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The structure and dynamic of soil bacterial community play a crucial role in 

soil health and plant productivity. However, there is a gap in studying the un−/

or reclaimed soil bacteriome and its impact on future plant performance. The 

16S metagenomic analysis is expensive and utilize sophisticated pipelines, 

making it unfavorable for researchers. Here, we aim to perform (1) in silico 

and in vitro validation of taxon-specific qPCR primer-panel in the detection 

of the beneficial soil bacterial community, to ensure its specificity and 

precision, and (2) multidimensional analysis of three soils/locations in Egypt 

(‘Q’, ‘B’, and ‘G’ soils) in terms of their physicochemical properties, bacteriome 

composition, and wheat productivity as a model crop. The in silico results 

disclosed that almost all tested primers showed high specificity and precision 

toward the target taxa. Among 17 measured soil properties, the electrical 

conductivity (EC) value (up to 5 dS/m) of ‘Q’ soil provided an efficient indicator 

for soil health among the tested soils. The 16S NGS analysis showed that 

the soil bacteriome significantly drives future plant performance, especially 

the abundance of Proteobacteria and Actinobacteria as key indicators. The 

functional prediction analysis results disclosed a high percentage of N-fixing 

bacterial taxa in ‘Q’ soil compared to other soils, which reflects their positive 

impact on wheat productivity. The taxon-specific qPCR primer-panel results 

revealed a precise quantification of the targeted taxa compared to the 16S 

NGS analysis. Moreover, 12 agro-morphological parameters were determined 

for grown wheat plants, and their results showed a high yield in the ‘Q’ soil 

compared to other soils; this could be attributed to the increased abundance 

of Proteobacteria and Actinobacteria, high enrichment in nutrients (N and K), 

or increased EC/nutrient availability. Ultimately, the potential use of a taxon-

specific qPCR primer-panel as an alternative approach to NGS provides a 

cheaper, user-friendly setup with high accuracy.
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Introduction

Soil health is the ability of soil to continue functioning as a vital 
living ecosystem that supports plants, animals, and humans 
(Lehmann et al., 2020). Maintenance of soil health is pivotal to 
agricultural sustainability and a key factor affecting agroecosystems’ 
productivity (Monther Tahat et al., 2020). Soil health could change 
over time due to environmental events (such as erosion, leaching, 
and aeration) and anthropogenic activities, consequently, changes 
in the soil’s chemical, physical, and biological attributes (Allen et al., 
2011). Therefore, a collection of measurable physical, chemical, and 
biological characteristics, which relate to soil functioning, can 
be used as an indicator to assess soil health (Tu et al., 2021). Indeed, 
plant growth and yield traits are the major proxies of healthy soil in 
agricultural systems (Lehmann et al., 2020).

Agricultural soil management practices such as crop rotations, 
as well as the application of pesticides and fertilizers can influence 
soil quality via changes in soil physical properties, essential 
mineral nutrients, organic matter, and beneficial microbial 
communities (Fischer et  al., 2020; Wahdan et  al., 2021). 
Nevertheless, the complex links among soil properties, microbes, 
soil health, and crop productivity remain unclear.

Microbial communities in soil play influential roles in nutrient 
cycling as well as plant growth and resistance against biotic and 
abiotic harmful effects (Ahmad et al., 2008; Larkin, 2015; Dubey 
et al., 2019). There is a correlation between the initial soil bacterial 
composition and the plant growth/yield, suggesting that early-life 
soil bacteriome plays a key role in plant health (Wei et al., 2019). 
Furthermore, the soil bacteriome appears to be  a sensitive, 
prognostic, and predictive indicator of soil health. Despite the 
importance of soil bacteriome analysis, there is a gap in 
investigating the initial bacterial communities and their impact on 
future plant health. Thus, the inclusion of microbial indicators 
significantly benefits soil health assessment.

Plant growth-promoting rhizobacteria (PGPR) are a class of 
free-living bacteria that dramatically affect plant growth and 
health through several vital processes (Hayat et  al., 2010; 
Mahapatra et al., 2022). Furthermore, the PGPR could enhance 
growth through numerous mechanisms; biological nitrogen 
fixation, secretion of phytohormones and other beneficial 
metabolites, facilitating the uptake of essential nutrients (N, P, Fe, 
Zn, etc.), induction of systemic resistance, promoting beneficial 
plant-microbe symbioses, and interference with pathogen toxin 
production (Narula et al., 2006; Hayat et al., 2010; Bhattacharyya 
and Jha, 2012; Chauhan et al., 2015; Maksimov et al., 2015). It is 
worth mentioning that Proteobacteria, Actinobacteria, and 
Bacteroidetes boost soil health through substantial mechanisms 
such as; the decomposition of biopolymers, contributing to 
nutrient cycling, and promotion of plant growth (Bhatti et al., 
2017; Qi et al., 2018; Kalam et al., 2020; Raiger Iustman et al., 2021).

During the last decade, the vast development of Next-
generation sequencing (NGS) technologies played a significant 
role in our understanding of soil microbial diversity. As a result, 
NGS has a wide range of applications in soil science, including 

microbial identification, soil ecology, microbial diversity, … etc. 
Generally, metagenomics include ribosomal gene sequencing like 
the 16S rRNA gene for bacteria and archaea or the ITS2 region for 
fungi, which have been used to find the diversity patterns of the 
respective microbial groups (Rosselli et al., 2016; Schöler et al., 
2017). Although NGS-based metagenomic analysis represents a 
powerful and high-throughput approach for studying soil health/
quality, it still has some limitations. The high cost of NGS and its 
sophisticated analysis make it a limited choice for most researchers. 
So, there is a crucial need to develop an alternative user-friendly 
and cost-effective approach for early soil health prediction.

The huge abundance of published sequencing data of 16S rRNA 
genes makes it an ideal locus for designing taxon-specific primers 
and their subsequent taxonomic assignment. Based on the available 
metagenomics data, phylum-, group-, and class-specific primers 
could be developed and applied for the soil microbial communities’ 
assessment with high precision and sensitivity toward the target 
taxa (Mühling et al., 2008; De Gregoris et al., 2011). Furthermore, 
these primers could be beneficial, effective, and easy to apply when 
applied to quantitative PCR (qPCR), allowing the measurement of 
relative and absolute microbial abundances (Pfeiffer et al., 2014).

Our ultimate goal was to develop a simple and cost-effective 
approach utilizing the qPCR as a user-friendly technique to 
quantify the soil’s initial microbial communities indicating soil 
health, and plant productivity. Therefore, we assessed (in silico) the 
validity and specificity of 16S rRNA-based qPCR primers for a set 
of taxon-specific targets. Moreover, each primer pair was then 
subjected to PCR (in vitro) and the results were subsequently 
compared with the 16S metagenomic sequencing data using the 
same soil samples. To achieve our goal, we set up a pot experiment 
using soil collected from different fields that apply distinct 
management strategies (crop rotation and fertilization system). A 
set of measurements was considered as indicator of soil quality. 
We analyzed (i) the total prokaryote community using 16S rRNA 
gene amplicon sequencing (Illumina MiSeq), (ii) the abundance 
of most dominant bacterial phyla (qPCR), and (iii) soil 
physicochemical properties, with consideration of cropping 
history. Bread wheat (Triticum aestivum L.) is a pivotal consumed 
crop worldwide to feed the increasing population. However, the 
agricultural land productivity still had many issues, especially in 
the newly reclaimed lands, which posed a big challenge for the 
stakeholders (Ramadoss et  al., 2013). Therefore, this study 
implemented wheat as a model plant to validate the proposed 
approach due to its economic importance and well-established 
agricultural practices. Several wheat growth and yield traits were 
measured to indicate soil quality and health.

Materials and methods

In silico primer evaluation

Initially, taxon-specific primer sets (Supplementary Table 1) 
were obtained from previous studies to be used in both in silico 
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and in vitro analysis. To evaluate the specificity of the obtained 
primer sets, in silico PCR analysis has been performed on the 
SILVA online database (Quast et al., 2012).1 This step was achieved 
through the online tool TestPrime 1.02 as the first step for selecting 
the most efficient primers for the most abundant bacterial phyla; 
Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, 
Bacteroidetes, and Actinobacteria. Three different stringency 
parameters were configured to test each primer pair; zero-
mismatch (0MM), one-mismatch (1MM), and the logic-mismatch 
(LMM), where the length of the zero-mismatch zone at 3′ end 
equals three. The settings chosen for each stringency condition 
were adjusted as follows: for (0MM): (Maximum number of 
mismatches: 0; length of the 0-mismatch zone at 3′ end: disabled; 
SILVA Database: SSU r138.1; Dataset: SILVA Ref NR), for (1MM): 
(Maximum number of mismatches: 1; length of the 0-mismatch 
zone at 3′ end: disabled; SILVA Database: SSU r138.1; Dataset: 
SILVA Ref NR), and for (LMM) condition: (Maximum number of 
mismatches: 1; length of the 0-mismatch zone at 3′ end: 3 bases; 
SILVA Database: SSU r138.1; Dataset: SILVA Ref NR). The results 
of the specific matches with the corresponding taxon were 
only considered.

Study sites and soil sampling

In 2021, soil samples were collected from agricultural lands in 
three locations [Al-Qalyubia (Q), Beni-Suef (B), and Giza (G)] in 
Egypt. These locations were chosen based on their management 
strategy; cultivation history and fertilization regime. Locations Q 
and B were characterized by a regional crop rotation consisting of 
clover, maize, and wheat, while a maize-wheat rotation was 
applied in location G. Detailed description of the three sampled 
fields, including; GPS coordinates, cultivation history, and 
fertilization regimes are shown in Supplementary Table 2. When 
sampling, three independent biological replicates were collected 
from each field. One composite sample was created by pooling and 
homogenizing the three soil samples from the same field.

The collected soil samples were initially sieved to remove litter, 
roots, and gravel and were divided into three subsamples. For 
physicochemical analysis, subsamples were stored at 4°C. For 
molecular analysis, subsamples were placed in sterile 50 ml Falcon 
tubes and frozen at −20°C. The last subsamples were stored in 
buckets at ambient room temperature and were used for the 
pot experiment.

Physicochemical analysis of soil

Detailed physical and chemical analyses were conducted to 
assess the soil properties of the three locations. For the soil texture 

1 http://www.arb-silva.de

2 http://www.arb-silva.de/search/testprime/

analysis (the sand, silt, and clay percentages), the hydrometer 
method was used according to Bouyoucos (1936). The soil pH 
values were measured using standard glass/calomel electrodes in 
1:2.5 w/v soil–water suspension (McLean, 1983). 350 g of soil were 
used to prepare the soil-saturated paste, and then the paste was 
allowed to stand for 24 h (USDA, 1954). Then, the vacuum extracts 
were collected, and the electrical conductivity (EC) was measured 
by a conductivity meter (WTW, Cond 315i, Germany). For the 
saturation percentage (SP) determination, a subsample of each 
paste was oven-dried at 105°C for 24 h. Soluble cations and anions 
were determined in 1:5 soil-water extract, and measurements of 
Na+, k+, Mg2+, Ca2+, SO4

2−, Cl−, and HCO3
− were achieved as 

described by Olsen et al. (1954). The available elements, Copper 
(Cu), Iron (Fe), Manganese (Mn), Phosphorous (P), and Zinc 
(Zn), were determined according to Jackson (1967). The available 
Nitrogen (N) and Potassium (K) were determined according to 
the method of Anderson and Möller (1995).

DNA extraction, high-throughput 16S 
rRNA gene Illumina sequencing and 
bioinformatics

DNA extraction from soil was performed in triplicate for 
subsamples using a DNeasy PowerSoil Kit (QIAGEN, California, 
Santa Clarita, United States) following the manufacturer’s protocol. 
DNA concentration was quantified using the Qubit 3.0 fluorometer 
(Life Technologies) according to the manufacturer’s instruction of 
the Qubit dsDNA HS Assay Kit (Cat. No. Q32851). The V3–V4 
region of the bacterial 16S rRNA was amplified using the forward 
primer Bakt_341F (5’-CCTACGGGNGGCWGCAG-3′) and the 
reverse primer Bakt_805R (5’-GACTACHVGGGT 
ATCTAATCC-3′; Klindworth et al., 2013). Paired-end sequencing 
of 2 × 300 bp was implemented on an Illumina MiSeq platform 
(Illumina, San Diego, CA, United  States) at the Macrogen 
Company (Seoul, South Korea). The demultiplexed sequences are 
deposited in The National Center for Biotechnology Information 
(NCBI) database under BioProject: PRJNA896987.3

The raw reads generated by the Illumina MiSeq sequencing 
platform were processed using the open-source Galaxy tool4 
according to Hiltemann et  al. (2019) and Batut et  al. (2018). 
Briefly, forward and reverse raw reads from the same sample were 
assembled with a minimum overlap of 303 nucleotides. Chimeric 
sequences were removed and the resulting reads were clustered 
into operational taxonomic units (OTUs) at a threshold of 97% 
sequence similarity. The bacterial OTU representative sequences 
were taxonomically assigned against the SILVA reference sequence 
database (Quast et al., 2012). Krona charts were plotted using 
Krona tools available on Galaxy for each sample. Functional 
predictions of the bacterial communities inhabiting soil in each 

3 https://www.ncbi.nlm.nih.gov/bioproject/PRJNA896987

4 https://usegalaxy.org/
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location (Q, B and G) were performed using the Tax4Fun 
(Aßhauer et  al., 2015) package in R software and the Kyoto 
Encyclopedia of Genes and Genomes (KEGG). Tax4Fun 
transformed the SILVA-labeled OTUs into prokaryotic KEGG 
organisms and normalized them using the 16S rRNA copy number 
(obtained from the National Center for Biotechnology Information 
genome annotations). Potential beneficial bacteria (N-fixing 
bacterial) were manually assigned based on literature reviews.

Real-time quantitative PCR

The abundance of the total bacteria and of the 
Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, 
Bacteroidetes, and Actinobacteria was quantified using taxa-
specific 16S rRNA qPCR assays given in Supplementary Table 1. 
Reactions were performed in sealed 96 well plates using a 
Quantstudio 5 (Thermofisher) and analyzed with Quantstudio 
Design & Analysis software (v1.5.2). Single qPCR reaction 
contained 5 μl of 2X BioEasy SYBR Green Mix (BIOER), 0.2 μM 
final concentration of primer (for each forward and reverse), 
and 1 μl of the DNA template (4 ng). Samples were amplified 
with all primer pairs in triplicates. The average Ct value 
obtained from each pair was transformed into a percentage with 
the formula:

 
( )Ct universal CtspecificX E 100= ×–

where E is the calculated efficiency of the used primers (2 = 100%). 
The Cts (universal and specific) is the Ct registered by the 
thermocycler. Resolving this formula, X represents the percentage 
of 16S gene taxon-specific copy numbers existing in a sample (De 
Gregoris et al., 2011).

Design of pot experiment and 
assessment of agro-morphological traits 
of wheat varieties

The study was conducted at the experimental farm of the 
Agricultural Genetic Engineering Research Institute (AGERI), 
Agricultural Research Center (ARC) in Giza, Egypt. We selected 
two varieties (Giza 168 and Sids 14) of bread wheat (Triticum 
aestivum L.) for the pot experiment. To minimize the interference 
and impact of epiphytic seed microbiota, seeds were surface-
sterilized with 0.5% NaClO4 for 5 min, followed by three washes 
with distilled water for 10 min. During the winter season of 2021–
2022, five seeds of each wheat variety were planted in earthen 
pots (5 L), which had previously been filled with soil from each 
field location separately. Each location was replicated three 
times  yielding a total of 18 pots (3 field locations × 2 wheat 
varieties × 3 replicates). At the plantlet stage, three uniform and 
healthy plants were kept in each pot and regularly fertilized 

(NPK; 20:20:20; 1 g/l). Sterilized tap water was used for irrigation 
according to the plant water requirements.

Various growth traits were recorded to evaluate the impact of 
soil management strategy and initial soil bacterial community on 
plant performance. The measurements included flag leaf area 
(FLA), spike length (SL), number of spikes/plant (NS), peduncle 
length (PL), number of tillers/plant (NT), tillering efficiency (%; 
T %), plant height (PH), number of kernels/spike (NKS), number 
of spikelets/spike (NSS), total yield/plant (TY), and weight of 
thousand kernels (WTK). Also, the chlorophyll content was 
measured using the Soil Plant Analysis Development (SPAD) 
chlorophyll meter (Minolta SPAD-502 meter, Tokyo, Japan) to 
detect the SPAD index. The tillering efficiency was calculated 
according to the following equation: (T %) = NS/NT, while total 
yield/plant was calculated as: TY (g/plant) = weight of kernels per 
spike × NKS.

Statistical analyses

All statistical analyses were carried out in SPSS software 
(SPSS Inc., Chicago, United States) and with the vegan package 
(Dixon, 2003) in R software (R Core Team, 2013). The obtained 
results were analyzed using variance analysis (ANOVA; Gomez 
and Gomez, 1984). One-way analyses of variance (ANOVA), 
followed by the Tukey’s honestly significant difference (Tukey’s 
HSD) post-hoc test, were applied to analyze the effects of soil 
management strategy (Q, B, and G) and wheat variety (Giza 164, 
and Sids 14) on wheat growth traits. Additionally, analysis of 
wheat performance (a combination of FLA, SL, NS, PL, NT, T%, 
PH, NK, TY, NSK, WTK, and SPAD index) across three soil 
management strategies and within two varieties was tested by 
permutational multivariate analysis of variance (PERMANOVA). 
The results were visualized using Non-metric multidimensional 
scaling (NMDS) ordination plots. All soil physicochemical 
properties significantly affecting wheat performance (p < 0.05) 
were fitted in the respective ordination plots. The relationships 
between soil physicochemical properties and wheat yield (TY) 
were further analyzed by a simple linear regression model using 
the “dplyr” R package. To compare the bacterial community 
richness and reveal common and unique OTUs within the three 
soils management strategy, a Venn diagram was created with the 
software available.5 Finally, the hierarchical cluster analysis 
(HCA) was applied based on the Bray–Curtis similarity matrix to 
test the effect of different soils on bacterial community 
composition. In order to test the relationships between bacterial 
phyla, soil physicochemical properties, and wheat growth traits, 
Pearson’s correlation was applied. The results were considered 
significant at p < 0.05. Heatmaps were plotted using SRplot,6 the 
online data analysis and visualization platform.

5 http://bioinformatics.psb.ugent.be

6 https://www.bioinformatics.com.cn/srplot
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Results

In silico primer evaluation

In silico taxonomic coverage of primer pairs was predicted 
at the phylum level using TestPrime analysis tool with three 
conditions of mismatching (0MM, 1MM, and LMM; Figure 1). 
The results indicated that Actinobacteria-specific primer pair 
had the highest specific matching percentage accounting by 92.4, 
91.3, and 85.6% for 1MM, LMM, and 0MM, respectively. 
Bacteroidetes-, Alphaproteobacteria-, and Betaproteobacteria-
specific primers were predicted to detect more than 80% of their 
specific targets at 1MM. Notably, Gammaproteobacteria-specific 
primer pair had the lowest target coverage at the three 
mismatching conditions (Supplementary Figure 1). For a better 
understanding of the results, the percentages of specific 
matching for the matched order, family, and species were 
recorded and represented for each primer 
(Supplementary Figure 2).

Physicochemical analysis of soil

Analyzing the physical properties of soil samples retrieved 
from three locations (Q, B, and G) revealed that all soils exhibited 
the same texture (loam-clay; Supplementary Table 3), pH and SP 
values (Table 1). However, the EC values differed significantly 
(p < 0.05; Tukey’s test) among the three locations (Q: 5.12, B: 1.66, 
and G: 0.38). Further chemical analysis showed that Q soil was 
characterized by the highest (p < 0.05) concentrations of Cl−, 
HCO3

−, Ca2+, Mg2+, Na+, K+, and available potassium. On the other 
hand, the lowest concentrations of those elements were detected 
in G soil (Table 1). Regarding metal ions, the highest contents of 
manganese and zinc were found in  location B, while G soil 
possessed the highest levels of copper and iron as compared to 
other soils.

Taxonomic and functional 
characterization of soil bacterial 
communities

Soil samples were subjected to 16S rRNA gene sequencing to 
gain insights into the actual variations in bacterial communities 
present between the three locations. Soils from different locations 
comprised a diverse percentage of the identified phyla, class, 
order, family, genus, and species (Figure  2A). However, 
Proteobacteria was the most dominant bacterial phyla across the 
three locations accounting by 46, 33, and 29% in Q, B, and G 
soils, respectively. Remarkably, the unclassified bacteria of the G 
soil reached 33%, while B = 23%, and Q = 18%. A hierarchical 
cluster analysis was applied to investigate the similarity of 
bacterial communities inhabiting the three soil types (Figure 2B). 
The results showed that bacterial community in G soil was 

distinct from Q and B communities. The distribution of bacterial 
OTUs in the three soil types was analyzed (Figure 2C). B soil 
harbored the highest number of unique OTUs (30.4%), followed 
by G (25%) and Q (17.8%). Only 7.2% of bacterial OTUs were 
shared among all soils. Additionally, our results revealed that Q 
soil harbored the lowest number of bacterial OTUs compared to 
other soils.

Within the bacterial OTUs, specific function (potential 
N-fixing bacteria) relevant to plant health and growth was further 
explored (Figure  3A). Six genera were assigned as potential 
N-fixing bacteria. Almost all of them were detected in the Q and 
B locations, which are characterized by a crop rotation system that 
includes a leguminous crop (clover). The highest percentage of 
N-fixing bacteria-assigned OTUs were detected in Q soil (18% of 
total detected OTUs), followed by B soil (7%). The potential 
metabolic functional profiles of bacterial community were 
predicted based on the 16S rRNA genes of retrieved bacterial taxa 
using Tax4Fun according to the KEGG Ortholog groups (KOs). 
We focused on the predicted genes relevant to plant health, fitness, 
and growth such as phosphate solubilization, indole acetic acid 
(IAA) production, 1-aminocyclopropane-1-carboxylate (ACC) 

FIGURE 1

In silico prediction of the target coverage percentage (specific 
match) and non-coverage (other matches) for each phylum-
specific primer pair using TestPrime tool. 0MM represents the 0 
mismatch condition, while 1MM represents the 1 mismatch 
condition. LMM represents the logic mismatch condition where 
the mismatch does not occur in the last three bases in the 3′ 
end. Actino; Actinobacteria, Alpha; Alphaproteobacteria, Beta; 
Betaproteobacteria, Gama; Gammaproteobacteria, Bacter; 
Bacteroidetes.
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A

B C

FIGURE 2

(A) Krona charts showing the taxonomic identification and relative abundance of the most abundant bacterial OTUs recorded in soil from three 
locations; Q: Al-Qalyubia, B; Beni-Suef, and G: Giza. (B) Hierarchical clustering of bacterial community compositions (based on Bray–Curtis 
similarity index) among three soils. (C) Venn diagram showing the distribution of detected bacterial operational taxonomic units (OTUs) among 
three soils.

deaminase activity, biofilm formation, and defense mechanism as 
well as general plant growth-promoting traits. Additionally, genes 
involved in nutrient cycling (C, N, and S cycles) in soil were 
investigated (Figure  3B; Supplementary Table  4). The results 
showed that soil in Q location harbored the highest relative 
abundance of the predicted genes, especially genes relevant to C 
and S cycles, IAA production, biofilm formation, and 
phosphate solubilization.

Quantitative detection of bacterial 16S 
rRNA gene

By calculating the difference between the universal primer 
pair and the phylum-specific primer pair, bacterial phyla were 
quantified using qPCR and expressed as a percentage of the target 
taxa. When the 16S NGS and qPCR results were compared, 
we discovered a consistent trend in the percentage of the target 
taxa (Figure  4). Furthermore, qPCR results confirmed the 
dominance of Alphaproteobacteria and Actinobacteria in the 
three soils (Q, B, and G). For instance, in the Q soil 
Alphaproteobacteria was accounted by 41, and 37.9% using 16S 
NGS and qPCR techniques, respectively. Additionally, 
Actinobacteria was accounted by 15, and 15.4% using 16S NGS 
and qPCR techniques, respectively. On the other hand, 
Gammaproteobacteria, Bacteroidetes, and Betaproteobacteria 
collectively were recorded by less than 2 and 1.8% of all detected 
phyla retrieved by 16S NGS and qPCR techniques, respectively 
(Figure 4).

Assessment of agro-morphological traits 
of wheat varieties

Agro-morphological traits of two wheat varieties (Giza 168, 
and Sids 14) grown in three different soils (Q, B, and G) were 
measured after harvest. Our analysis revealed that wheat variety, 
soil type, and their interactive effects determined the significant 
difference in total plant yield (TY) and weight of thousand 
kernels (WTK). The highest TY was reported for Giza 168 in Q 
soil, while the variety Sids 14 had the highest WTK in B soil 
(Figure  5). In addition, a single effect of soil type was also 
reported. For instance, wheat in B soil was characterized by the 
highest plant height (PH) and peduncle length (PL). Significant 
interactions of wheat variety and soil type indicated that the two 
varieties responded differently, in terms of growth parameters, to 
soil type. For instance, Giza 168 had the highest NKS and the 
lowest FLA in Q soil.

Influence of soil physicochemical 
properties on wheat agro-morphological 
traits

To assess the influence of soil properties on wheat agro-
morphological traits, PERMANOVA analysis was applied. 
PERMANOVA results corroborated with ordination plot 
indicated that wheat growth and yield traits differed significantly 
across three soil types (PERMANOVA; F = 15.32, p = 0.001; 
Figure 6). In addition, the Goodness-of-fit statistics indicated that 
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different sets of soil physicochemical variables significantly 
influenced wheat agro-morphological traits (Figure  6; 
Supplementary Table 5). For instance, wheat traits were highly 
shaped (R2 = 0.89, p = 0.001) by Fe and Cu concentrations in G soil, 
while Zn concentration was the most influencing factor (R2 = 0.35, 
p = 0.046) in B soil. On the other hand, wheat growth traits, in Q 
soil were significantly correlated (R2 = 0.65–0.75, p < 0.05) with 
Mg2+, Cl−, K+, HCO3−, Na+, Ca2+, SO4

2−, and EC. Additionally, a 
linear regression model was used to analyze the relationship 
between soil physicochemical properties and wheat yield. The 
results showed that the decline in wheat yield was related to Cu 
and Fe concentrations (Figure 7). On the other hand, wheat yield 
was positively correlated with K, SO4

2−, Cl−, Ca2+, Mg2+, and Na+ 
concentrations and the EC value.

Relation between soil properties, 
bacterial communities, and wheat 
agro-morphological traits

To investigate the influence of soil properties on the most 
abundant bacterial phyla, Pearson’s correlation was applied 
between the percentage of the target taxa (obtained from 16S 
NGS) and soil physicochemical properties (Figure  8A). 
Interestingly, significant positive correlations were detected 
between EC, Cl−, Ca2+, Mg2+, Na+, and K+ concentrations and 
Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, 
and Bacteroidetes. Moreover, each of the bacterial phyla 
correlated with specific nutritional element. For instance, 
Bacteroidetes positively correlated with available N, 

A

B

FIGURE 3

(A) Identification and relative sequence abundance of potential N-fixing bacteria present in each soil type. (B) The heat map of relative abundance 
of metabolic functional profiles of Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologs (KOs) assigned to KEGG pathways involved in 
plant health, fitness, and growth, as well as the nutrient cycle in the three soil types. G; Giza location, Q; Al-Qalyubia location, and B; Beni-Suef 
location.
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FIGURE 4

Characterization of the most dominant bacterial phyla in soil 
from three locations (Q, B, and G) using 16S rRNA next-
generation sequencing (NGS) and qPCR. Each bar represents the 
mean percentage ± standard deviation (SD; n = 3). G; Giza location, 
Q; Al-Qalyubia location, and B; Beni-Suef location.

Alphaproteobacteria correlated with HCO3−, while SO4
2− was a 

determinant nutrient for Proteobacteria. Actinobacteria 
positively correlated with available potassium and Mg2+. On the 
other hand, Cu and Fe concentrations negatively influenced 
Alphaproteobacteria, Gammaproteobacteria, and 
Actinobacteria. Also, Bacteroidetes negatively correlated with 
Mn concentration. Finally, the Pearson’s correlation was 
performed between the percentage of the bacterial taxa (obtained 
from qPCR) and the measured wheat agro-morphological traits 
(Figure 8B). The results showed a significant positive correlation 
between PL, FLA, and WTK and both Alphaproteobacteria, and 
Bacteroidetes. NKS and TY positively correlated 
with Betaproteobacteria.

Discussion

Comparison of qPCR and 16S rRNA gene 
amplicon sequencing results revealed a 
precise quantification of the target 
bacterial phyla

The first goal of this study was to develop an efficient 
approach for quantitative analysis (qPCR) of soil-specific 
bacterial phyla that are correlated with soil health and, 
consequently, plant productivity. We  tested the previously 
designed taxon-specific primers that target the major bacterial 
phyla (Alphaproteobacteria, Betaproteobacteria, 
Gammaproteobacteria, Actinobacteria, and Bacteroidetes; T

A
B

LE
 1

 P
h

ys
ic

o
ch

em
ic

al
 p

ro
p

er
ti

es
 o

f 
so

il 
sa

m
p

le
s 

re
tr

ie
ve

d
 f

ro
m

 t
h

re
e 

lo
ca

ti
o

n
s 

(A
l-

Q
al

yu
b

ia
, B

en
i-

Su
ef

, a
n

d
 G

iz
a)

.

Lo
ca

ti
o

n
p

H
E

C
 

(d
S/

m
)

SP
SO

4
2

−
 

(M
e

q
/L

)

C
l−

 

(M
e

q
/L

)

H
C

O
3

−
 

(M
e

q
/L

)

C
a2

+
 

(M
e

q
/L

)

M
g

2
+
 

(M
e

q
/L

)

N
a+

 

(M
e

q
/L

)

K
+
 (

M
e

q
/L

)
N

it
ro

g
e

n
 

(m
g

/K
g

 

so
il)

P
o

ta
ss

iu
m

 

(m
g

/K
g

 

so
il)

C
o

p
p

e
r 

(m
g

/K
g

 

so
il)

Ir
o

n
 (

m
g

/

K
g

 s
o

il)

M
an

g
an

e
se

 

(m
g

/K
g

 s
o

il)

P
h

o
sp

h
o

ro
u

s 

(m
g

/K
g

 s
o

il)

Z
in

c 
(m

g
/K

g
 

so
il)

A
l-Q

al
yu

bi
a

8.
74

 ±
 0.

4 
a

5.
12

 ±
 0.

3 
a

42
 ±

 2.
1 

a
16

.1
8 ±

 0.
8 

a
32

.5
 ±

 1.
6 

a
2.

5 ±
 0.

1 
a

15
.5

 ±
 0.

8 
a

9.
15

 ±
 0.

5 
a

25
 ±

 1.
3 

a
1.

18
 ±

 0.
1 

a
10

9 ±
 5.

5 
a

24
7 ±

 12
.4

 a
0.

04
2 ±

 0.
00

2 
c

0.
63

8 ±
 0.

03
 c

0.
24

8 ±
 0.

01
 b

5.
14

 ±
 0.

3 
b

0.
13

6 ±
 0.

01
 b

Be
ni

-S
ue

f
9.

12
 ±

 0.
5 

a
1.

66
 ±

 0.
1 

b
46

 ±
 2.

3 
a

6.
06

 ±
 0.

3 
b

9.
5 ±

 0.
5 

b
1 ±

 0.
1 

b
4.

5 ±
 0.

2 
b

3.
5 ±

 0.
2 

b
8.

25
 ±

 0.
4 

b
0.

32
 ±

 0.
0 

b
92

 ±
 4.

6 
b

21
3 ±

 10
.7

 b
0.

05
8 ±

 0.
00

3 
b

0.
83

 ±
 0.

04
 b

0.
40

2 ±
 0.

02
 a

6.
38

 ±
 0.

3 
a

0.
19

8 ±
 0.

01
 a

G
iz

a
8.

25
 ±

 0.
4 

a
0.

38
 ±

 0.
02

 c
45

 ±
 2.

3 
a

0.
78

 ±
 0.

04
 c

2.
5 ±

 0.
1 

c
0.

5 ±
 0.

03
 c

1 ±
 0.

1 
c

0.
5 ±

 0.
03

 c
2.

1 ±
 0.

1 
c

0.
18

 ±
 0.

01
 c

10
4 ±

 5.
2 

ab
18

0 ±
 9.

0 
c

0.
07

8 ±
 0.

00
4 

a
1.

52
2 ±

 0.
1 

a
0.

24
4 ±

 0.
01

 b
5.

82
 ±

 0.
3 

ab
0.

11
2 ±

 0.
01

 c

Tu
ke

y’s
 M

ul
tip

le
 C

om
pa

ris
on

s T
es

t w
as

 co
nd

uc
te

d 
to

 a
sc

er
ta

in
 th

e 
sig

ni
fic

an
t d

iff
er

en
ce

 b
et

w
ee

n 
m

ea
ns

 at
 a

 si
gn

ifi
ca

nt
 le

ve
l o

f p
 <

 0.
05

. V
al

ue
s a

re
 re

pr
es

en
te

d 
as

 m
ea

n 
± 

st
an

da
rd

 d
ev

ia
tio

n 
(S

D
). 

D
iff

er
en

t l
et

te
rs

 in
di

ca
te

 si
gn

ifi
ca

nt
 d

iff
er

en
ce

s (
p ≤

 0.
05

) a
m

on
g 

sa
m

pl
es

.

https://doi.org/10.3389/fmicb.2022.1095045
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Abdelmoneim et al. 10.3389/fmicb.2022.1095045

Frontiers in Microbiology 09 frontiersin.org

Mühling et al., 2008; De Gregoris et al., 2011; Pfeiffer et al., 2014) 
in soil. This study represents the first report in silico which 
analyzes the specificity of the pre-designed primer panel with 
three definite stringency conditions (0MM,1MM, and LMM). 
Taken together, the analysis of the selected primer panel 
generated specificity percentages ranging from 49.4 to 92.4%. 
While in the previous studies, the selected primer panel generated 
specificity percentages ranging from 52.8 to 97.8% (Mühling 
et al., 2008; De Gregoris et al., 2011; Pfeiffer et al., 2014). The huge 
update in the 16S ribosomal databases caused by the post-NGS 
era could explain the change in the specificity percentage of the 
designed taxon-specific primers over time (Jaric et  al., 2013; 
Aggarwal et al., 2022). Our results revealed that almost all tested 
primers have high specificity toward the target taxa. Markedly, 
the decreased trend in the percentages of 0MM condition 
compared to other conditions (1MM and LMM) could explain 

and mimic the in vitro mismatches that occur in PCR (Ye 
et al., 2001).

The comparison between qPCR versus the 16S rRNA NGS 
results revealed that the selected qPCR primer panel demonstrated 
high levels of quantification precision without significant 
differences in all tested soil samples. Moreover, both methods 
revealed a similar trend in the percentages of the five target 
bacterial phyla. Furthermore, the high efficiency of the qPCR 
method was validated in previous reports performed on artificial 
as well as natural marine bacterial communities (De Gregoris 
et al., 2011). Overall, the obtained results revealed that the qPCR 
method effectively quantifies certain taxa of bacteria using the 
selected primer panel to determine the proportion of the target 
taxa in a respective sample. Notably, the qPCR method proved to 
be much cheaper and faster without decrease in the quality of the 
obtained results compared to 16S rRNA NGS.

FIGURE 5

The growth characteristics of two cultivars of wheat (Giza 168, and Sids 14) grown under various soil types. Tukey’s Multiple Comparisons Test was 
conducted to ascertain the significant difference between means at a significant level of p < 0.05 and represented as mean ± standard deviation (SD). 
Different letters indicate significant differences (p ≤ 0.05) between the samples (n = 3). G; Giza location, Q; Al-Qalyubia location, and B; Beni-Suef 
location.
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FIGURE 6

Non-metric multidimensional scaling (NMDS) ordination diagram of wheat growth traits in soils from three locations [Al-Qalybia (Q), Beni-Suef (B), 
and Giza (G)]. The NMDS ordination was fitted with physiochemical soil parameters (p < 0.05).

Possible links between soil bacterial 
communities, physicochemical 
properties, and wheat yield

Soil bacteriome plays important roles in crop productivity 
through different mechanisms such as modulation of nutrient use 
and enhancing both plants’ biotic and/or abiotic stress resistance. 
The diversity of bacterial communities in the soil and how they 
influence the overall plant performance are crucial indicators of 
the quality/health of soil (Ahmad et al., 2008; Larkin, 2015; Dubey 
et al., 2019).

Regarding the soil physical analysis, the results showed no 
differences in the soil’s texture (loamy-clay) between the three 
locations due to our pre-selection of soils suitable for wheat 
cultivation (Mojid et al., 2009). Likewise, the pH and SP analysis for 
the three soils revealed insignificant differences. Since the soil’s EC is 
relevant to the proportion of salts in the soil, the analysis of the three 
soils disclosed significant differences between their ECs, which may 
reshape the soil microbiome (Kim et al., 2016). The soil EC range 
fitting cultivation of a certain crop varies from salt-sensitive (1.0–3.2 
dS/m) to salt-tolerant crops (2.7–8.0 dS/m; Smith and Doran, 1997). 
It was reported that higher EC (within an appropriate range for a 
certain crop) is considered beneficial for better plant nutrient 
availability than lower ECs. For example, as bread wheat is 
considered a moderately salt-tolerant crop, this makes EC value up 
to 8 dS/m suitable for wheat growth and nutrient availability in soil 
(Smith and Doran, 1997; Munns et al., 2006). This suggests that the 
EC for the Q soil (5.12 dS/m) may positively impact plant 
performance. Additionally, previous studies demonstrated a positive 
correlation between the EC values and the abundance of 

Proteobacteria (Wang et al., 2020) and/or Bacteroidetes (Kim et al., 
2016). The Q soil, characterized by the highest EC value, recorded 
elevated levels in the abundance of Proteobacteria and Bacteroidetes 
(~32%) in the Q soil compared to other soils.

As EC values, the amount of Na+, k+, Mg2+, Ca2+, SO4
2−, Cl−, 

and HCO3
− showed similar trends with significant differences 

among the three soils. These cations and anions are the major 
soluble salts linked to the soil EC (Shi and Wang, 2005). On the 
contrary, the amount of available Cu, Fe, Mn, P, and Zn showed 
different trends among the three soils. The Cu, Fe, Mn, P, and Zn 
elements are essential micronutrients, and their levels are crucial 
for plant growth (Brady and Weil, 2010). Therefore, the level of 
micronutrients in soil may be adequate, deficit, or toxic for plants 
(Brady and Weil, 2010). This explains the low productivity of 
wheat plants in the G soil, as it is characterized by slightly higher 
amounts of Cu and Fe than the other two soils, suggesting that 
their levels may be toxic for the plant.

Meanwhile, N and K are essential macronutrients for wheat 
plant growth (Wang et al., 2020). Notably, the Q soil’s amount of 
available K exceeded the two other soils, suggesting an increase 
in wheat plant yield. In line with a previous study conducted by 
Qi et  al. (2018), in which they found a positive correlation 
between the amount of available K and the abundance of 
Betaproteobacteria, our results showed the same trend. Similarly, 
the amount of available N showed positive correlations with the 
abundance of Betaproteobacteria and Bacteroidetes (p ≤ 0.05, and 
p ≤ 0.01, respectively).

In order to examine the microbial variations between the 
chemically different soils collected from three geographical 
locations, 16S rRNA gene sequencing has been conducted for 
bacterial identification and classification. Indeed, the abundance 
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of bacteria belonging to the phyla Proteobacteria and 
Actinobacteria in the soil is considered a reliable criterion for soil 
health monitoring (Bhatti et al., 2017; Raiger Iustman et al., 2021). 
In all soil samples, the Alphaproteobacteria and Actinobacteria 
were the most abundant phyla detected, especially in the Q soil. 

Alphaproteobacteria are categorized as copiotroph bacteria, and 
their abundance is associated with nutrient-rich soil (Leff et al., 
2015; Li et al., 2016). This may explain the increased abundance 
of Alphaproteobacteria in the Q soil as well as nutrient levels 
compared to the other soils B and G. Similarly, Actinobacteria 

FIGURE 7

Simple linear regression analysis of the relationship between wheat yield and soil physicochemical properties.
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A B

FIGURE 8

(A) Pearson’s correlation matrix between the percentage of the target taxa (obtained by 16S rRNA next-generation sequencing) and soil 
physicochemical properties. (B) Pearson’s correlation matrix between the percentage of the target taxa (obtained by qPCR) and the wheat growth 
parameters. The color and size variation of circles in the figure are proportional level and direction (positive or negative) of the correlation between 
traits where, EC; Electrical Conductivity, SP; Saturation Percentage, WTK; the weight of thousand kernels, NKS; the number of kernels/spike, NSS; 
the number of spikelets/spike, SL; spike length, PL; peduncle length, FLA; flag leaf area, PH; plant height, TY; total yield/plant, and SPAD; 
chlorophyll content index.

possess copiotrophic tendencies and play an important role in 
decomposing the soil organic matter, explaining their increased 
abundance in the Q soil (Dignac et al., 2005).

Moreover, the 16S rRNA clustered analysis of the three soils 
grouped the Q and B soil, explaining the comparable yield of 
wheat plants in those soils. On the other hand, the G soil was 
clustered separately due to its different bacterial composition. The 
functional prediction analysis based on KEGG data disclosed 
differentially predicted functional genes involved in different 
pathways among the three studied soils. Remarkably, the high 
percentage of N-fixing bacterial taxa in Q soil reflects their 
positive impact on wheat plants. Furthermore, Q soil bacterial 
communities included more genes involved in several functional 
pathways, explaining its positive impact on plant yield. Meanwhile, 
the functional analysis of B soil revealed moderate to low relative 
functional gene abundance, with lower plant yield than the Q soil. 
Nevertheless, the relatively low number of functional genes in the 
G soil explains the significantly low yield of wheat plants.

It is well known that plant yield is a key indicator of plant 
performance and productivity (Alzahrani et  al., 2021). The 
agronomical results concluded that plants grown in the Q soil 
produce the highest TY, followed by plants grown in B and G soils. 
This elevation in yield may be attributed to either abundance of 
certain bacterial phyla, higher nutrient enrichment, or increased 
EC/nutrient availability (Bais et  al., 2006; Jacoby et  al., 2017; 
Jeanne et al., 2019; Wang et al., 2020). Based on the two-factorial 
experimental design (3 field locations × 2 wheat varieties), the 
effect of the soil location factor was more pronounced than the 
wheat variety factor. The impact of the microbial community on 
boosting the plant yield was observed previously in potatoes 

through developing an index of potato-crop-productivity bacterial 
species balance (Jeanne et al., 2019).

Previous studies reported that the enriched bacterial 
communities positively impact plant performance, such as shoot 
length, explained by the increased production of bacterial 
metabolites and/or nutrient availability (Van Loon, 2007). Hence, 
the slight elevation in the plant height for the plant grown in Q soil 
might be due to the abundance/enrichment of bacteria in this soil. 
Furthermore, previous studies demonstrated an increase in the 
number of tillers in wheat (up to 25%) by applying Proteobacteria, 
especially Indoleacetic acid (IAA)-producing bacteria (Hayat et al., 
2010; Selvakumar et al., 2011). Therefore, the Q soil disclosed an 
increased number of tillers compared to the other two soils, 
possibly due to the abundance of the phylum Proteobacteria in 
this soil.

Conclusion

In conclusion, limited studies discussed “What is the soil 
bacteriome impact on soil health and consequently plant 
performance?” which makes it an interesting research topic. Our 
study indicates that primary soil bacteriome is a predetermining 
indicator which plays a pivotal role for the soil’s health. Furthermore, 
addressing the question, “If this soil is suitable/fitting for the 
cultivation of a certain crop.” However, despite the wide range of 
metagenomics applications in microbial research, their sophisticated 
analysis makes them neither affordable nor user-friendly. 
Henceforth, we propose a reconsidering of using the taxon-specific 
qPCR primer panel as a potential alternative approach for 16S NGS 
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analysis to unravel the soil bacteriome. Thus, our study provides a 
detailed and multidimensional analysis of soil physical, chemical, 
and microbial variations and their correlation to future plant 
productivity. Ultimately, our taxon-specific qPCR primer panel can 
be used effectively as an early indicator of soil health in a cheap, 
user-friendly, reliable, and fast manner.
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