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Analysis of serum antioxidant
capacity and gut microbiota in
calves at different growth stages
In Tibet

Xinyu Zhang, Zhijun Cao, Hongjian Yang, Yajing Wang,
Wei Wang and Shengli Li*

State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China
Agricultural University, Beijing, China

Introduction: The hypoxic environment at high altitudes poses a major
physiological challenge to animals, especially young animals, as it disturbs
the redox state and induces intestinal dysbiosis. Information about its
effects on Holstein calves is limited.

Methods: Here, serum biochemical indices and next-generation sequencing
were used to explore serum antioxidant capacity, fecal fermentation
performance, and fecal microbiota in Holstein calves aged 1, 2, 3, 4, 5, and
6 months in Tibet.

Results and Discussion: Serum antioxidant capacity changed with age, with
the catalase and malondialdehyde levels significantly decreasing (p<0.05),
and superoxide dismutase levels significantly increasing (p<0.05) with
age. No significant differences (p>0.05) in total volatile fatty acid levels
were noted between the groups. In all groups, Firmicutes, Bacteroidetes,
and Actinobacteria were the three most dominant phyla in the gut. Gut
microbial alpha diversity significantly increased (p<0.05) with age. Principal
coordinate analysis plot based on Bray—Curtis dissimilarity revealed
significant differences (p=0.001) among the groups. Furthermore, the
relative abundance of various genera changed dynamically with age, and
the serum antioxidant capacity was associated with certain gut bacteria.
The study provides novel insights for feeding Holstein calves in high-
altitude regions.

KEYWORDS

gut microbiota, Holstein calf, high altitude, antioxidant capacity, different growth
stages

1. Introduction

The Tibetan Plateau, the world’s highest plateau (Gu et al., 2007), occupies a
quarter of the Chinese land area (Wu, 2001). Its unique environment and climate are
characterized by low temperature, strong ultraviolet radiation, and low atmospheric
partial oxygen pressure (Guo et al., 2014). This poses a major challenge to local
animals (Cheviron and Brumfield, 2012; Guo et al., 2014). Hypoxia causes
inflammation, which affects immune function, leading to altitude sickness and
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chronic diseases, such as pulmonary hypertension (Pham
et al.,, 2021). Furthermore, hypoxic conditions affect redox
homeostasis (Samanta and Semenza, 2017). Hypobaric
hypoxia negatively affects the body’s redox reactions, leading
to the production of reactive species, which disrupt cellular
components (such as lipids and proteins), leading to
degradation of the antioxidant system (Strapazzon et al., 2016;
Mrakic-Sposta et al., 2021). In addition, oxidative stress
contributes to the development of inflammation, termed
oxidative inflammation, which may affect the animal’s health.

Calves are important to Tibetan economy. Calf development
is considered one of the most important issues affecting the health
and profitability of dairy cow (Soberon et al., 2012). Calf growth
and development are influenced by energy intake and genetic
potential (Lohakare et al, 2012). Calves are functional
monogastric animals at birth, and their nutrient and energy intake
mainly depend on the intake of milk or milk replacer until the
rumen function matures (Khan et al., 2016; Steele et al., 2016;
Korst et al., 2017).

The intestinal microbiota is considered an endocrine organ,
and the molecules produced by the gut microbes affect the host’s
health. Intestinal microbiota is critical for the development and
differentiation of the gut mucosal epithelium, as well as the
mucosal immune system (Sommer and Backhed, 2013). Hence,
it plays a key role in immune system stimulation, and metabolic
and nutritional homeostasis (Ayalew et al., 2021). In addition,
colonization of young ruminants, such as goat (Zhuang et al,,
2020), yak (Guo et al., 2020), and pig (Ma et al., 2019), by gut
microorganisms affects the production performance and
lifelong health of these ruminants. Guo et al. (2020) reported
the development and maturation of rumen microbiome
throughout the life of yak bred in the highlands. However, there
are only a few reports on the establishment of gut microbiota in
dairy cow in high-altitude regions during early animal
development. Furthermore, the relationship between serum
antioxidant capacity and gut microbiota in calves in high-
altitude regions is not known.

In the current study, we analyzed the serum biochemical
indices and fecal microbiota in Holstein calves (holsatia) bred
in Tibet, aged from 1 month to 6 months, to address the above-
mentioned knowledge gaps. We hypothesized that the serum
antioxidant capacity and gut microbiota would change with
age and that the gut microbiota contributes to serum
Hence,

antioxidant capacity at high-altitude regions.

we compared the serum antioxidant capacity, fecal
fermentation performance, and gut microbiota in Holstein
calves of different ages grow in high-altitude regions to explore
the high-altitude

environments in calves. To our knowledge, this is the first

resistance mechanism to hypoxic
study on the serum antioxidant capacity and gut microbiota
in Holstein calves at a high altitude; furthermore, it provides
new insights into the growth and development of ruminants

at high altitudes.
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2. Materials and methods

The study procedures were approved by the Ethical Committee
of China Agricultural University’s College of Animal Science and
Technology (permit number: AW22121202-1-2).

2.1. Study region, animals, and
management

In August 2021, 36 male Holstein calves were selected according
to age from a herd of 365 calves that were born in 2021, had the same
father, and were raised at Zhizhao Farm (Lhasa, China). Calves with
a similar body weight at birth (35.29 +1.67kg) were divided into six
groups (1, 2, 3, 4, 5, or 6 months of age; M1, M2, M3, M4, M5, and
M6 groups, respectively) were selected, with six individuals per
group. Calves in the M1 and M2 groups were maintained in
individual pens (3.0mx 1.6 mx 1.8 m; length x width x height). To
keep the pens clean and dry, oat hay was used as bedding, and it was
replaced daily. The calves were fed milk three times daily (08:30,
14:30, and 19:30h) before weaning; the diet was supplemented with
starter from 7days of age. The calves were weaned gradually at
3months of age. After weaning, the calves are fed oat hay and the
starter ad libitum. The composition of the starter was as follows:
crude protein, 24.08%; ether extract, 4.50%; ash, 11.52%; calcium,
1.42%; and phosphorus, 0.7% (dry matter based).

2.2. Blood sample collection and analysis

For analysis, 15ml of blood was collected from the tail root
using vacuum tubes before morning feeding. The blood samples
were immediately centrifuged for 10min at 3000rpm. The
obtained serum was immediately placed and stored at —20°C for
testing. Tumor necrosis factor « (TNF-a), immunoglobulins (Ig)
A, G (IgG), and M (IgM) were analyzed using enzyme-linked
immunosorbent assay kits (Laibotairui Bioengineering Institute,
Beijing, China). The GF-D200 automatic biochemical analyzer
(Jiangsu Zecheng Bioengineering Institute, CLS880, Jiangyin,
China) was used to determine serum aspartate transaminase
(AST), alanine transaminase (ALT), and total cholesterol (TC)
levels. Commercial kits (Nanjing Jian Cheng Bioengineering
Institute, Nanjing, China) were used to determine the total
antioxidant capacity (T-AOC), and superoxide dismutase (SOD),
glutathione peroxidase (GSH-Px), malondialdehyde (MDA), and
catalase (CAT) levels in the serum. All assays were performed
according to the manufacturers’ guidelines.

2.3. Fecal sample collection

Some fecal samples from Holstein calves were immediately
frozen in liquid nitrogen (—196°C) for fecal microbiota analysis
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and the remaining samples were stored at —20°C for analyzing
fecal fermentation parameters.

2.4. Volatile fatty acid (VFA) analysis

For VFA analysis, after dilution, the feces were thawed and
centrifuged at 8000 x g for 15 min at 4°C. VFAs in the supernatant
were determined using gas chromatography, as described
elsewhere (Erwin et al., 1961).

2.5. DNA extraction, polymerase chain
reaction (PCR), and 16S rRNA sequencing

Bacterial DNA was extracted from 1g of fecal sample using
the OMEGA kit (Omega Bio-Tek, Norcross, GA, USA), following
the manufacturer’s instructions. DNA concentration and purity
were evaluated using the Nanodrop 2000 Spectrophotometer
(Thermo Scientific, Waltham, USA). To amplify the V3-V4 region
of the bacterial 16S rRNA gene, primers 338F (5-ACTC
CTACGGGAGGCAGCA-3’, forward) and 806R (3-GGAC
TACNNGGGTATCTAAT-5, reverse) were used. The following
PCR amplification program was used: 5-min denaturation at
95°C; 28 cycles at 95°C for 455, 55°C for 50, and 72°C for 45s;
and a final extension at 72°C for 10 min. The amplified fragments
were identified using 2% (w/v) agarose gel electrophoresis,
purified using the Agencourt AMPure XP kit (Beckman Coulter
Genomics, Indianapolis, IN, USA), and quantified using PCR
(ABI 9700; Thermo Fisher Scientific, Waltham, MA, USA). The
purified PCR products were sequenced following standard
protocols, using a 2 x 250 bp sequencing kit and Illumina MiSeq
(Mumina, San Diego, CA, USA).

2.6. Quality control and sequence
analysis

QIIME 1.8 (Caporaso et al., 2010) was used to filter out
reads with scores <20 (low quality) and reads <200 bp, and to
remove barcode tags. PEAR 0.9.6 (Zhang et al., 2014) was used
to combine the sequences and Flash 1.20 (Mago¢ and Salzberg,
2011) was used to demultiplex them. UCHIME (UCHIME
Algorithm) (Edgar et al., 2011) was used to eliminate reads
and chimeric sequences with a combined length of less than
230bp. All sequences were subsampled according to the same
sample size for further analysis to eliminate errors. Ribosomal
Database Project classifier (Cole et al., 2009) was used to
classify the sequences into operational taxonomic units
(OTUs) based on a sequence similarity threshold of 97%.
OTUs were compared with those in the SILVA 128 database
for bacterial species categorization (Quast et al., 2013). All
values were obtained using UCLUST to generate a
representative OTU table (Edgar, 2010).
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QIIME 1.8 (Caporaso et al., 2010) was used to determine
alpha diversity at the OTU level, including Chao, Shannon,
Simpson, and Ace indices, and the results were plotted using
“ggplot2” in R (version 4.0.5) (Wickham, 2009). For beta-diversity
analysis, a Bray-Curtis dissimilarity matrix was used for principal
coordinate analysis (PCoA) in R 4.0.5 using the “vegan” package
(Oksanen et al., 2016). Functional differences in the fecal
microbiota in samples were predicted using PICRUST 2 and two
regions.'

2.7. Statistical analysis

Wilcoxon rank test was used to compare alpha-diversity
indices among different groups using the “dplyr” package in R
(Wickham, 2017). The Bray-Curtis dissimilarity matrices were
analyzed in R, and subsequently, the PCoA analysis was
performed; the results were displayed using the “ggplot2” tool.
Kruskal-Wallis H test in R 4.0.5 was used to evaluate the difference
in relative abundance at the phylum, family, and genus levels, as
well as the microbiota function, among the six groups. The
relationship among the core OTUs, age, and fecal fermentation
parameters was analyzed and visualized using the “Psych” package
(Revelle, 2018) and the “corrplot” package (Jami et al., 2013) in R.

3. Results

3.1. Effects of growth stage on serum
biochemical indices

3.1.1. Effects of growth stage on serum
antioxidant capacity

The results of serum antioxidant capacity analyses are
presented in Figure 1. CAT activity (Figure 1A) decreased
significantly (p <0.05), whereas there were no significant
differences (p >0.05) in GSH-Px activity (Figure 1B) and T-AOC
(Figure 1E) among the calf groups. However, MDA level
(Figure 1C) exhibited volatility, which is associated with dietary
changes. In addition, SOD activity (Figure 1D) increased
significantly with age (p <0.05).

3.1.2. Effects of growth stage on other serum
biochemical indices

As shown in Figures 1F-M, no significant differences in the
serum IgA, IgG, IgM, and TNF-a levels were detected among the
groups, indicating a lack of inflammation. In addition, the ALT
and AST levels significantly increased (p <0.05) with age, and with
a major shift between the M3 and M4 growth stages. Furthermore,
the serum glucose (GLU) and TC levels decreased with age.
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3.2. Feces fermentation parameters of
Holstein calves of different ages

No significant differences were observed among the six groups
in terms of fecal levels of TVFA, acetate, propionate, butyrate, and
valerate (p>0.05), with the acetate to propionate ratio (AP)
increasing with age (p <0.05; Figure 2).

3.3. Gut microbiota of Holstein calves of
different ages

3.3.1. Sequencing metrics of the gut microbiota

Overall, 1,164,140 raw sequences were obtained, with an
average of 34,260.78+2992.40 (mean+SD) in each sample.
Furthermore, an average of 405.61 +161.85 OTUs per sample was
detected at 3% sequence dissimilarity. In addition, the average
Good’s coverage was 0.997 across all 36samples, implying adequate
sequence coverage in the samples.

3.3.2. Gut microbiota profiles

We identified 280 genera belonging to 100 families
representing 16 phyla. As shown in Figure 3, at the phylum level,
seven bacterial phyla present in all six groups and with relative
abundance >0.01% were detected. The most dominant phyla were
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Firmicutes (65.94%), Bacteroidetes (29.34%), and Actinobacteria
(4.03%), followed by Proteobacteria (0.31%), Cyanobacteria
(0.14%), Spirochaetota (0.13%), and Patescibacteria (0.12%). At
the family level, nine families present in all six groups and with
relative abundance >5% were detected. The most dominant
families were Lachnospiraceae (15.58%), Oscillospiraceae (12.41%),
and Muribaculaceae (7.95%), followed by Lactobacillaceae
(6.16%), Eubacterium_coprostanoligenes_group  (5.78%),
Bacteroidaceae  (5.65%), (5.49%),
Prevotellaceae (5.17%). Furthermore, six bacterial genera present
in all groups and with relative abundance >5% were detected. The
top three most abundant genera were Ruminococcaceae_UCG-005
(10.39%), norank_f__Muribaculaceae (7.95%), and Lactobacillus
(6.16%), followed by norank_f__Eubacterium_coprostanoligenes_
group (5.78%), Bacteroides (5.65%), and unclassified_f__
Lachnospiraceae (5.50%).

Ruminococcaceae and

3.3.3. Diversity of fecal microbiota

Shannon (Figure 4A), Simpson (Figure 4B), Ace (Figure 4C),
and Chao richness indices (Figure 4D) in calves at different
growth stages were significantly different (p <0.05). We evaluated
the core bacteria in all calves and found 168 OTUs that were
common in all samples (Figure 5A). To evaluate the presence of
variations in the fecal microbiota in calves at different growth
stages, we visualized the outcomes of Bray—Curtis dissimilarity
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Effects of growth stage on fecal levels of volatile fatty acids (VFAs) in dairy calves. The following are shown in the figures: fecal levels of individual
VFAs (A-C), total volatile fatty acids (TVFA; D), and acetate to propionate ratio (AP; E). The results are presented as mean + SEM. The differences
among the six groups are represented by various letters (p<0.05); the number of calves in each of the six groups was 6.

analysis using a PCoA plot (Figure 5B). ANOSIM revealed that
the six groups were statistically different (p=0.001).

3.3.4. Changes in the fecal bacteria in Holstein
calves with age

We performed Kruskal-Wallis H test to determine
significantly different genera (among the 10 most relatively
abundant genera) between groups (Supplementary Image 1). With
age, the relative abundance of mnorank_f__Eubacterium_
corostanoligenes_group increased (p <0.05); the relative abundance
of Ruminococcaceae_UCG-005, norank_f__Muribaculaceae and
Rikenellaceae_RC9_gut_group, unclassified_f_Lachnospiraceae
increased and then decreased (p <0.05); the relative abundance of
Lactobacillus, Bacteroides, and Blautia decreased (p <0.05); the
relative abundance of Olsenella and Bifidobacterium increased
overall (M1-M6 groups), but fluctuated after weaning (M4 group;
p<0.05).

3.3.5. Correlation of fecal bacteria with fecal
fermentative parameters in Holstein calves of
different ages

We next investigated the potential effect of fecal bacteria on
the fermentative parameters and serum antioxidant capacity in
calves. Accordingly, we performed a correlation analysis
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between serum antioxidant capacity and VFAs, and the relative
abundance of genera (top 50) using Spearman’s rank correlation
(Supplementary Image 2). Considering the antioxidant
capacity, 13 genera were significantly positively correlated
(Ir] > 0.3, p<0.05) with the SOD level; 1 genus was positively
associated with T-AOC; and 4 genera were positively correlated
with the GSH-Px level. Furthermore, 24 genera were
significantly correlated (p <0.05) with the MDA level, of which
16 showed a positive correlation (p<0.05) and 8 showed a
negative correlation (p <0.05). Seven genera were significantly
correlated (p <0.05) with the CAT level, of which 4 showed a
positive correlation (p<0.05) and 3 showed a negative
correlation (p <0.05). Considering VFAs, 3 genera significantly
correlated (p <0.05) with acetate levels, of which 2 showed a
positive correlation (p<0.05) and 1 showed a negative
correlation (p<0.05). Twelve genera were significantly
correlated (p<0.05) with the propionate level, of which 4
showed a positive correlation (p <0.05) and 8 showed a negative
correlation (p<0.05). Furthermore, 13 genera significantly
correlated (p < 0.05) with the butyrate level, of which 5 showed
a positive correlation (p<0.05) and 8 showed a negative
correlation (p <0.05). Finally, 10 genera significantly correlated
(p<0.05) with TVFAs, of which 5 showed a positive correlation
(p<0.05) and 5 showed a negative correlation (p <0.05).
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3.4. Functional predictions using
PICRUSt2

The function of gut bacteria in dairy calves of different ages
was predicted using PICRUST2 and differences in Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway abundance
among different groups were determined (Table 1). ANOSIM
revealed the enrichment of six pathways in the six groups (p <0.05;
Table 1), with “biosynthesis of amino acids,” “microbial

»

metabolism in diverse environments,” “purine metabolism,”

“pyrimidine metabolism,” “amino sugar and nucleotide sugar
metabolism,” and “glycolysis/gluconeogenesis” belonging to

»

“Global and overview maps,” “Nucleotide metabolism,” and

“Carbohydrate metabolism,” and all belonging to “Metabolism.”

4. Discussion

As one of the extreme environments, high altitude poses a
major challenge to animal survival. Thegut microbiota is
important for the health of ruminants. Understanding the
establishment of this microbial community and its changes with
the host’s age is essential for understanding the core microbial
community and its effect on the host (Ley et al., 2008; Zilber-
Rosenberg and Rosenberg, 2008; Jami et al., 2013). To date, some
studies have focused on the gastrointestinal microbes of young
indigenous ruminants, such as yak (Guo et al., 2020), bred at a
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high altitude, but no such data are available for Holstein dairy calf.
Therefore, we explored the dynamic changes in fecal microbiota
and serum antioxidant capacity in the early growth stages of
Holstein calves in Tibet (from 1 month to 6 months of age).

First, we determined the serum antioxidant capacity and other
serum biochemical indices. The analysis suggested that the serum
antioxidant capacity (including CAT, MDA, and SOD levels)
changes between the M3 and M4 growth stages. We interpreted
this finding to indicate oxidative stress experienced by calves
because of weaning stress. Unlike the early weaning practiced at
2months of age in most areas, the early weaning at high altitudes
occurs when the calf is 3months old because of poor living
conditions. Weaning stress induces oxidative damage, as reported
previously (Luo et al., 2016; Wei et al., 2017). Weaning of high-
altitude calves results in dual stress of weaning and hypoxia. The
antioxidant defense system plays an important role under extreme
stress, and alterations in the CAT, MDA, and SOD levels reveal
systemic oxidative damage. Hence, weaning led to oxidative injury
and altered antioxidant enzyme activities. ALT and AST are
important indicators of liver function, and changes in the AST and
ALT levels indicate that oxidative stress may lead to liver cell
damage (Benerji, 2013). In fact, oxidative stress is a common
mechanism damaging hepatocellular function.

We also detected fluctuations in the serum GLU and fecal
VFA levels (including acetate, propionate, butyrate, TVFAs, and
acetate to propylene ratio) in Holstein calves before and after
weaning, which may be associated with a shift in the way energy
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FIGURE 4

Alpha diversity analysis. (A) Shannon index at the operational taxonomic unit (OTU) level. (B) Simpson index at the OTU level. (C) Ace index at the
OTU level. (D) Chao index at the OTU level. Data are shown as mean+SEM. Different lowercase letters indicate significant differences among
different groups (p<0.05); the number of calves in each of the six groups was 6.

is supplied. As reported previously, a decrease in the serum the current study, we observed the greatest changes in microbiota
GLU level with age may be caused by decreased milk provision between the M3 and M4 groups. The relative abundance
(Hill et al., 2010). This indicates that the serum GLU level of  Ruminococcaceae_UCG-005, norank_f_Muribacuiaceae,
decreases with the development of ruminant function in calf Lactobacillus, norank_f_Eubacterium_coprostanoligenes_group,
(Hugi and Blum, 1997). After weaning, the energy in calf is Bacteroides, unclassified_f_Lachnospiraceae, Blautia,
mainly derived from VFAs produced via fermentation by Bifidobacterium, Rikenellaceae_RC9_gut_group, and Olsenella was
intestinal microbiota, and it no longer solely depends on the affected by weaning. Among those, the relative abundance of
intake of milk (Tao et al., 2018). In addition, the production of Ruminococcaceae_ UCG-005 increased and stabilized after
VFAs may be related to the structure of the intestinal weaning. These bacteria are critical probiotics in the animal
microbiota. Therefore, we explored the differences in the gut intestine, and degrade starch and cellulose by secreting copious
microbiota in calves of different ages. Indeed, we observed amounts of cellulase and hemicellulase, with the degradation
significant differences according to age. products providing energy to the host (Kim et al, 2012).

Between weaning and 1year of age, the rumen of dairy cow Ruminococcaceae_UCG-005 is strongly linked to chronic
contains adult-like microbiota (Dill-McFarland et al., 2017). inflammation, metabolic disorders, and mycotoxin exposure in
Age-related differences in the gut bacteria have also been observed weaned pigs (Mateos et al., 2018). Furthermore, the relative
in dairy calf. Particularly, weaning stress induces disturbances in abundance of norank_f__Muribaculaceae and Rikenellaceae_RC9_
the gut microbiota in calf (Kim et al., 2012; Devine et al., 2013) In gut_group increased and then decreased. Muribaculaceae
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Flower diagram plot and beta-diversity analysis of the fecal microbiota of calves in different age groups. (A) Flower diagram plot. OTUs present in
all groups are identified as the core community of all groups. (B) Principal coordinates analysis (PCoA) plots of microbiota in different samples; the
number of calves in each of the six groups was 6.

members are specialists in the fermentation of complex
polysaccharides (Ormerod et al., 2016; Lagkouvardos et al., 2019)
and produce propionate as a fermentation end product
(Smith et al, 2021). Rikenellaceae_RC9_gut group degrades
cellulose and hemicellulose, and can produce propionate, acetate,
and/or succinate as fermentation end products (Zened et al., 2013;
Graf, 2014; Rosenberg et al., 2014; Sha et al., 2020).

We also observed that the relative abundance of
Lactobacillus decreased and the genus ceased to be detectable
after the M4 stage. Lactobacillus members exert a variety of
beneficial effects in the host, including affecting antioxidant
capacity (Lin and Chang, 2000; Shi et al., 2021). In fact,
Lactobacillus, as probiotics, increases the serum SOD and
GSH-Px levels (Martarelli et al., 2011). This suggests that a
decrease in the relative abundance of Lactobacillus may
decrease the antioxidant capacity in calves at high altitudes.
Consistent with this, Lactobacillus and Bifidobacterium
contribute to the increase in erythrocyte SOD and GSH-Px
levels, and total antioxidant status (Ejtahed et al., 2012).
the
Eubacterium_corostanoligenes_group increased in the M1-M3

Furthermore, relative abundance of norank_f _
growth period, then decreased, and increased again after the
M4 period, which was associated with decreased TC, as
previously reported (Madden, 1995). The relative abundance
of unclassified_f_Lachnospiraceae also fluctuated. This
bacterium is an important butyrate producer residing in the
gut (Dahiya et al., 2019).

The relative abundance of Bacteroides and Blautia decreased
significantly (fluctuating at M4). Bacteroides members are well-
known for their ability to degrade polysaccharides (Lapébie et al.,

2019). Blautia is a novel functional genus with potential probiotic
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components. The relative abundance of Bifidobacterium
drastically decreased over the M1-M3 period, but then increased
(and fluctuated) in M4-M6 calves. Bifidobacterium members are
dominant bacteria that provide beneficial effectors to calves
during the milk-feeding period Finally, the relative abundance of
Olsenella increased overall (M1-M6) but fluctuated (Vlkova
et al.,, 2006) after weaning (the M4 group). Olsenella produces
VFAs by fermenting starch and glycogen substrates (Goker
etal., 2010).

Exposure to a hypoxic environment at a high altitude disrupts
the systemic redox balance and leads to hypoxic oxidative stress
(Samanta and Semenza, 2017; Gaur et al., 2021), which is related
to the damage of the intestinal barrier (McKenna et al., 2022;
Wang et al, 2022). In the current study, using Spearman
correlation analysis, we analyzed the relationship between the gut
microbiota and serum antioxidant capacity. Many bacteria were
associated with the antioxidant capacity, including members of
Lachnospiraceae and Ruminococcaceae. These findings suggest that
supplementation of solid starters at weaning is the main cause of
changes in the antioxidant status and gut microbiota during the
growth and development of calves (Zhuang et al., 2020). Increasing
the abundance of Lachnospiraceae and Ruminococcaceae members
has been reported to control host oxidative stress in a previous
study (Uchiyama et al., 2022), which is consistent with the findings
of the current study.

Further studies are needed to explore the mechanism of
oxidative damage in calves at high altitudes. The findings of the
current study suggest that strategies that alter the abundance of
certain bacteria, such as supplementation of antioxidant additives,
could be used to regulate hypoxic stress and improve high-altitude
adaptability of young animals.
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TABLE 1 Functional predictions of significantly different KEGG pathways of fecal bacteria at three levels (only level Il pathways that were

significantly different at p<0.05 and abundances >0.01% are shown).

KEGG_Pathway

Level I/Level II/

Level IlI

Metabolism 0.769 0.769 0.764 0.771 0.764 0.765 0.0175 0.121
Global and overview 0.405 0.402 0.406 0.406 0.404 0.406 0.00063 0.156
maps

Biosynthesis of 0.089 0.089 0.091 0.091 0.091 0.091 0.0002 0.092
secondary metabolites

Biosynthesis of amino 0.043" 0.043¢ 0.046* 0.045%¢ 0.045%¢ 0.046% 0.0004 0.010
acids

Microbial metabolism 0.045% 0.044% 0.043° 0.043" 0.043" 0.043° 0.0001 0.006
in diverse environments

Nucleotide metabolism 0.031* 0.030° 0.028" 0.029® 0.029*® 0.028*® 0.0003 0.002
Purine metabolism 0.017° 0.017° 0.015° 0.016™* 0.016%¢ 0.016" 0.0002 0.001
Pyrimidine metabolism 0.013 0.013 0.012 0.012 0.013 0.012 8.32E-05 0.054
Carbohydrate 0.105 0.102 0.098 0.100 0.100 0.099 0.0006 0.130
metabolism

Amino sugar and 0.013 0.012 0.011 0.012 0.012 0.011 0.0001 0.003
nucleotide sugar

metabolism

Glycolysis / 0.013* 0.013*® 0.011° 0.012*® 0.012° 0.011° 0.0002 0.000
Gluconeogenesis

Genetic information 0.087 0.089 0.089 0.087 0.001 0.090 0.0020 0.522
processing

Translation 0.0370 0.038 0.038 0.037 0.038 0.039 0.0002 0.084
Ribosome 0.024 0.025 0.025 0.025 0.025 0.026 0.0001 0.056
Environmental 0.056 0.055 0.055 0.053 0.001 0.054 0.0195 0.774
information processing

Cellular community— 0.019¢ 0.020 0.022° 0.020%¢ 0.022° 0.021%® 0.0002 0.001
prokaryotes

Quorum sensing 0.013 0.013 0.015 0.014 0.015 0.014 0.0002 0.006

Differences between four groups are presented in the form of different letter (p<0.05).

5. Conclusion

In the current study, for the first time, we evaluated the serum
antioxidant capacity and gut microbiota in Holstein calves at a
high altitude. The analysis revealed that the serum antioxidant
capacity and gut microbiota change with calf age. We observed
that the gut microbiota in each age group change temporally,
which was related to changes in the diet, growth development,
and gut microbiota interactions. In addition, based on the
correlation between serum antioxidant capacity and gut
microbiota, we identified specific microbes that are related to the
serum antioxidant capacity. This study provides new insights into
how reshaping gut microbiota could improve the health and
production performance of Holstein calves bred at high altitudes.
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