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three clinical studies in Europe 
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Simona Rondini 3, Ashwani Kumar Arora 3, Thierry Pascal 2 and 
Ludovic Malvaux 2*
1 GSK, Rixensart, Belgium, 2 GSK, Wavre, Belgium, 3 GSK, Siena, Italy

Introduction: We compared the performance of real-time PCR with culture-

based methods for identifying bacteria in sputum samples from patients with 

chronic obstructive pulmonary disease (COPD) in three studies.

Methods: This was an exploratory analysis of sputum samples collected during 

an observational study of 127 patients (AERIS; NCT01360398), phase 2 study of 

145 patients (NTHI-004; NCT02075541), and phase 2b study of 606 patients 

(NTHI-MCAT-002; NCT03281876). Bacteria were identified by culture-based 

microbiological methods in local laboratories using fresh samples or by real-time 

PCR in a central laboratory using frozen samples. Haemophilus influenzae positivity 

with culture was differentiated from H. haemolyticus positivity by microarray 

analysis or PCR. The feasibility of bacterial detection by culture-based methods on 

previously frozen samples was also examined in the NTHI-004 study.

Results: Bacterial detection results from both culture-based and PCR assays 

were available from 2,293 samples from AERIS, 974 from the NTHI-004 study, 

and 1736 from the NTHI-MCAT-002 study. Quantitative real-time PCR (qPCR) 

showed higher positivity rates than culture for H. influenzae (percentages for 

each study: 43.4% versus 26.2%, 47.1% versus 23.6%, 32.7% versus 10.4%) and 

Moraxella catarrhalis (12.9% versus 6.3%, 19.0% versus 6.0%, 15.5% versus 4.1%). 

In the NTHI-004 and NTHI-MCAT-002 studies, positivity rates were higher 

with qPCR for Streptococcus pneumoniae (15.6% versus 6.1%, 15.5% versus 

3.8%); in AERIS, a lower rate with qPCR than with culture (11.0% versus 17.4%) 

was explained by misidentification of S. pseudopneumoniae/mitis isolates 

via conventional microbiological methods. Concordance analysis showed 

lowest overall agreement for H. influenzae (82.0%, 75.6%, 77.6%), due mainly 

to culture-negative/qPCR-positive samples, indicating lower sensitivity of the 

culture-based methods. The lowest positive agreement (culture-positive/

qPCR-positive samples) was observed for S. pneumoniae (35.1%, 71.2%, 

71.2%). Bacterial load values for each species showed a proportion of culture-
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negative samples with a load detected by qPCR; for some samples, the loads 

were in line with those observed in culture-positive samples. In the NTHI-004 

study, of fresh samples that tested culture-positive, less than 50% remained 

culture-positive when tested from freeze/thawed samples. In the NTHI-004 

study, of fresh samples that tested culture-positive, less than 50% remained 

culture-positive when tested from freeze/thawed samples.

Discussion: Real-time PCR on frozen sputum samples has enhanced sensitivity 

and specificity over culture-based methods, supporting its use for the identification 

of common respiratory bacterial species in patients with COPD.

KEYWORDS

bacterial identification, culture, PCR, sensitivity, Haemophilus influenzae, Moraxella 
catarrhalis, Streptococcus pneumoniae, chronic obstructive pulmonary disease

Introduction

Chronic obstructive pulmonary disease (COPD) is a common 
condition characterized by persistent respiratory symptoms, often 
punctuated by acute exacerbations that can lead to hospitalization 
and a faster decline in lung function (Criner et al., 2015; Global 
Initiative for Chronic Obstructive Lung Disease, 2021). Different 
studies, including the observational Acute Exacerbation and 
Respiratory InfectionS in COPD (AERIS) study, have shown an 
association between exacerbation state and increased prevalence 
of airway bacteria, most commonly non-typeable Haemophilus 
influenzae (NTHi) and Moraxella catarrhalis, with some reports 
of an association with Streptococcus pneumoniae also (Garcha 
et al., 2012; Molyneaux et al., 2013; Huang et al., 2014; Millares 
et al., 2014; Wang et al., 2015; Wilkinson et al., 2017; Jubinville 
et al., 2018; Mayhew et al., 2018; Weeks et al., 2021). In the AERIS 
study, changes in the yearly COPD exacerbation rate were 
associated with changes in H. influenzae colonization (Wilkinson 
et al., 2019a), and nearly all (99%) H. influenzae isolates were 
non-typeable (Wilkinson et al., 2017).

A multi-component investigational vaccine was developed to 
reduce the frequency of acute exacerbations of COPD (AECOPD) 
associated with NTHi (Leroux-Roels et al., 2016), followed by a 
second related vaccine (NTHi-Mcat vaccine) to prevent NTHi-and 
M. catarrhalis-associated exacerbations (Van Damme et al., 2019). 
Both vaccines contain three conserved surface NTHi proteins, 

while the NTHi-Mcat vaccine also contains a surface protein from 
M. catarrhalis (Leroux-Roels et al., 2016; Van Damme et al., 2019). 
A phase 2 study of the NTHi vaccine (NTHI-004) and phase 2b 
study of the NTHi-Mcat vaccine (NTHI-MCAT-002) showed 
immunogenicity and no safety concerns when either vaccine was 
administered to patients with COPD (Wilkinson et al., 2019b; 
Andreas et  al., 2022). In the NTHI-MCAT-002 study, while 
vaccination did not reduce the frequency of moderate/severe 
exacerbations, with no difference between groups in rate of 
AECOPD associated with NTHi or M. catarrhalis, observations 
suggested possible reductions in severe exacerbations and related 
hospitalizations in the vaccinated group versus placebo (Andreas 
et al., 2022).

In the AERIS, NTHI-004, and NTHI-MCAT-002 studies, 
sputum samples were collected from patients at regular intervals 
and at exacerbation (Wilkinson et al., 2017, 2019b; Andreas et al., 
2022). Bacteria in freshly collected sputum were identified in local 
laboratories using conventional culture-based microbiological 
methods that were not harmonized. In parallel, frozen 
dithiothreitol (DTT)-treated sputum samples were transported to 
a central laboratory and analyzed by real-time PCR assay. Various 
studies have shown that molecular techniques, such as PCR, have 
better specificity and sensitivity than conventional culture-
dependent methods in the detection of airway bacteria in patients 
with COPD (Eser et al., 2012; Garcha et al., 2012; Bafadhel et al., 
2015; Gadsby et al., 2015; Wilkinson et al., 2017). Also, culture-
based methods require fresh samples and their reliability can 
be affected by antibiotic treatment (Oliver, 2010; Wu et al., 2014) 
as well as the microbiologist’s skills in phenotypic identification 
methods. In contrast, a PCR assay can be used on frozen samples 
in a central location where it has been well characterized, thus 
avoiding the risk of variations in microbiological methods among 
individual local laboratories.

We now report on the performance of the microbiological 
assays used in the detection of bacteria in sputum samples in the 
AERIS, NTHI-004, and NTHI-MCAT-002 studies (Wilkinson 
et  al., 2017, 2019b; Andreas et  al., 2022). Quantitative and 
qualitative H. influenzae, M. catarrhalis, and S. pneumoniae 

Abbreviations: AECOPD, acute exacerbations of chronic obstructive pulmonary 

disease; AERIS, Acute Exacerbation and Respiratory InfectionS in COPD; algD, 

GDP mannose dehydrogenase encoding gene; CDS 23, coding sequence 

23 gene; clfA, clumping factor A encoding gene; copB, copB outer membrane 

protein encoding gene; COPD, chronic obstructive pulmonary disease; DTT, 

dithiothreitol; lgtC, lipo-oligosaccharide glycosyltransferase encoding gene; 

LOD, limit of detection; lytA, autolysin encoding gene; Mcat, Moraxella 

catarrhalis; NTHi, non-typeable Haemophilus influenzae; PCR, Polymerase 

Chain Reaction; qPCR, quantitative real-time PCR; STGG, skim 

milk-tryptone-glucose-glycerol.
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identification results obtained with real-time PCR are compared 
with those obtained with culture-based methods. Additionally, 
using data from the NTHI-004 study, we examine the feasibility 
of freezing sputum samples before bacterial detection by culture 
in a central laboratory. Qualitative Pseudomonas aeruginosa, 
Staphylococcus aureus, and Streptococcus pyogenes identification 
data by PCR assay are also assessed from the three studies.

Figure 1 provides a plain language summary of the findings 
from these assessments.

Materials and methods

Sputum sample collection and 
processing

The sputum samples were collected in three clinical studies of 
adults with COPD: the prospective observational cohort study, 
AERIS, of 127 patients (NCT01360398; Wilkinson et al., 2017), 
the phase 2 placebo-controlled NTHI-004 study of an 
investigational NTHi vaccine in 145 patients (NCT02075541; 
Wilkinson et al., 2019b), and the phase 2b placebo-controlled 
NTHI-MCAT-002 study of an investigational NTHi-Mcat vaccine 

in 606 patients (NCT03281876; Andreas et al., 2022). The AERIS 
study was conducted in the United Kingdom between June 2011 
and June 2014, the NTHI-004 study in the UK and Sweden 
between July 2014 and April 2017, and the NTHI-MCAT-002 
study in Belgium, Canada, France, Germany, Italy, Spain, 
United Kingdom, and United States between November 2017 and 
March 2020. Study summaries are available1 (study identifiers 
114378, 200157, and 207489) and methods and results on primary 
and secondary endpoints of the studies have been published 
(Wilkinson et al., 2017; Mayhew et al., 2018; Osman et al., 2018; 
Wilkinson et al., 2019b; Malvisi et al., 2021; Andreas et al., 2022).

Sputum samples were obtained by spontaneous expectoration 
or induced, as per the investigator’s judgement, at regular intervals 
during each study and at each exacerbation visit, and were 
processed according to standard methods, as described previously 
(Wilkinson et al., 2017, 2019b; Andreas et al., 2022). An acute 
exacerbation was defined as worsening of at least two major 
symptoms (dyspnea, sputum volume, and sputum purulence) or 
worsening of at least one major symptom and one minor symptom 

1 www.gsk-studyregister.com

FIGURE 1

Plain language summary.
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(sore throat, cold symptoms, fever, increased cough, and increased 
wheeze) for at least two consecutive days.

Culture-based bacteriological methods 
and confirmatory assays

Freshly collected sputum samples were treated with DTT at 49 
local microbiological laboratories associated with the clinical sites 
(one site for AERIS study, 15 for NTHI-004 study, and 67 for 
NTHI-MCAT-002 study). Bacterial species were identified by 
standard culture-based identification procedures (Murray et al., 
2007), as summarized in Figure 2, and according to each local 
laboratory’s routine methods, with minor adaptations (relating to, 
for example, the agar plate used for culture, sputum DTT 
pre-treatment, and semi-quantitative culture data reporting). 
Identification protocols included phenotypic characterization, 
semi-quantitative culture, and other methods such as Gram 

staining and biochemical methods. In the AERIS and NTHI-
MCAT-002 studies, qualitative real-time PCR was used to further 
discriminate bacterial isolates of H. influenzae from 
H. haemolyticus by assessing the presence of two genes: P6 (outer 
membrane protein gene), which is conserved among H. influenzae 
and H. haemolyticus, and lgtC (lipo-oligosaccharide 
glycosyltransferase gene), which is ubiquitous in all H. influenzae 
but only 2% prevalent in H. haemolyticus (McCrea et al., 2008; 
Sandstedt et al., 2008; Abdeldaim et al., 2009). In the NTHI-004 
study, culture plate sweeps were taken from presumptive 
H. influenzae-positive sputum in order to confirm H. influenzae 
positivity. This was part of an extended investigation of sputum 
sweep samples by Senti-HI molecular serotyping microarray 
analysis (data not shown) at BUGS Bioscience laboratory (London, 
United  Kingdom). Culture plate sweeps from presumptive 
H. influenzae-positive sputum were stored in skim milk-tryptone-
glucose-glycerol (STGG) medium (O'Brien et al., 2001; Kaijalainen 
et al., 2004) and genomic DNA extracted. Confirmation of species 

FIGURE 2

Culture-based and PCR methods used in the three clinical studies (AERIS, NTHI-004, and NTHI-MCAT-002) to identify Haemophilus influenzae, 
Moraxella catarrhalis, Streptococcus pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, and Streptococcus pyogenes. * Samples 
confirmed as H. influenzae positive after differentiation from other Haemophilus species (e.g., H. haemolyticus) by (NTHI-004 study) Senti-HI 
microarray analysis on stored H. influenzae sweep or (AERIS and NTHI-MCAT-002 studies) lgtC/P6 qualitative real-time PCR assay. algD, GDP 
mannose dehydrogenase encoding gene; CDS 23, coding sequence 23; clfA, clumping factor A encoding gene; copB, copB outer membrane 
protein encoding gene; DTT, dithiothreitol; h, hours; lgtC, lipo-oligosaccharide glycosyltransferase encoding gene; lytA, autolysin encoding gene; 
STGG, skim milk-tryptone-glucose-glycerol medium.
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was based on the detection of species-specific gene targets for 
H. influenzae, in parallel with no detection of species-specific gene 
targets for eight other relevant Haemophilus species.

In the NTHI-004 study, a fraction of all DTT-treated sputum 
samples was stored in STGG medium before freezing and was 
shipped to the central laboratory for bacterial identification using 
standard culture-based methods.

Bacterial identification data generated using culture-based 
methods were qualitative (positive/negative). The bacterial load of 
H. influenzae, M. catarrhalis, and S. pneumoniae in cultured samples 
was estimated using a semi-quantitative quadrant assessment 
method (Murdoch et al., 2017) adapted according to local laboratory 
practices, using a ‘0, Few, 1+, 2+, 3+’ scale, with ‘0’ indicating absence 
and ‘3+’ corresponding to the highest load (bacterial presence in at 
least three of four quadrants of the agar plate). The ‘Few’ category, 
which applied when only few, sparsely spread colonies were observed 
in any quadrant of the plate, was not recorded in the NTHI-004 
study, according to the routine practices of the local laboratories.

PCR identification methods

Frozen aliquots of DTT-treated sputum samples were 
transported to the testing laboratory and analyzed by real-time 
PCR assay (Figure 2). The methods used for nucleic acid extraction 
and PCR are summarized in Table  1 and primers and probes 
sequences are provided in Supplementary Table 1.

Two triplex real-time PCR assays were employed that were 
developed by GSK and characterized in the AERIS study by DDL 
Diagnostic Laboratory (Rijswijk, the Netherlands) and in the 
NTHI-004 and NTHI-MCAT-002 studies by the central GSK 
laboratory (Wavre, Belgium). Following total nucleic acid extraction 
(see Table 1), a quantitative real-time PCR (qPCR) assay (Andreas 
et  al., 2022) amplified DNA fragments of H. influenzae, 
M. catarrhalis, and S. pneumoniae using the TaqMan Fast Advanced 
Master Mix kit (Life Technologies) on Viia7 or QuantStudio 7 
equipment (Life Technologies). A second PCR assay was a 
qualitative assay that amplified P. aeruginosa, S. aureus, and 
S. pyogenes DNA using the same nucleic acids and the same PCR 
reagents and equipment (Life Technologies). The protocol for the 
second assay was essentially the same as for the first, with adaptation 
of the primers and probes sequences (Supplementary Table 1).

For the qPCR assay, three sets of primers and probes were 
designed from the conserved region of lgtC for H. influenzae 
(McCrea et al., 2008), the outer membrane protein copB gene for 
M. catarrhalis (Greiner et al., 2003), and the autolysin A gene 
(lytA) for S. pneumoniae. The lytA primers and probe sequences 
corresponded to those used in the lytA-CDC assay (Carvalho 
et  al., 2007). The presence of S. pyogenes, S. aureus, and 
P. aeruginosa was determined using a qualitative real-time triplex 
PCR assay targeting conserved regions of the coding sequence 23 
gene (CDS23), the clumping factor A encoding gene (clfA), and the 
GDP mannose dehydrogenase encoding gene (algD), respectively. 
S. pyogenes was not detected in any of the sputum samples.

PCR identification results were quantitative (copies/ml) or 
qualitative (positive/negative). Only qualitative data are available 
for P. aeruginosa and S. aureus. The sample was considered 
positive when the measured load was equal to or above the assay 
cut-off corresponding to the limit of detection (LOD) of the assay. 
LODs, expressed in copies/ml of DTT-treated sputum, were 
defined during characterization of the technical performance of 
the qPCR assay. Over time, there was re-assessment of some assay 
parameters, including LOD and quantitation limits, due to 
improvement of the methods (e.g., updated methods for nucleic 
acids extraction). There were consequent differences in LOD 
values between studies (see Table  1). The concentration of 
H. influenzae, M. catarrhalis, and S. pneumoniae DNA (bacterial 
load, copies/ml) in each sample was inferred from the calibration 
curve made from serial dilutions of a plasmid containing the 
sequences targeted by the assay and converted from copies/qPCR 
to copies/ml of DTT-treated sputum samples.

The specificity of these assays was verified theoretically (i.e., 
bioinformatic analyses) and experimentally (on related and unrelated 
bacteria and viruses commonly found in respiratory samples). No 
significant signal above the assays positivity cut-offs was observed 
and the sequencing of the PCR products generated from sputum 
samples confirmed that amplified material corresponded accurately 
to the reference sequences of the targeted pathogens.

Statistical analyses

This technical comparison was an exploratory analysis of data 
from sputum samples taken during the AERIS study (Wilkinson 
et  al., 2017), NTHI-004 study (Wilkinson et  al., 2019b), and 
NTHI-MCAT-002 study (Andreas et  al., 2022), regardless of 
sputum quality and per-protocol defined cohorts. Positivity rates 
and their 95% confidence intervals (CIs) were calculated for the 
results of each assay. Concordance and agreement analyses were 
conducted on the qualitative identification results from samples 
for which both culture-based and PCR assay results were 
available. Overall agreement, positive agreement, and negative 
agreement were calculated as described in the footnote to Table 2. 
Dissymmetry in the number of discordant samples was evaluated 
by McNemar’s test. In the analysis of bacterial load, samples with 
qPCR values above 0 copies/ml were considered for median 
computation and were plotted as a function of semi-quantitative 
culture results.

Results

Sampling

The total number of sputum samples from which bacterial 
detection results were available from both culture-based and 
PCR assays were 2,293 sputum samples from 127 patients in 
the AERIS study (years 1 and 2), 974 sputum samples from the 
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NTHI-004 study (488 from 73 patients who received the 
investigational NTHi vaccine and 486 from 72 patients in the 
placebo group), and 1736 sputum samples from the 

NTHI-MCAT-002 study (878 from 304 patients who received 
the NTHi-Mcat vaccine and 858 from 302 patients who 
received placebo).

TABLE 1 Methods used for the triplex real-time PCR assays.

A. Triplex quantitative real-time PCR (qPCR) assay to identify Haemophilus influenzae, Moraxella catarrhalis, and 
Streptococcus pneumoniae

Study AERIS NTHI-004 NTHI-MCAT-002

Nucleic acid extraction kit and protocol MagNA Pure 96 equipment 

(Roche)

Kingfisher equipment (Life 

Technologies)

MagNA Pure 96 equipment 

(Roche)

MagNA Pure 96 DNA and Viral 

NA small volume kit (viral NA 

universal protocol)

LSI MagVet Universal Isolation kit MagNA Pure 96 DNA and Viral 

NA large volume kit (pathogen 

universal 500 protocol)

Real-time qPCR reagent Taqman Fast Advanced Multiplex Universal Master Mix (Life Technologies)

H. influenzae target gene   lgtC

M. catarrhalis target gene   copB

S. pneumoniae target gene   lytA

Sputum-DTT input volume 200 μl 100 μl 500 μl

Nucleic acid eluate volume 50 μl 80 μl 100 μl

Nucleic acid volume input in qPCR reaction 2 μl 2 μl 2 μl

Copies/qPCR to copies/ml conversion factor Copies/ml = Copies/qPCR * 125 Copies/ml = Copies/qPCR * 400 Copies/ml = Copies/qPCR * 667

Positivity cut-off (assay LOD)

H. influenzae 2,000 copies/ml 16,400 copies/ml 1,561 copies/ml

M. catarrhalis 15,000 copies/ml 44,800 copies/ml 927 copies/ml

S. pneumoniae 12,875 copies/ml 12,400 copies/ml 1,161 copies/ml

Testing laboratory DDL Diagnostic GSK Vaccines GSK Vaccines

B. Triplex qualitative real-time PCR assay to identify Pseudomonas aeruginosa, Staphylococcus aureus, and Streptococcus 

pyogenes

Study AERIS NTHI-004 NTHI-MCAT-002

Nucleic acid extraction kit and protocol MagNA Pure 96 equipment 

(Roche)

Kingfisher equipment (Life 

Technologies)

MagNA Pure 96 equipment 

(Roche)

MagNA Pure 96 DNA and Viral 

NA small volume kit (viral NA 

universal protocol)

LSI MagVet Universal Isolation 

Kit

MagNA Pure 96 DNA and Viral 

NA large volume kit (pathogen 

universal 500 protocol)

Real-time PCR reagent Taqman Fast Advanced Multiplex Universal Master Mix (Life Technologies)

P. aeruginosa target gene   algD

S. aureus target gene   clfA

S. pyogenes target gene   CDS 23

Sputum-DTT input volume 200 μl 100 μl 500 μl

Nucleic acid eluate volume 50 μl 80 μl 100 μl

Nucleic acid volume input in PCR reaction 2 μl 2 μl 2 μl

Positivity cut-off (assay LOD)*

P. aeruginosa 16,625 copies/ml 21,600 copies/ml 768 copies/ml

S. aureus 17,500 copies/ml 20,000 copies/ml 1,108 copies/ml

Testing laboratory DDL Diagnostic GSK Vaccines GSK Vaccines

copB, copB outer membrane protein encoding gene; DTT, dithiothreitol; lgtC, lipo-oligosaccharide glycosyltransferase encoding gene; LOD, limit of detection; lytA, autolysin encoding 
gene. algD, GDP mannose dehydrogenase encoding gene; CDS 23, coding sequence 23; clfA, clumping factor A encoding gene; DTT, dithiothreitol; LOD, limit of detection. *S. pyogenes 
not detected in sputum samples.
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Bacterial identification

For H. influenzae and M. catarrhalis in all three studies, and 
S. pneumoniae in the NTHI-004 and NTHI-MCAT-002 studies, 
concordance analysis showed overall agreement of culture and 
qPCR data was between 75 and 93% (Table  2). Overall 
agreements were mainly impacted by the low negative 
agreement. Indeed, more samples were positive when 
identification was performed using qPCR, with statistically 

significant (p < 0.0001) differences between positivity rates for 
samples assessed by culture versus those assessed by qPCR 
(Figure 3). In the concordance analysis, culture-negative/qPCR-
positive results were associated with significant p-values 
(p < 0.0001; McNemar’s test), indicating increased sensitivity 
with qPCR compared to culture-based methods for the three 
bacterial species (Table 2).

The concordance analysis also showed, for H. influenzae, 
M. catarrhalis, and S. pneumoniae, few culture-positive and 

TABLE 2 Concordance analysis between bacterial pathogen identification results obtained by sputum culture and PCR assay (samples with both 
culture and PCR results).

Number of samples Overall 
agreementa 

(%)

Positive 
agreementb 

(%)

Negative 
agreementc 

(%)

P 
valued

Pathogen Study Culture-
negative, 

PCR-
negative

Culture-
negative, 

PCR-
positive

Culture-
positive, 

PCR-
negative

Culture-
positive, 

PCR-
positive

Haemophilus 

influenzaee

AERIS 1,173 367 9 538 81.98 98.35 76.17 <0.0001

NTHI-

004

501 229 5 223 75.57 97.81 68.63 <0.0001

NTHI-

MCAT-

002

1,140 379 1 176 77.59 99.44 75.05 <0.0001

Moraxella 

catarrhalis

AERIS 1,824 143 4 128 93.00 96.97 92.73 <0.0001

NTHI-

004

773 127 2 55 86.52 96.49 85.89 <0.0001

NTHI-

MCAT-

002

1,462 201 4 68 88.18 94.44 87.91 <0.0001

Streptococcus 

pneumoniae

AERIS 1,631 103 237 128 83.80 35.07 94.06 <0.0001

NTHI-

004

790 108 17 42 86.94 71.19 87.97 <0.0001

NTHI-

MCAT-

002

1,445 221 19 47 86.14 71.21 86.73 <0.0001

Pseudomonas 

aeruginosa

AERIS 1,967 35 10 113 97.88 91.87 98.25 0.0002

NTHI-

004

918 13 4 21 98.22 84.00 98.60 0.0490

NTHI-

MCAT-

002

1,593 49 8 85 96.71 91.40 97.02 <0.0001

Staphylococcus 

aureus

AERIS 1,993 23 33 76 97.36 69.72 98.86 0.2288

NTHI-

004

874 46 10 26 94.14 72.22 95.00 <0.0001

NTHI-

MCAT-

002

1,517 108 26 85 92.28 76.58 93.35 <0.0001

a Calculated as [(Culture-positive, PCR-positive) + (Culture-negative, PCR-negative)] divided by [(Culture-positive, PCR-positive) + (Culture-negative, PCR-negative) + (Culture-positive, 
PCR-negative) + (Culture-negative, PCR-positive)]. b Calculated as (Culture-positive, PCR-positive) divided by [(Culture-positive, PCR-positive) + (Culture-positive, PCR-negative)]. 
c Calculated as (Culture-negative, PCR-negative) divided by [(Culture-negative, PCR-negative) + (Culture-negative, PCR-positive)]. d Difference between culture-negative/PCR-positive 
samples and culture-positive/PCR-negative samples: McNemar’s test. e Samples confirmed as positive after differentiation from H. haemolyticus by Senti-HI microarray analysis or 
lgtC/P6 real-time PCR assay.
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qPCR-negative samples, apart from for S. pneumoniae in the 
AERIS study (Table  2). Moreover, the positivity rate for 
S. pneumoniae in the AERIS study was significantly higher 
(p < 0.0001) with culture identification than with qPCR 
(Figure 3). This discrepancy between culture and qPCR assay 
results observed with S. pneumoniae in the AERIS study was 
investigated further via various molecular techniques and 
mass spectrometry (see Supplementary material). This 
confirmed that the high rate of false-positive samples by 
culture-based methods was due to misidentification of 
samples containing Streptococcus pseudopneumoniae or 
Streptococcus mitis species.

For P. aeruginosa, the positivity rate was significantly higher 
(p = 0.0049) with PCR than with culture in the NTHI-MCAT-002 
study only, while for S. aureus, a statistically significant difference 
was only observed in the NTHI-004 study (p = 0.0002) and the 
NTHI-MCAT-002 study (p < 0.0001), with higher positivity rates 
with PCR (Figure  3). Concordance analysis showed overall 
agreement of culture and PCR data was between 92% and 98% 
(Table 2). The difference between culture-negative/PCR-positive 
samples and culture-positive/PCR-negative samples was 
statistically significant (p < 0.05; McNemar’s test) in all three 

studies, apart from the discordant results for S. aureus in the 
AERIS study (Table 2).

The NTHI-004 study also evaluated the feasibility of 
freezing sputum samples before bacterial detection by culture 
in a central laboratory. The comparison of two culture-based 
methods for identifying H. influenzae, M. catarrhalis, and 
S. pneumoniae showed lower positivity rates for STGG-frozen 
samples processed centrally than for fresh samples tested locally 
(Supplementary Table  2). Of fresh samples that tested 
H. influenzae-positive by culture, thawed frozen samples 
remained positive for 39.5% of samples and positive agreement 
was 47.1% for M. catarrhalis and 18.5% for S. pneumoniae 
(Supplementary Table 3).

Bacterial load

Bacterial load data generated by qPCR were plotted against 
the semi-quantitative results from culture-based methods for 
H. influenzae, M. catarrhalis, and S. pneumoniae. Figure 4 shows 
data for samples with qPCR loads above >0 copy/reaction and 
associated with a semi-quantitative culture result. There was a 

FIGURE 3

Percentage of culture-positive sputum samples derived from freshly collected samples assessed in local laboratories (grey bars) and percentage of 
PCR-positive sputum samples derived from frozen samples and assessed centrally (light brown bars). 95% CI, 95% confidence interval; n, number 
of samples for which there were both valid culture and PCR results (POS/NEG) for each targeted pathogen.
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positive trend between the qPCR load and semi-quantitative 
culture results. For each species, the median load calculated by 
qPCR in sputum samples was higher in culture-positive samples 
than in culture-negative samples (Figure 4). Most culture-negative 
samples were associated with null bacterial loads by qPCR (not 
shown in Figure 4). For the AERIS study, of 1,540, 1,967, and 
1,734 samples that were culture-negative for H. influenzae, 
M. catarrhalis, and S. pneumoniae, respectively, 1,017 (66.0%), 

1,678 (85.3%), and 1,556 (89.7%) had null bacterial loads by 
qPCR. For the NTHI-004 study, of 730, 900, and 898 samples that 
were culture-negative for H. influenzae, M. catarrhalis, and 
S. pneumoniae, respectively, 463 (63.4%), 733 (81.4%), and 769 
(85.6%) had null bacterial loads by qPCR. Similarly, for the NTHI-
MCAT-002 study, of 1,519, 1,663, and 1,666 culture-negative 
samples for H. influenzae, M. catarrhalis, and S. pneumoniae, 
respectively, 1,015 (66.8%), 1,370 (82.4%), and 1,354 (81.3%) had 

FIGURE 4

Box and dot plots of bacterial load results by quantitative real-time PCR (qPCR) as a function of semi-quantitative culture results. Median, first and 
third quartiles, and minimum and maximum data shown. a Culture-positive samples confirmed by Senti-HI microarray or lgtC/P6 real-time PCR 
assay. b Samples with qPCR loads above >0 copy/reaction and associated with a semi-quantitative culture result. See Table 1 for qPCR positivity 
cut-offs for H. influenzae, M. catarrhalis, and S. pneumoniae. Bacterial load in cultured samples estimated using the quadrant assessment method, 
according to a ‘0, Few, 1+, 2+, 3+’ scale, with ‘0’ indicating absence and ‘3+’ corresponding to the highest load. ‘Few’ category not recorded in 
NTHI-004 study.
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null bacterial loads by qPCR. Therefore, across all three studies, 
33–37% (H. influenzae), 15–19% (M. catarrhalis), and 10–19% 
(S. pneumoniae) of culture-negative samples were detected by 
qPCR assay (below or above the positivity cut-off), with loads for 
some samples in line with those observed in culture-positive 
samples (Figure 4).

Discussion

We compared the performance of culture-based and PCR 
assays in identifying bacterial airway pathogens in sputum 
samples taken in three clinical studies of patients with COPD. In 
each study, two triplex real-time PCR assays were used, developed 
by GSK: a qPCR assay to detect and quantify H. influenzae, 
M. catarrhalis, and S. pneumoniae from sputum total nucleic acids, 
involving hydrolysis probes to maximize specificity, and a 
qualitative PCR assay to detect P. aeruginosa, S. aureus, and 
S. pyogenes. S. pyogenes was not identified in sputum samples from 
any of the studies. The three studies were conducted over the 
period 2011 to 2020, during which time the PCR assays were 
improved, such as in extraction methods for nucleic acids, leading 
to adjustments in LOD.

Our results show that real-time qPCR has higher 
specificity and sensitivity than culture-based methods for the 
detection of the most frequent bacterial species identified: 
H. influenzae, M. catarrhalis, and S. pneumoniae. The bacterial 
load analyses for these three species showed that some samples 
negative by culture contained a significant amount (over 10 
million copies/ml) of bacterial DNA. Moreover, for 
P. aeruginosa and S. aureus, analysis of over 1,700 samples in 
the NTHI-MCAT-002 study showed significantly higher 
positivity rates with PCR than with culture-based detection 
methods for both species, although in the other two studies 
the difference was only significant for S. aureus in the 
NTHI-004 study. Overall, however, these data confirm 
previous reports of higher sensitivity with the PCR assay than 
with culture-based methods not only in COPD but also other 
conditions, such as otitis media and cystic fibrosis (Eser et al., 
2012; Garcha et al., 2012; Bafadhel et al., 2015; Gadsby et al., 
2015; Wilkinson et al., 2017; Gavillet et al., 2022). For example, 
one study of the detection of P. aeruginosa and S. aureus in 
cystic fibrosis found significantly lower detection of both lung 
pathogens by culture, which often did not detect either 
pathogen despite being found repeatedly by qPCR (Gavillet 
et al., 2022). In our study, qPCR positivity rates were around 
two-to four-fold higher for H. influenzae and M. catarrhalis in 
all three studies and for S. pneumoniae in the NTHI-004 and 
NTHI-MCAT-002 studies. In the concordance analysis, the 
lowest percentage positive agreement was for S. pneumoniae 
in the AERIS study (35%), reflecting the proportion of qPCR-
negative samples among the culture-positive ones. Further 
analysis of this discrepant result led to the re-identification of 

a significant number of isolates, initially attributed to 
be S. pneumoniae isolates, as S. pseudopneumoniae or S. mitis 
by molecular techniques. The reason for this observation in 
the AERIS study may be related to characteristics of locally 
circulating strains or the specificity of the culture methods 
used to identify S. pneumoniae in the AERIS study laboratory; 
positive agreement in the other two studies was 71%. This 
suggests the culture-based method may have, in some settings, 
low specificity for S. pneumoniae.

A lack of specificity with culture-based methods is also 
demonstrated by the need to discriminate H. influenzae from 
H. haemolyticus isolates in presumptive H. influenzae-positive 
samples by using molecular methods (Murphy et al., 2007), as 
confirmed by qPCR or microarray in the three studies analyzed. 
Of the bacterial species assessed, the concordance analysis 
showed the lowest percentage overall agreement (76–82%) for 
H. influenzae (confirmed samples), due mainly to samples that 
were negative with culture-based detection but positive with 
qPCR. However, the presence of culture-negative samples 
associated with high bacterial DNA loads suggests this may 
have been partly due to the presence of non-culturable but 
viable bacteria (Oliver, 2010) or poor sensitivity of the culture 
method used. For example, use of bacitracin agar increases 
identification rates for H. influenzae (Harris et al., 2017) but this 
was not used in all laboratories. There is also a possibility that, 
although patients were instructed not to take an antibiotic 
before site visits, antibiotic treatment before sputum collection 
could have had an impact on the bacterial culture results 
(Brown and Spiegel, 2019). In this case, bacteria may not have 
been capable of growing on an agar plate but would have been 
detected by real-time PCR.

Our data suggest important advantages related to the 
specificity and sensitivity of real-time PCR over conventional 
culture-based methods for the assessment of airway bacteria in 
patients with COPD. Molecular assays can be  performed on 
frozen sputum samples (Zhao et  al., 2011; Cuthbertson et  al., 
2014), whereas culture needs to be done shortly after sputum 
collection to ensure sample integrity and bacteria viability (Baron 
et  al., 2013). Frozen samples can be  processed in a central 
laboratory with a well characterized PCR-based method, while 
fresh samples processed via conventional microbiological 
methods may require multiple local laboratories to avoid loss of 
viability. These local laboratories may not use exactly the same 
methods (see Figure  2), affecting the consistency of results 
(Hogardt et  al., 2009). Culture of freeze/thawed samples in a 
central laboratory was examined in the NTHI-004 study as an 
option to avoid unharmonized methods across local laboratories. 
This analysis of the impact of freezing sputum samples before 
species identification by culture-based methods used STGG as 
storage medium since preserved H. influenzae, M. catarrhalis, and 
S. pneumoniae isolate viability had been reported with its use 
(Kaijalainen et al., 2004). However, the culture-positivity rate in 
STGG-frozen sputum samples was only around 50% or less of that 
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in fresh samples, showing this is not a feasible option for 
evaluating sputum samples, thus providing further support for 
PCR testing of frozen samples in a central laboratory. The ability 
to freeze sputum samples is a particular advantage in phase 3 
clinical trials of COPD patients, which generally require large 
numbers of sites to enroll a sufficient number of patients (Tashkin 
et al., 2008; Wedzicha et al., 2008; Calverley et al., 2009; Albert 
et al., 2011; Wedzicha et al., 2013; Pascoe et al., 2016). However, 
central analysis of frozen samples is associated with additional 
shipment costs and there is a risk of inappropriate sample 
management during the transport or freezing procedure, although 
there is also a management risk associated with fresh samples, for 
example, if not processed within the appropriate time window. 
Additionally, antibiotic usage before sputum sample collection can 
have an impact on the reliability of bacterial data obtained by 
culture (Wu et al., 2014; Mammen and Sethi, 2016; Jacobs et al., 
2018), and the identification of pathogens by culture can 
be  complicated by species overgrowth and contamination by 
commensal bacteria, while PCR allows direct species detection 
irrespective of these circumstances (Scoleri et al., 2016). PCR also 
has many advantages in terms of easy evaluation of bacterial load, 
it is relatively inexpensive, and it can be used to process more 
samples simultaneously than culture. These advantages assume the 
PCR assay has been appropriately designed (with highly specific 
oligonucleotide selection) and well characterized in terms of assay 
parameters, including LOD and quantitation limits, as was done 
for the PCR assays used in the AERIS, NTHI-004, and NTHI-
MCAT-002 studies.

A major strength of these analyses is the large number 
(totaling 5,003) and multinational origin (Europe and North 
America) of sputum samples assessed for bacterial detection 
results from both culture-based and PCR assays. Also, the triplex 
real-time PCR assays used in each study were essentially the 
same, with any differences related to improvements made over 
time. The results of these analyses are limited by the possibility 
of false-positives resulting from the detection of low amounts of 
DNA, associated with dead bacteria, by qPCR. However, this was 
mitigated in these studies by using a LOD for each qPCR target 
as positivity cut-off (i.e., a sample was considered positive for a 
pathogen by qPCR if the observed load is equal to or above the 
corresponding LOD). We found many culture-and PCR-negative 
samples had PCR signals detected below the positivity cut-off, 
suggesting that using a PCR positivity cut-off is meaningful to 
limit the proportion of false-positives. Although qPCR can 
detect both viable and non-viable bacteria (Rudi et al., 2005), 
we  found the bacterial loads measured by qPCR generally 
mirrored those measured by culture. Nevertheless, it would have 
been of interest to determine if samples found negative with 
culture-based techniques but positive on qPCR assay contained 
viable bacteria that were not culturable, as reported in other 
studies (Stenfors and Räisänen, 1992; Oliver, 2010; Lee and Bae, 
2018), as well as the rate of non-viable bacteria present in 
samples recorded as qPCR-positive.

In conclusion, these results encourage the use of real-time 
PCR assays for the identification of respiratory bacteria in 
patients with COPD. PCR assay addresses some of the 
limitations of conventional culture-based methods in terms of 
specificity and sensitivity in detecting bacterial infection. PCR 
has additional advantages, including the ability to 
be performed in a centralized location on frozen samples and 
the capacity to detect viable but non-culturable bacteria. This 
supports the use of well characterized molecular methods for 
the identification and quantification of bacteria in future 
studies of patients with COPD, especially when working in a 
multicenter setting requiring sample testing in multiple  
laboratories.
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