 and M00845)
were significantly enriched in CM patients compared with HCs.
Riboflavin biosynthesis (M00911), methionine biosynthesis
(M00017), histidine biosynthesis (M00026), pyridoxal-P
biosynthesis (M00124), and the malonate semialdehyde

pathway (M00013) exhibited higher abundance in the HC
group compared with CM patients.

Anti-fungal treatment induces minor
alterations in the bacterial and fungal
microbiota

Next, we examined the effects of anti-fungal treatment on
the gut microbiota in CM patients. We compared the structure
and composition of bacteria and fungi among HC, CM, and CM
treatment groups. The boxplots show no significant difference
in fungi and bacteria between groups (Figure 3). Then we
analyzed individual participants separately using alpha diversity
analysis at the gene level, including the number of genes, and
the Shannon index. Dot plots show the changes before and after
treatment. With anti-fungal drugs, the richness of bacteria and
fungi in most individuals was shown to increase (Figures 4A,
5A). We then used PCoA to compare groups of samples, but
clustering driven by CM, CM-2, and CM-4 groups was not
significant (Figures 4B, 5B).

Correlation network of fungi, bacteria,
and clinical indicators

Finally, we examined possible correlations between
fungi, bacteria, and clinical indicators. We completed further
correlation analysis using the Bland–Altman plot to identify
co-occurring clusters of bacterial and fungal species. Both
positive and negative correlations were shown to exist between
fungi, bacteria, and clinical parameters (Figure 6). We also
identified significant correlations between the gut microbiota
and CM-related symptoms, including auditory symptoms and
visual disorders. Auditory symptoms had a positive correlation
with the abundance of Enterococcus lactis and Saccharomyces
cerevisiae, and a strong negative correlation with 22 species
of bacteria, including Bacteroides sp. HPS0048, Clostridium
sp. CAG:242, and Adlercreutzia equolifaciens. Visual disorders
showed positive correlations with two species of bacteria
(Bacillus cereus and Staphylococcus aureus), and negative
correlations with 56 species of bacteria and two species of fungi.

Positive and negative correlations were also found to exist
between bacteria and fungi. A strong positive correlation was
detected between the abundance of Pyricularia oryzae with
three species of bacteria (Dorea longicatena, Ruminococcus sp.
CAG:90, and Clostridium sp. AF29-8BH). Moreover, Saitoella
complicata was positively correlated with 16 species of bacteria,
including Paraprevotella clara, Megamonas hypermegale, and
Prevotella bivia, while Beauveria bassiana was negatively
correlated with Pseudomonas chlororaphis and Streptococcus
constellatus (Figure 6).
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FIGURE 1

Comparisons of the structure and composition of bacteria between CM patients and HCs. (A) Alpha diversity analysis plot at the gene level,
including the number of genes, and the Shannon index. Dot plots show the comparison between CM patients and healthy controls. (B) Principal
component analysis plot based on the Bray–Curtis distance. (C) Heatmap of the relative abundance of bacteria. (D) Heatmap of the relative
abundance of KEGG modules of bacteria. CM, cryptococcal meningitis; HC, healthy control.

Discussion

Since the importance of microbiota was established,
numerous studies have revealed associations between the gut
microbiota and human disease (Qian et al., 2021; Trebicka et al.,
2021; Wu et al., 2021). Dysbiosis of the gut microbiota during
Cryptococcus infection or anti-fungal treatment may play an
important role in the pathophysiology of CM. To investigate
this, we examined the gut microbiota of CM patients with
and without anti-fungal treatment and healthy subjects using
shotgun metagenomic sequencing. Our results revealed that
CM patients have distinct bacterial and fungal compositions
compared with controls, but that anti-fungal treatment only led
to minor changes in the gut microbiota. Moreover, both positive
and negative correlations existed between fungi, bacteria, and
clinical indicators in CM. Our study contributes valuable
information to the field about the gut microbiota in CM patients,
implying the existence of links between gut microbiota changes
and CM.

We showed that the gut microbiota composition of CM
patients differed significantly from that of healthy individuals
with respect to beta diversity, but not alpha diversity. This
contrasts with previous findings which revealed the alpha
diversities of gut microbiota to be reduced in patients with

infectious diseases compared with controls (Wang et al., 2017;
Hu et al., 2019; Tuddenham et al., 2020).

Enterococcus is a genus of Gram-positive lactic acid
bacteria of the Firmicutes phylum. Some enterococcal
strains cause antibiotic-induced biological disorders, play
antitumor or anticancer roles, and modulate the immune
system. For example, cultured E. faecium from the human
intestinal epithelium demonstrated bactericidal effects against
enteroaggregative Escherichia coli, as well as membrane damage,
and cell lysis (Tarasova et al., 2010; Fusco et al., 2017), while in
another study it increased the expression of proinflammatory
cytokines without appearing as a pathogen (Seishima et al.,
2019). The present study observed significant increases in
the abundance of six Enterococcus species in CM patients
compared with controls, including E. dispar, E. avium, and
E. faecalis. Considering the beneficial actions of Enterococcus
bacteria on the host immune system, it seems that Cryptococcus
infection-induced increases in the abundance of bacteria reflect
a compensatory response in the host.

We also found that CM patients were significantly enriched
in Blautia marasmi. The Blautia genus of the Lachnospiraceae
family in the Firmicutes phylum was initially described in 2008
(Liu et al., 2008). Blautia species function in the degradation
of indigestible carbohydrates (Sheridan et al., 2016), and
some such as B. coccoides produce short-chain fatty acids as
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FIGURE 2

Comparisons of the structure and composition of fungi between CM patients and HCs. (A) Alpha diversity analysis plot at the gene level,
including the number of genes, and the Shannon index. Dot plots show the comparison between CM patients and healthy controls. (B) Principal
component analysis plot based on the Bray–Curtis distance. (C) Heatmap of the relative abundance of fungal. (D) Heatmap of the relative
abundance of KEGG modules of fungal. CM, cryptococcal meningitis; HC, healthy control.

FIGURE 3

Comparison of the structure and composition of bacterial and fungal among HC, CM, and CM treatment groups. (A) Boxplot shows the mean
distance of CM, CM_2W, and CM_4w to the HC group on the left. Principal component analysis plot of bacteria based on the Bray–Curtis
distance is shown on the right. (B) Boxplot shows the mean distance of CM, CM_2W, and CM_4w to the HC group on the left. Principal
component analysis plot of fungal based on the Bray–Curtis distance is shown on the right. HC, healthy control; CM, cryptococcal meningitis;
CM-2W, cryptococcal meningitis patients receiving 2 weeks of anti-fungal therapy; CM-4W, cryptococcal meningitis patients receiving 4 weeks
of anti-fungal therapy.

metabolic mediators between the microbiota and host (Liu
et al., 2021). Considering its relatively high abundance in CM
patients, B. marasmi may play an important role in Cryptococcus
infection.

We observed a significant decrease in the abundance of
Prevotella spp. in the CM group compared with controls.
Prevotella is a diverse genus of Gram-negative anaerobes, which

is highly abundant in different parts of the body and plays a
key role in the balance between health and disease (Shah and
Collins, 1990; Larsen, 2017; Posteraro et al., 2019). Conflicting
findings have been reported about whether Prevotella spp. are
beneficial or detrimental to gut health, especially with regard
to glucose homeostasis (Ley, 2016; Cani, 2018; Claus, 2019).
The emergence of Prevotella-rich microbiota is associated
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FIGURE 4

Changes of the structure and composition of bacteria during treatment in CM patients. (A) Alpha diversity analysis plot at the gene level,
including the number of genes, and the Shannon index. Dot plots show changes before and after treatment. Dots connected by the gray line
represent individuals. (B) Principal component analysis plot based on the Bray–Curtis distance. Individuals are plotted by the same color and
connected by the gray line. CM, cryptococcal meningitis; CM-2W, cryptococcal meningitis patients receiving 2 weeks of anti-fungal therapy;
CM-4W, cryptococcal meningitis patients receiving 4 weeks of anti-fungal therapy.

with inflammatory disorders such as rheumatoid arthritis,
periodontitis, metabolic disease, and inflammation in HIV
patients (Ibrahim et al., 2017; Armstrong et al., 2018; Wells et al.,
2020). Several studies have further demonstrated the potential
pro-inflammatory role of Prevotella spp., including enhanced
T cell activation and T cell recruitment (Neff et al., 2018;

FIGURE 5

Changes of the structure and composition of fungal during
treatment in CM patients. (A) Alpha diversity analysis plot at the
gene level, including the number of genes, and the Shannon
index. Dot plots show changes before and after treatment. Dots
connected by the gray line represent individuals. (B) Principal
component analysis plot based on the Bray–Curtis distance.
Individuals are plotted by the same color and connected by the
gray line. CM, cryptococcal meningitis; CM-2W, cryptococcal
meningitis patients receiving 2 weeks of anti-fungal therapy;
CM-4W, cryptococcal meningitis patients receiving 4 weeks of
anti-fungal therapy.

Rolhion et al., 2019; Wells et al., 2020). Considering the
important role of T cell immunity in preventing C. neoformans
infection, the observed decrease in Prevotella abundance in
CM patients of the present study may represent one of the
mechanisms of C. neoformans against host immunity.

KEGG is a widely used annotated database (Kanehisa et al.,
2004). Genes can be projected into the KEGG PATHWAY
database uncover interactions with other genes that may
influence the health of the host (Altermann and Klaenhammer,
2005). our data showed that gluconeogenesis, glycolysis and
lipoic acid biosynthesis much more abundant in CM groups.
Some studies have found that gluconeogenesis, glycogenolysis,
and glycolytic pathways produce glucose-6-phosphate and
further releases abundant nicotinamide adenine dinucleotide
phosphate through the pentose phosphate pathway (Agius et al.,
2002; Gomis et al., 2003). High levels of glutathione promote
inflammatory macrophages to mediate inflammatory responses.
Additionally, glycogen metabolism not only upregulates STAT1
expression by activating RARβ but also promotes STAT1
phosphorylation by downregulating phosphatase TC45 in
macrophage, thereby regulating inflammatory responses (Ma
et al., 2020). Therefore, alterations in the function of the gut
microbiota may play an important role in the pathogenesis of
CM. In our study, lipoic acid biosynthesis much more abundant
in CM groups, lipoic acid is an antioxidant that has been
suggested to have beneficial immunomodulatory effects on the
innate and adaptive immune systems in autoimmune diseases
(Liu et al., 2019). Further investigations are needed to better
understand the relationship between different features of the gut
microbiota in CM.

Our results showed that anti-fungal treatment induced
only a minor alteration in the gut microbiota, with the
clustering driven by CM, CM-2, CM-4 groups not reaching
significance based on PCoA analysis. The effect of anti-
infection treatments on the gut microbiota is unclear.
Antibiotics, especially broad-spectrum antibiotics, can destroy
the gut microbiota during anti-tuberculosis (TB) treatment in
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FIGURE 6

Correlation network of fungi, bacteria, and clinical indicators. Orange circle represents bacteria (relative abundance > 0.01%), blue square
represents clinical indicators, and green hexagon represents fungi. Red lines show positive correlations and green lines show negative
correlations.

mice (Namasivayam et al., 2017). However, a human study by
Wipperman et al. (2017) reported no significant difference in
the overall microbiota diversity of active TB patients after using
first-line drugs compared with uninfected or latent TB patients,
as estimated by the Shannon diversity index. Moreover, anti-
infection treatments, especially anti-viral treatment for non-
intestinal infections, may help restore the intestinal flora. For
example, it was reported that a combination of nucleoside
reverse transcriptase inhibitors reduced the fecal bacterial
diversity caused by HIV infection (Villanueva-Millán et al.,
2017). However, a similar restoration of the intestinal flora was
not seen in our study.

Fungi and bacteria share microhabitats and participate in
complex communications within the microbial community.
The correlation network of fungi and bacteria observed in our
study shows these co-occurrence patterns in CM patients after
treatment. The bacterium S. constellatus showed a negative
correlation with the fungus B. bassiana, Streptococcus is the most
common genus of bacteria present in patients with bacterial
brain abscesses and is often isolated from mixed infections.
S. stellate typically resides in the oral cavity, appendix, and
female reproductive tract, and tends to form abscesses (Lanks
et al., 2019). Our study found negative correlation between
S. constellatus and B. bassiana, and this negative relationship
need confirmed in larger cohorts.

There are several limitations of this study, including its
relatively small sample size, which may have resulted in a lack
of power for some comparisons, especially in post-treatment
patients. Future studies should therefore expand the sample
size. Additionally, the lack of follow-up prevented a longitudinal
analysis. Moreover, the mechanisms underlying increases in the
abundance of bacteria in the gut of mice with Cryptococcus
infections should be investigated.

Conclusion

In conclusion, this study shows that Cryptococcus infection
induces significant changes in the gut microbiota, with CM
patients showing distinct bacterial and fungal compositions
compared with controls. Both positive and negative correlations
were found to exist between fungal and bacterial species after
treatment. These data serve as a basis for further investigations
into the role of the gut microbiome in CM patients.
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